1
|
Alattar A, Alshaman R, Althobaiti YS, Soliman GM, Ali HS, Khubrni WS, Koh PO, Rehman NU, Shah FA. Quercetin Alleviated Inflammasome-Mediated Pyroptosis and Modulated the mTOR/P70S6/P6/eIF4E/4EBP1 Pathway in Ischemic Stroke. Pharmaceuticals (Basel) 2023; 16:1182. [PMID: 37631097 PMCID: PMC10459024 DOI: 10.3390/ph16081182] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Stroke ranks as the world's second most prevalent cause of mortality, and it represents a major public health concern with profound economic and social implications. In the present study, we elucidated the neuroprotective role of quercetin on NLRP3-associated pyroptosis, Nrf2-coupled anti-inflammatory, and mTOR-dependent downstream pathways. Male Sprague Dawley rats were subjected to 72 h of transient middle cerebral artery ischemia, followed by the administration of 10 mg/kg of quercetin. Our findings demonstrated that MCAO induced elevated ROS which were coupled to inflammasome-mediated pyroptosis and altered mTOR-related signaling proteins. We performed ELISA, immunohistochemistry, and Western blotting to unveil the underlying role of the Nrf2/HO-1 and PDK/AKT/mTOR pathways in the ischemic cortex and striatum. Our results showed that quercetin post-treatment activated the Nrf2/HO-1 cascade, reversed pyroptosis, and modulated the autophagy-related pathway PDK/AKT/mTOR/P70S6/P6/eIF4E/4EBP1. Further, quercetin enhances the sequestering effect of 14-3-3 and reversed the decrease in interaction between p-Bad and 14-3-3 and p-FKHR and 14-3-3. Our findings showed that quercetin exerts its protective benefits and rescues neuronal damage by several mechanisms, and it might be a viable neuroprotective drug for ischemic stroke therapy.
Collapse
Affiliation(s)
- Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 21944, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, Taif University, Taif 21944, Saudi Arabia
| | - Ghareb M. Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia;
| | - Howaida S. Ali
- Department of Pharmacology, Faculty of Medicine, Assuit University, Assuit 71515, Egypt;
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Waleed Salman Khubrni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Phil Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sttam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Fawad Ali Shah
- Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| |
Collapse
|
2
|
Zhang N, Zhang Q, Zhang R, Zhang D. Exploring the mechanism of wendan decoction in the treatment of ischemic stroke using bioinformatics and network pharmacology. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
3
|
Zhang L, Ma J, Yang F, Li S, Ma W, Chang X, Yang L. Neuroprotective Effects of Quercetin on Ischemic Stroke: A Literature Review. Front Pharmacol 2022; 13:854249. [PMID: 35662707 PMCID: PMC9158527 DOI: 10.3389/fphar.2022.854249] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke (IS) is characterized by high recurrence and disability; however, its therapies are very limited. As one of the effective methods of treating acute attacks of IS, intravenous thrombolysis has a clear time window. Quercetin, a flavonoid widely found in vegetables and fruits, inhibits immune cells from secreting inflammatory cytokines, thereby reducing platelet aggregation and limiting inflammatory thrombosis. In pre-clinical studies, it has been shown to exhibit neuroprotective effects in patients with ischemic brain injury. However, its specific mechanism of action remains unknown. Therefore, this review aims to use published data to elucidate the potential value of quercetin in patients with ischemic brain injury. This article also reviews the plant sources, pharmacological effects, and metabolic processes of quercetin in vivo, thus focusing on its mechanism in inhibiting immune cell activation and inflammatory thrombosis as well as promoting neuroprotection against ischemic brain injury.
Collapse
Affiliation(s)
- Leilei Zhang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Jingying Ma
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fan Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Sishi Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wangran Ma
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiang Chang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Lin Yang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| |
Collapse
|
4
|
Li R, Zhou Y, Zhang S, Li J, Zheng Y, Fan X. The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke. Eur J Pharmacol 2022; 914:174660. [PMID: 34863710 DOI: 10.1016/j.ejphar.2021.174660] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Increasing evidences suggest that inflammation plays a key role in the pathogenesis of stroke, a devastating disease second only to cardiac ischemia as a cause of death worldwide. Microglia are the first non-neuronal cells on the scene during the innate immune response to acute ischemic stroke. Microglia respond to acute brain injury by activating and developing classic M1-like (pro-inflammatory) or alternative M2-like (anti-inflammatory) phenotypes. M1 microglia produce pro-inflammatory cytokines to exacerbate neural death, astrocyte apoptosis, and blood brain barrier (BBB) disruption, while M2 microglia play the opposite role. NF-κB, a central regulator of the inflammatory response, was responsible for microglia M1 and M2 polarization. NF-κB p65 and p50 form a heterodimer to initiate a pro-inflammatory cytokine response, which enhances M1 activation and impair M2 response of microglia. TLR4, expressed on the surface of microglia, plays an important role in activating NF-κB, ultimately causing the M1 response of microglia. Therefore, modulation of microglial phenotypes via TLR4/NF-κB signaling pathway may be a promising therapeutic approach for ischemic stroke. Dietary (poly)phenols are present in various foods, which have shown promising protective effects on ischemic stroke. In vivo studies strongly suggest that many (poly)phenols have a pronounced impact on ischemic stroke, as demonstrated by lower neuroinflammation. Thus, this review focuses on the anti-inflammatory properties of dietary (poly)phenols and discusses their effects on the polarization of microglia through modulating TLR4/NF-κB signaling pathway in the ischemic stroke.
Collapse
Affiliation(s)
- Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jieying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yingyi Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
6
|
Network Pharmacology and Molecular Docking Analysis on Molecular Targets and Mechanisms of Buyang Huanwu Decoction in the Treatment of Ischemic Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8815447. [PMID: 33727944 PMCID: PMC7937485 DOI: 10.1155/2021/8815447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Methods The bioactive components and potential targets of BHD were screened by TCMSP, BATMAN-TCM, ETCM, and SymMap databases. Besides, compounds that failed to find the targets from the above databases were predicted through STITCH, SwissTargetPrediction, and SEA. Moreover, six databases were searched to mine targets of IS. The intersection targets were obtained and analyzed by GO and KEGG enrichment. Furthermore, BHD-IS PPI network, compound-target network, and herb-target-pathway network were constructed by Cytoscape 3.6.0. Finally, AutoDock was used for molecular docking verification. Results A total of 235 putative targets were obtained from 59 active compounds in BHD. Among them, 62 targets were related to IS. PPI network showed that the top ten key targets were IL6, TNF, VEGFA, AKT1, etc. The enrichment analysis demonstrated candidate BHD targets were more frequently involved in TNF, PI3K-Akt, and NF-kappa B signaling pathway. Network topology analysis showed that Radix Astragali was the main herb in BHD, and the key components were quercetin, beta-sitosterol, kaempferol, stigmasterol, etc. The results of molecular docking showed the active components in BHD had a good binding ability with the key targets. Conclusions Our study demonstrated that BHD exerted the effect of treating IS by regulating multitargets and multichannels with multicomponents through the method of network pharmacology and molecular docking.
Collapse
|
7
|
Long Y, Yang Q, Xiang Y, Zhang Y, Wan J, Liu S, Li N, Peng W. Nose to brain drug delivery - A promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol Res 2020; 159:104795. [PMID: 32278035 DOI: 10.1016/j.phrs.2020.104795] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia reperfusion injury (CIRI), one of the major causes of death from stroke in the world, not only causes tremendous damage to human health, but also brings heavy economic burden to society. Current available treatments for CIRI, including mechanical therapies and drug therapies, are often accompanied by significant side-effects. Therefore, it is necessary to discovery new strategies for treating CIRI. Many studies have confirmed that the herbal medicine has the advantages of abundant resources, good curative effect and little side effects, which can be used as potential drug for treatment of CIRI through multiple targets. It's known that oral administration commonly has low bioavailability, and injection administration is inconvenient and unsafe. Many drugs can't delivery to brain through routine pathways due to the blood-brain-barrier (BBB). Interestingly, increasing evidences have suggested the nasal administration is a potential direct route to transport drug into brain avoiding the BBB and has the characteristics of high bioavailability for treating brain diseases. Therefore, intranasal administration can be treated as an alternative way to treat brain diseases. In the present review, effective methods to treat CIRI by using active ingredients derived from herbal medicine through nose to brain drug delivery (NBDD) are updated and discussed, and some related pharmacological mechanisms have also been emphasized. Our present study would be beneficial for the further drug development of natural agents from herbal medicines via NBDD.
Collapse
Affiliation(s)
- Yu Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, PR China
| | - Yan Xiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Yulu Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Jinyan Wan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Songyu Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Nan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China.
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China.
| |
Collapse
|