1
|
Liu A, Zhu XJ, Sun WD, Bi SZ, Zhang CY, Lai SY, Li JH. Nicotinamide N-methyltransferase as a potential therapeutic target for neurodegenerative disorders: Mechanisms, challenges, and future directions. Exp Neurol 2025; 389:115253. [PMID: 40221009 DOI: 10.1016/j.expneurol.2025.115253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are characterized by progressive neuronal loss and functional decline, posing significant global health challenges. Emerging evidence highlights nicotinamide N-methyltransferase (NNMT), a cytosolic enzyme regulating nicotinamide (NAM) methylation, as a pivotal player in NDs through its dual impact on epigenetic regulation and metabolic homeostasis. This review synthesizes current knowledge on NNMT's role in disease pathogenesis, focusing on its epigenetic modulation via DNA hypomethylation and histone modifications, alongside its disruption of NAD+ synthesis and homocysteine (Hcy) metabolism. Elevated NNMT activity depletes NAD+, exacerbating mitochondrial dysfunction and impairing energy metabolism, while increased Hcy levels drive oxidative stress, neuroinflammation, and aberrant protein aggregation (e.g., Aβ, tau, α-synuclein). Notably, NNMT overexpression in AD and PD correlates with neuronal hypomethylation and neurotoxicity, as observed in postmortem brain studies and transgenic models. Mechanistically, NNMT consumes S-adenosylmethionine (SAM), limiting methyl donor availability for DNA methyltransferases (DNMTs) and histone methyltransferases (HMTs), thereby altering gene expression patterns critical for neuronal survival. Concurrently, NNMT-mediated NAD+ depletion disrupts sirtuin activity (e.g., SIRT1) and mitochondrial biogenesis, accelerating axonal degeneration. Therapeutic strategies targeting NNMT, such as RNA interference (RNAi), small-molecule inhibitors and exercise therapy, show promise in preclinical models by restoring NAD+ levels and reducing Hcy toxicity. However, challenges persist in achieving cellular specificity, optimizing blood-brain barrier penetration, and mitigating off-target effects. This review underscores NNMT's potential as a multifactorial therapeutic target, bridging metabolic and epigenetic dysregulation in NDs. Future research should prioritize elucidating tissue-specific NNMT interactions, refining inhibitor pharmacokinetics, and validating translational efficacy in clinical trials. Addressing these gaps could pave the way for novel disease-modifying therapies to combat the rising burden of neurodegeneration.
Collapse
Affiliation(s)
- An Liu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Xiao-Juan Zhu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Wei-Dong Sun
- Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Shuang-Zhou Bi
- Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Chen-Ying Zhang
- Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Shi-Yan Lai
- Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Jiang-Hua Li
- Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China.
| |
Collapse
|
2
|
Xing S, Kang X, Wang R, Wang C, Wang Y, Bao X, Zhao J. Microbial Production of Nicotinamide Mononucleotide: Key Enzymes Discovery, Host Cells Selection, and Pathways Design and Optimization. ACS Synth Biol 2025; 14:1352-1366. [PMID: 40237164 DOI: 10.1021/acssynbio.5c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
As an important bioactive substance in cells, nicotinamide mononucleotide (NMN) has been proven to play an important role in antiaging, treatment of neurodegenerative diseases, and cardioprotection. It presents a high potential for application in the research fields of functional foods, cosmetics, healthcare products, and active pharmaceuticals. With the increased demand, whether NMN can achieve large-scale industrial production has been a wide concern. The chemical synthesis method of NMN mainly faces the problems of separation, purification, and complex process control; in contrast, biosynthesis methods such as microbial fermentation and enzyme catalysis are considered to be the mainstream of the future industrial production of NMN due to the advantages of environmental friendliness, high efficiency, and simple separation. This review first describes the physiological functions of NMN and the related areas of its applications. Subsequently, it focuses on the research progress on different synthetic pathways of NMN in biosynthetic approaches, mining and modification of key enzymes, chassis cell design and optimization, and whole-cell catalysis. Meanwhile, the regulatory strategies, methods, and process control of the microbial synthesis of NMN are also elaborated, and the synthesis efficiencies of different chassis cells are systematically compared. Finally, this review summarizes the existing problems and challenges of microbial synthesis of NMN and proposes future strategies and directions to address these issues. This work provides technical references and a theoretical basis for researching efficient NMN microbial synthesis and application.
Collapse
Affiliation(s)
- Shuyi Xing
- State Key Laboratory of Green Papermaking and Resource Recycling, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiulong Kang
- State Key Laboratory of Green Papermaking and Resource Recycling, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Rui Wang
- State Key Laboratory of Green Papermaking and Resource Recycling, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chengqiang Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian 271018, China
| | - Yanjun Wang
- National Key Laboratory of Efficient Utilization of Nutrient Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaoming Bao
- State Key Laboratory of Green Papermaking and Resource Recycling, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianzhi Zhao
- State Key Laboratory of Green Papermaking and Resource Recycling, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
3
|
Dölle C, Tzoulis C. NAD augmentation as a disease-modifying strategy for neurodegeneration. Trends Endocrinol Metab 2025:S1043-2760(25)00070-0. [PMID: 40287324 DOI: 10.1016/j.tem.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Neurodegenerative diseases (NDDs) pose a significant and rapidly growing global health challenge, but there are no effective therapies to delay or halt progression. In recent years augmentation of nicotinamide adenine dinucleotide (NAD) has emerged as a promising disease-modifying strategy that targets multiple key disease pathways across multiple NDDs, such as mitochondrial dysfunction, energy deficits, proteostasis, and neuroinflammation. Several early clinical trials of NAD augmentation have been completed, and many more are currently underway, reflecting the growing optimism and urgency within the field. We discuss the rationale and evolving therapeutic landscape of NAD augmentation. We argue that, to fully realize its therapeutic potential, it is essential to determine the specific contexts in which NAD supplementation is most effective and to address crucial knowledge gaps.
Collapse
Affiliation(s)
- Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway; K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Pb 7804, 5020 Bergen, Norway.
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway; K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Pb 7804, 5020 Bergen, Norway.
| |
Collapse
|
4
|
Manickam R, Santhana S, Xuan W, Bisht KS, Tipparaju SM. Nampt: a new therapeutic target for modulating NAD + levels in metabolic, cardiovascular, and neurodegenerative diseases. Can J Physiol Pharmacol 2025. [PMID: 40203459 DOI: 10.1139/cjpp-2024-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
NAD+ is an important cofactor involved in regulating many biochemical processes in cells. An imbalance in NAD+/NADH ratio is linked to many diseases. NAD+ is depleted in diabetes, cardiovascular and neurodegenerative diseases, and in aging, and is increased in tumor cells. NAD+ is generated in cells via the de novo, Preiss-Handler, and salvage pathways. Most of the cellular NAD+ is generated through Nampt activation, a key rate-limiting enzyme that is involved in the salvage pathway. Restoration of NAD+/NADH balance offers therapeutic advantages for improving tissue homeostasis and function. NAD+ is known to benefit and restore the body's physiological mechanisms, including DNA replication, chromatin and epigenetic modifications, and gene expression. Recent studies elucidate the role of NAD+ in cells utilizing transgenic mouse models. Translational new therapeutics are positioned to utilize the NAD+ restoration strategies for overcoming the drawbacks that exist in the pharmacological toolkit. The present review highlights the significance of Nampt-NAD+ axis as a major player in energy metabolism and provides an overview with insights into future strategies, providing pharmacological advantages to address current and future medical needs.
Collapse
Affiliation(s)
- Ravikumar Manickam
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Sandhya Santhana
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Wanling Xuan
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Kirpal S Bisht
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Jiang Q, Liu J, Huang S, Wang XY, Chen X, Liu GH, Ye K, Song W, Masters CL, Wang J, Wang YJ. Antiageing strategy for neurodegenerative diseases: from mechanisms to clinical advances. Signal Transduct Target Ther 2025; 10:76. [PMID: 40059211 PMCID: PMC11891338 DOI: 10.1038/s41392-025-02145-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/29/2024] [Accepted: 01/15/2025] [Indexed: 05/13/2025] Open
Abstract
In the context of global ageing, the prevalence of neurodegenerative diseases and dementia, such as Alzheimer's disease (AD), is increasing. However, the current symptomatic and disease-modifying therapies have achieved limited benefits for neurodegenerative diseases in clinical settings. Halting the progress of neurodegeneration and cognitive decline or even improving impaired cognition and function are the clinically meaningful goals of treatments for neurodegenerative diseases. Ageing is the primary risk factor for neurodegenerative diseases and their associated comorbidities, such as vascular pathologies, in elderly individuals. Thus, we aim to elucidate the role of ageing in neurodegenerative diseases from the perspective of a complex system, in which the brain is the core and peripheral organs and tissues form a holistic network to support brain functions. During ageing, the progressive deterioration of the structure and function of the entire body hampers its active and adaptive responses to various stimuli, thereby rendering individuals more vulnerable to neurodegenerative diseases. Consequently, we propose that the prevention and treatment of neurodegenerative diseases should be grounded in holistic antiageing and rejuvenation means complemented by interventions targeting disease-specific pathogenic events. This integrated approach is a promising strategy to effectively prevent, pause or slow down the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Qiu Jiang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jie Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Shan Huang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xuan-Yue Wang
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Xiaowei Chen
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province. Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China.
| |
Collapse
|
6
|
Cheng Y, Zhao A, Li Y, Li C, Miao X, Yang W, Wang Y. Roles of SIRT3 in cardiovascular and neurodegenerative diseases. Ageing Res Rev 2025; 104:102654. [PMID: 39755174 DOI: 10.1016/j.arr.2024.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Sirtuin-3 (SIRT3) in mitochondria has nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase activity. As such, SIRT3 is crucial in cardiovascular and neurodegenerative diseases. Advanced proteomics and transcriptomics studies have revealed that SIRT3 expression becomes altered when the heart or brain is affected by external stimuli or disease, such as diabetic cardiomyopathy, atherosclerosis, myocardial infarction, Alzheimer's disease, Huntington's disease, and Parkinson's disease. More specifically, SIRT3 participates in the development of these disorders through its deacetylase activity and in combination with downstream signaling pathways. The paper reviews SIRT3's expression changes, roles, and mechanisms associated with the development of cardiovascular and neurodegenerative diseases. Additionally, strategies targeting SIRT3 to treat or regulate cardiovascular and neurodegenerative disease development are discussed.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China; Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Anqi Zhao
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Ying Li
- Department of Medical Clinic, Jilin Women and Children Health Hospital, Changchun, Jilin, China
| | - Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Miao
- The Second Hosptial of Jilin University, Changchun, Jilin, China.
| | - Wanshan Yang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, Salmina AB, Illarioshkin SN, Piradov MA. Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells. Biomolecules 2024; 14:1556. [PMID: 39766263 PMCID: PMC11673498 DOI: 10.3390/biom14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
NAD+ plays a pivotal role in energy metabolism and adaptation to external stimuli and stressful conditions. A significant reduction in intracellular NAD+ levels is associated with aging and contributes to the development of chronic cardiovascular, neurodegenerative, and metabolic diseases. It is of particular importance to maintain optimal levels of NAD+ in cells with high energy consumption, particularly in the brain. Maintaining the tissue level of NAD+ with pharmacological tools has the potential to slow down the aging process, to prevent the development of age-related diseases. This review covers key aspects of NAD+ metabolism in terms of brain metabolic plasticity, including NAD+ biosynthesis and degradation in different types of brain cells, as well as its contribution to the development of neurodegeneration and aging, and highlights up-to-date approaches to modulate NAD+ levels in brain cells.
Collapse
|
8
|
Zhang N, Ji D, Hu Y, Zhang P, Deng X, Zhu M, Zeng W, Ke M. The role of nicotinamide riboside in the preservation of retinal ganglion cells using an in vitro glutamate-induced excitotoxicity model. Exp Eye Res 2024; 248:110126. [PMID: 39414125 DOI: 10.1016/j.exer.2024.110126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/12/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Delaying or preventing the loss of retinal ganglion cells (RGCs) in glaucoma is needed for vision preservation. Glutamate-mediated neurotoxicity arises from the excessive stimulation of N-methyl-D-aspartate membrane receptors by glutamate. This overstimulation, occurring specifically in RGCs, triggers a progressive deterioration of the optic nerve that ultimately leads to the vision loss in glaucoma. Our previous investigation demonstrated that nicotinamide riboside (NR) effectively preserved RGCs in multiple mouse models of glaucoma. To investigate the precise role of NR concerning RGCs which remains uncertain, a glutamate-induced excitotoxicity RGCs damage model was established using R28 cells in this study. Results showed that NR treatment could not only prevent the decrease in cell viability but also effectively inhibit the apoptosis of R28 cells induced by glutamate, as proven by flow cytometry and expression of key pro-apoptotic proteins. Additionally, it significantly attenuated oxidative stress induced by glutamate, as evaluated by the production of inflammatory factors, reactive oxygen species (ROS) and mitochondrial ROS (mtROS). Furthermore, NR elevated the intracellular nicotinamide adenine dinucleotide (NAD+) levels in R28 cells. Lastly, we used RNA-seq to reveal the underlying mechanism of NR protection. Combining the results of RNA-seq and Western blot, we found that NR also restored the decreased protein expression of sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator (PGC1α) induced by glutamate. These findings strongly indicated that NR exhibits a protective effect against R28 cell apoptosis in a glutamate-induced excitotoxicity RGCs damage model. This protective effect is likely mediated through the activation of the SIRT1/PGC1α pathway, achieved by increasing intracellular NAD + levels.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Dongxiao Ji
- Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan, China; Department of Ophthalmology, Huaihe Hospital, Henan University, Kaifeng, China.
| | - Yixin Hu
- Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Pengyu Zhang
- Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Min Zhu
- Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Chen C, Wang T, Gao TY, Chen YL, Lu YB, Zhang WP. Ablation of NAMPT in dopaminergic neurons leads to neurodegeneration and induces Parkinson's disease in mouse. Brain Res Bull 2024; 218:111114. [PMID: 39489186 DOI: 10.1016/j.brainresbull.2024.111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme in the salvaging synthesize pathway of nicotinamide adenine dinucleotide (NAD). The neuroprotective roles of NAMPT on neurodegeneration have been explored in aging brain and Alzheimer's Disease. However, its roles in Parkinson's Disease (PD) remain to be elucidated. We found that the dopaminergic neurons in substantia nigra expressed higher levels of NAMPT than the other types of neurons. Using conditional knockout of the Nampt gene in dopaminergic neurons and utilizing a NAMPT inhibitor in the substantia nigra of mice, we found that the NAMPT deficiency triggered the time-dependent loss of dopaminergic neurons, the impairment of the dopamine nigrostriatal pathway, and the development of PD-like motor dysfunction. In the rotenone-induced PD mouse model, nicotinamide ribose (NR), a precursor of NAD, rescued the loss of dopaminergic neurons, the impairment of dopamine nigrostriatal pathway, and mitigated PD-like motor dysfunction. In SH-SY5Y cells, NAD suppression induced the accumulation of reactive oxygen species (ROS), mitochondrial impairment, and cell death, which was reversed by N-acetyl cysteine, an antioxidant and ROS scavenger. Rotenone decreased NAD level, induced the accumulation of ROS and the impairment of mitochondria, which was reversed by NR. In summary, our findings show that the ablation of NAMPT in dopaminergic neurons leads to neurodegeneration and contributes to the development of PD. The NAD precursors have the potential to protect the degeneration of dopaminergic neurons, and offering a therapeutic approach for the treatment of PD.
Collapse
Affiliation(s)
- Cong Chen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tong Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tong-Yao Gao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ya-Ling Chen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yun-Bi Lu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wei-Ping Zhang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
10
|
Upadhayay S, Kumar P. Mitochondrial targeted antioxidants as potential therapy for huntington's disease. Pharmacol Rep 2024; 76:693-713. [PMID: 38982016 DOI: 10.1007/s43440-024-00619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expansion in CAG repeat on huntington (Htt) gene, leading to a degeneration of GABAergic medium spiny neurons (MSNs) in the striatum, resulting in the generation of reactive oxygen species, and decrease antioxidant activity. These pathophysiological alterations impair mitochondrial functions, leading to an increase in involuntary hyperkinetic movement. However, researchers investigated the neuroprotective effect of antioxidants using various animal models. Still, their impact is strictly limited to curtailing oxidative stress and increasing the antioxidant enzyme in the brain, which is less effective in HD. Meanwhile, researchers discovered Mitochondria-targeted antioxidants (MTAXs) that can improve mitochondrial functions and antioxidant activity through the modulation of mitochondrial signaling pathways, including peroxisome proliferator-activated receptor (PPAR)-coactivator 1 (PGC-1α), dynamin-related protein 1 (Drp1), mitochondrial fission protein 1 (Fis1), and Silent mating type information regulation 2 homolog 1 (SIRT-1), showing neuroprotective effects in HD. The present review discusses the clinical and preclinical studies that investigate the neuroprotective effect of MTAXs (SS31, XJB-5-131, MitoQ, bezafibrate, rosiglitazone, meldonium, coenzyme Q10, etc.) in HD. This brief literature review will help to understand the relevance of MTAXs in HD and enlighten the importance of MTAXs in future drug discovery and development.
Collapse
Affiliation(s)
- Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
11
|
Horváth O, Klivényi P. Effect of 3-nitropropionic acid on sirtuin gene expression in Sirt3 deficient mice. Neurosci Lett 2024; 836:137882. [PMID: 38909839 DOI: 10.1016/j.neulet.2024.137882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Huntington's disease (HD) is an autosomal inherited progressive neurodegenerative disorder which is caused by the CAG trinucleotide repeat in the huntingtin gene. The mutation induces mitochondrial dysfunction in neurons, which leads to striatal neuronal loss. The efficacy of the available therapies is limited, thus acquisition of more data about the pathomechanism of HD and development of new strategies is urgent. Sirtuins (Sirt1-7) belong to the histone deacetylase family, and interestingly they have been associated with HD, however, their role in HD is still not fully understood. To clarify the role of sirtuins in HD, we utilized a 3-nitropropionic acid (3-NP) induced HD model and assessed alterations in gene expression using RT-PCR. Moreover, we studied the extension of neurodegeneration in the striatum, and behavioural changes. Furthermore, we involved Sirt3 knockout (Sirt3KO) mice to investigate the impact of Sirt3 deficiency in the expression of the other sirtuins. Our results showed that with 3-NP treatment, the mRNA level of Sirt2,5,7 changed significantly in wild-type (WT) mice, whereas in Sirt3KO animals there was no change. Interestingly, Sirt3 deficiency did not exacerbate 3-NP-mediated striatal neuronal loss, while Sirt3KO animals showed higher mortality than WT littermates. However, the absence of Sirt3 did not affect the behaviour of animals. Finally, we demonstrated that the changes in the expression of sirtuins are age- and sex- dependent. According to our findings, there is evidence that Sirt3 has a major impact on the regulation of other sirtuin isoforms, survival and neuroprotection. However, this neuroprotective effect does not manifest in the behaviour.
Collapse
Affiliation(s)
- Orsolya Horváth
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary; Department of Medical Genetics, University of Szeged, Szeged, Hungary; HUN-REN-SZTE Functional Clinical Genetics Research Group, Hungarian Research Network, Szeged, Hungary; Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
12
|
Velma G, Krider IS, Alves ETM, Courey JM, Laham MS, Thatcher GRJ. Channeling Nicotinamide Phosphoribosyltransferase (NAMPT) to Address Life and Death. J Med Chem 2024; 67:5999-6026. [PMID: 38580317 PMCID: PMC11056997 DOI: 10.1021/acs.jmedchem.3c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in NAD+ biosynthesis via salvage of NAM formed from catabolism of NAD+ by proteins with NADase activity (e.g., PARPs, SIRTs, CD38). Depletion of NAD+ in aging, neurodegeneration, and metabolic disorders is addressed by NAD+ supplementation. Conversely, NAMPT inhibitors have been developed for cancer therapy: many discovered by phenotypic screening for cancer cell death have low nanomolar potency in cellular models. No NAMPT inhibitor is yet FDA-approved. The ability of inhibitors to act as NAMPT substrates may be associated with efficacy and toxicity. Some 3-pyridyl inhibitors become 4-pyridyl activators or "NAD+ boosters". NAMPT positive allosteric modulators (N-PAMs) and boosters may increase enzyme activity by relieving substrate/product inhibition. Binding to a "rear channel" extending from the NAMPT active site is key for inhibitors, boosters, and N-PAMs. A deeper understanding may fulfill the potential of NAMPT ligands to regulate cellular life and death.
Collapse
Affiliation(s)
- Ganga
Reddy Velma
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Isabella S. Krider
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Erick T. M. Alves
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jenna M. Courey
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Megan S. Laham
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: Role in senescence regulation and aging. Aging Cell 2024; 23:e13920. [PMID: 37424179 PMCID: PMC10776128 DOI: 10.1111/acel.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
The geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process. The relationship between NAD metabolism and cellular senescence appears to be complex. On the one hand, the accumulation of DNA damage and mitochondrial dysfunction induced by low NAD+ can promote the development of senescence. On the other hand, the low NAD+ state that occurs during aging may inhibit SASP development as this secretory phenotype and the development of cellular senescence are both highly metabolically demanding. However, to date, the impact of NAD+ metabolism on the progression of the cellular senescence phenotype has not been fully characterized. Therefore, to explore the implications of NAD metabolism and NAD replacement therapies, it is essential to consider their interactions with other hallmarks of aging, including cellular senescence. We propose that a comprehensive understanding of the interplay between NAD boosting strategies and senolytic agents is necessary to advance the field.
Collapse
Affiliation(s)
- Claudia Christiano Silva Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Heidi Soares Cordeiro
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Ngan Le Kim Tran
- Center for Clinical and Translational Science and Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Eduardo Nunes Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| |
Collapse
|
14
|
Xiong Z, Wang H, Qu Y, Peng S, He Y, Yang Q, Xu X, Lv D, Liu Y, Xie C, Zhang X. The mitochondria in schizophrenia with 22q11.2 deletion syndrome: From pathogenesis to therapeutic promise of targeted natural drugs. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110831. [PMID: 37451595 DOI: 10.1016/j.pnpbp.2023.110831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Schizophrenia is a complex multi-factor neurological disorder that caused an array of severe indelible consequences to the individuals and society. Additionally, anti-schizophrenic drugs are unsuitable for treating negative symptoms and have more significant side effects and drug resistance. For better treatment and prevention, we consider exploring the pathogenesis of schizophrenia from other perspectives. A growing body of evidence of 22q11.2 deletion syndrome (22q11DS) suggested that the occurrence and progression of schizophrenia are related to mitochondrial dysfunction. So combing through the literature of 22q11DS published from 2000 to 2023, this paper reviews the mechanism of schizophrenia based on mitochondrial dysfunction, and it focuses on the natural drugs targeting mitochondria to enhance mitochondrial function, which are potential to improve the current treatment of schizophrenia.
Collapse
Affiliation(s)
- Zongxiang Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Heting Wang
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yutian Qu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sihan Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Yuchi He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingyan Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyue Xu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - De Lv
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Ya Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiyu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
15
|
Ferrari Bardile C, Radulescu CI, Pouladi MA. Oligodendrocyte pathology in Huntington's disease: from mechanisms to therapeutics. Trends Mol Med 2023; 29:802-816. [PMID: 37591764 DOI: 10.1016/j.molmed.2023.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Oligodendrocytes (OLGs), highly specialized glial cells that wrap axons with myelin sheaths, are critical for brain development and function. There is new recognition of the role of OLGs in the pathogenesis of neurodegenerative diseases (NDDs), including Huntington's disease (HD), a prototypic NDD caused by a polyglutamine tract expansion in huntingtin (HTT), which results in gain- and loss-of-function effects. Clinically, HD is characterized by a constellation of motor, cognitive, and psychiatric disturbances. White matter (WM) structures, representing myelin-rich regions of the brain, are profoundly affected in HD, and recent findings reveal oligodendroglia dysfunction as an early pathological event. Here, we focus on mechanisms that underlie oligodendroglial deficits and dysmyelination in the progression of the disease, highlighting the pathogenic contributions of mutant HTT (mHTT). We also discuss potential therapeutic implications involving these molecular pathways.
Collapse
Affiliation(s)
- Costanza Ferrari Bardile
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carola I Radulescu
- UK Dementia Research Institute, Imperial College London, London, W12 0NN, UK
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
16
|
Guo C, Huang Q, Wang Y, Yao Y, Li J, Chen J, Wu M, Zhang Z, E M, Qi H, Ji P, Liu Q, Zhao D, Su H, Qi W, Li X. Therapeutic application of natural products: NAD + metabolism as potential target. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154768. [PMID: 36948143 DOI: 10.1016/j.phymed.2023.154768] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD+) metabolism is involved in the entire physiopathological process and is critical to human health. Long-term imbalance in NAD+ homeostasis is associated with various diseases, including non-alcoholic fatty liver disease, diabetes mellitus, cardiovascular diseases, neurodegenerative disorders, aging, and cancer, making it a potential target for effective therapeutic strategies. Currently, several natural products that target NAD+ metabolism have been widely reported to have significant therapeutic effects, but systematic summaries are lacking. PURPOSE To summarize the latest findings on the prevention and treatment of various diseases through the regulation of NAD+ metabolism by various natural products in vivo and in vitro models, and evaluate the toxicities of the natural products. METHODS PubMed, Web of Science, and ScienceDirect were searched using the keywords "natural products sources," "toxicology," "NAD+ clinical trials," and "NAD+," and/or paired with "natural products" and "diseases" for studies published within the last decade until January 2023. RESULTS We found that the natural products mainly include phenols (curcumin, cyclocurcumin, 4-hydroxybenzyl alcohol, salvianolic acid B, pterostilbene, EGCG), flavonoids (pinostrobin, apigenin, acacetin, tilianin, kaempferol, quercetin, isoliquiritigenin, luteolin, silybin, hydroxysafflor yellow A, scutellarin), glycosides (salidroside), quinones (emodin, embelin, β-LAPachone, shikonin), terpenoids (notoginsenoside R1, ginsenoside F2, ginsenoside Rd, ginsenoside Rb1, ginsenoside Rg3, thymoquinone, genipin), pyrazines (tetramethylpyrazine), alkaloids (evodiamine, berberine), and phenylpropanoids (ferulic acid). These natural products have antioxidant, energy-producing, anti-inflammatory, anti-apoptotic and anti-aging effects, which mainly influence the NAMPT/NAD+/SIRT, AMPK/SIRT1/PGC-1α, Nrf2/HO-1, PKCs/PARPs/NF-κB, and AMPK/Nrf2/mTOR signaling pathways, thereby regulating NAD+ metabolism to prevent and treat various diseases. These natural products have been shown to be safe, tolerable and have fewer adverse effects in various in vivo and in vitro studies and clinical trials. CONCLUSION We evaluated the toxic effects of natural products and summarized the available clinical trials on NAD+ metabolism, as well as the recent advances in the therapeutic application of natural products targeting NAD+ metabolism, with the aim to provide new insights into the treatment of multiple disorders.
Collapse
Affiliation(s)
- Chen Guo
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Qingxia Huang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Yisa Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Yao Yao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jing Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jinjin Chen
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Mingxia Wu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Zepeng Zhang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Mingyao E
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Hongyu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Peng Ji
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Qing Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Hang Su
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
17
|
Deletion of equilibrative nucleoside transporter 2 disturbs energy metabolism and exacerbates disease progression in an experimental model of Huntington's disease. Neurobiol Dis 2023; 177:106004. [PMID: 36669543 DOI: 10.1016/j.nbd.2023.106004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease, characterized by motor dysfunction and abnormal energy metabolism. Equilibrative nucleoside transporter 1 (ENT1) and ENT2 are the major nucleoside transporters in cellular plasma membrane of the brain. Yet, unlike ENT1 whose function has been better investigated in HD, the role of ENT2 in HD remains unclear. The present study aimed to investigate the impacts of ENT2 deletion on HD using a well-characterized mouse model (R6/2). Microarray analysis, quantitative real-time polymerase chain reaction, and immunostaining of ENT2 in postmortem human brain tissues were conducted. R6/2 mice with or without genetic deletion of ENT2 were generated. Motor functions, including rotarod performance and limb-clasping test, were examined at the age of 7 to 12 weeks. Biochemical changes were evaluated by immunofluorescence staining and immunoblotting at the age of 12 to 13 weeks. In regard to energy metabolism, levels of striatal metabolites were determined by liquid chromatography coupled with the fluorescence detector or quadrupole time-of-flight mass spectrometer. Mitochondrial bioenergetics was assessed by the Seahorse assay. The results showed that ENT2 protein was detected in the neurons and astrocytes of human brains and the levels in the postmortem brain tended to be higher in patients with HD. In mice, ENT2 deletion did not alter the phenotype of the non-HD controls. Yet, ENT2 deletion deteriorated motor function and increased the number of aggregated mutant huntingtin in the striatum of R6/2 mice. Notably, disturbed energy metabolism with decreased ATP level and increased AMP/ ATP ratio was observed in R6/2-Ent2-/- mice, compared with R6/2-Ent2+/+ mice, resulting in the activation of AMPK in the late disease stage. Furthermore, ENT2 deletion reduced the NAD+/NADH ratio and impaired mitochondrial respiration in the striatum of R6/2 mice. Taken together, these findings indicate the crucial role of ENT2 in energy homeostasis, in which ENT2 deletion further impairs mitochondrial bioenergetics and deteriorates motor function in R6/2 mice.
Collapse
|
18
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|
19
|
Beirowski B. Emerging evidence for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiol Dis 2022; 170:105751. [PMID: 35569720 DOI: 10.1016/j.nbd.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Impaired bioenergetic capacity of the nervous system is thought to contribute to the pathogenesis of many neurodegenerative diseases (NDD). Since neuronal synapses are believed to be the major energy consumers in the nervous system, synaptic derangements resulting from energy deficits have been suggested to play a central role for the development of many of these disorders. However, long axons constitute the largest compartment of the neuronal network, require large amounts of energy, are metabolically and structurally highly vulnerable, and undergo early injurious stresses in many NDD. These stresses likely impose additional energy demands for continuous adaptations and repair processes, and may eventually overwhelm axonal maintenance mechanisms. Indeed, pathological axon degeneration (pAxD) is now recognized as an etiological focus in a wide array of NDD associated with bioenergetic abnormalities. In this paper I first discuss the recognition that a simple experimental model for pAxD is regulated by an auto-destruction program that exhausts distressed axons energetically. Provision of the energy substrate pyruvate robustly counteracts this axonal breakdown. Importantly, energy decline in axons is not only a consequence but also an initiator of this program. This opens the intriguing possibility that axon dysfunction and pAxD can be suppressed by preemptively energizing distressed axons. Second, I focus on the emerging concept that axons communicate energetically with their flanking glia. This axoglial metabolic coupling can help offset the axonal energy decline that activates the pAxD program but also jeopardize axon integrity as a result of perturbed glial metabolism. Third, I present compelling evidence that abnormal axonal energetics and compromised axoglial metabolic coupling accompany the activation of the pAxD auto-destruction pathway in models of glaucoma, a widespread neurodegenerative condition with pathogenic overlap to other common NDD. In conclusion, I propose a novel conceptual framework suggesting that therapeutic interventions focused on bioenergetic support of the nervous system should also address axons and their metabolic interactions with glia.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Institute for Myelin and Glia Exploration, New York State Center of Excellence in Bioinformatics & Life Sciences (CBLS), University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
20
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
21
|
Lundt S, Ding S. NAD + Metabolism and Diseases with Motor Dysfunction. Genes (Basel) 2021; 12:1776. [PMID: 34828382 PMCID: PMC8625820 DOI: 10.3390/genes12111776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases result in the progressive deterioration of the nervous system, with motor and cognitive impairments being the two most observable problems. Motor dysfunction could be caused by motor neuron diseases (MNDs) characterized by the loss of motor neurons, such as amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease, or other neurodegenerative diseases with the destruction of brain areas that affect movement, such as Parkinson's disease and Huntington's disease. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in the human body and is involved with numerous cellular processes, including energy metabolism, circadian clock, and DNA repair. NAD+ can be reversibly oxidized-reduced or directly consumed by NAD+-dependent proteins. NAD+ is synthesized in cells via three different paths: the de novo, Preiss-Handler, or NAD+ salvage pathways, with the salvage pathway being the primary producer of NAD+ in mammalian cells. NAD+ metabolism is being investigated for a role in the development of neurodegenerative diseases. In this review, we discuss cellular NAD+ homeostasis, looking at NAD+ biosynthesis and consumption, with a focus on the NAD+ salvage pathway. Then, we examine the research, including human clinical trials, focused on the involvement of NAD+ in MNDs and other neurodegenerative diseases with motor dysfunction.
Collapse
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
22
|
Strømland Ø, Diab J, Ferrario E, Sverkeli LJ, Ziegler M. The balance between NAD + biosynthesis and consumption in ageing. Mech Ageing Dev 2021; 199:111569. [PMID: 34509469 DOI: 10.1016/j.mad.2021.111569] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 01/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a vital coenzyme in redox reactions. NAD+ is also important in cellular signalling as it is consumed by PARPs, SARM1, sirtuins and CD38. Cellular NAD+ levels regulate several essential processes including DNA repair, immune cell function, senescence, and chromatin remodelling. Maintenance of these cellular processes is important for healthy ageing and lifespan. Interestingly, the levels of NAD+ decline during ageing in several organisms, including humans. Declining NAD+ levels have been linked to several age-related diseases including various metabolic diseases and cognitive decline. Decreasing tissue NAD+ concentrations have been ascribed to an imbalance between biosynthesis and consumption of the dinucleotide, resulting from, for instance, reduced levels of the rate limiting enzyme NAMPT along with an increased activation state of the NAD+-consuming enzymes PARPs and CD38. The progression of some age-related diseases can be halted or reversed by therapeutic augmentation of NAD+ levels. NAD+ metabolism has therefore emerged as a potential target to ameliorate age-related diseases. The present review explores how ageing affects NAD+ metabolism and current approaches to reverse the age-dependent decline of NAD+.
Collapse
Affiliation(s)
- Øyvind Strømland
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway
| | - Joseph Diab
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway
| | - Eugenio Ferrario
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway
| | - Lars J Sverkeli
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway; Department of Biological Sciences, University of Bergen, Bergen, 5020, Norway
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway.
| |
Collapse
|
23
|
Role of PGC-1α in the Mitochondrial NAD + Pool in Metabolic Diseases. Int J Mol Sci 2021; 22:ijms22094558. [PMID: 33925372 PMCID: PMC8123861 DOI: 10.3390/ijms22094558] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play vital roles, including ATP generation, regulation of cellular metabolism, and cell survival. Mitochondria contain the majority of cellular nicotinamide adenine dinucleotide (NAD+), which an essential cofactor that regulates metabolic function. A decrease in both mitochondria biogenesis and NAD+ is a characteristic of metabolic diseases, and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) orchestrates mitochondrial biogenesis and is involved in mitochondrial NAD+ pool. Here we discuss how PGC-1α is involved in the NAD+ synthesis pathway and metabolism, as well as the strategy for increasing the NAD+ pool in the metabolic disease state.
Collapse
|
24
|
Role of NAD + in regulating cellular and metabolic signaling pathways. Mol Metab 2021; 49:101195. [PMID: 33609766 PMCID: PMC7973386 DOI: 10.1016/j.molmet.2021.101195] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Nicotinamide adenine dinucleotide (NAD+), a critical coenzyme present in every living cell, is involved in a myriad of metabolic processes associated with cellular bioenergetics. For this reason, NAD+ is often studied in the context of aging, cancer, and neurodegenerative and metabolic disorders. Scope of review Cellular NAD+ depletion is associated with compromised adaptive cellular stress responses, impaired neuronal plasticity, impaired DNA repair, and cellular senescence. Increasing evidence has shown the efficacy of boosting NAD+ levels using NAD+ precursors in various diseases. This review provides a comprehensive understanding into the role of NAD+ in aging and other pathologies and discusses potential therapeutic targets. Major conclusions An alteration in the NAD+/NADH ratio or the NAD+ pool size can lead to derailment of the biological system and contribute to various neurodegenerative disorders, aging, and tumorigenesis. Due to the varied distribution of NAD+/NADH in different locations within cells, the direct role of impaired NAD+-dependent processes in humans remains unestablished. In this regard, longitudinal studies are needed to quantify NAD+ and its related metabolites. Future research should focus on measuring the fluxes through pathways associated with NAD+ synthesis and degradation. NAD+ regulates energy metabolism, DNA damage repair, gene expression, and stress response. NAD+ deterioration contributes to the progression of multiple metabolic disorders, cancers, and neurodegenerative diseases. Nicotinamide mononucleotide and nicotinamide riboside raise NAD+ levels in different tissues in preclinical models. Imaging studies on genetic models can illustrate the pathways of NAD+metabolism and their downstream functional effects. Human clinical trials to determine benefits of restoration of NAD+ by using NAD precursors are in progress.
Collapse
|
25
|
Mani S, Swargiary G, Chadha R. Mitophagy impairment in neurodegenerative diseases: Pathogenesis and therapeutic interventions. Mitochondrion 2021; 57:270-293. [PMID: 33476770 DOI: 10.1016/j.mito.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/23/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Neurons are specialized cells, requiring a lot of energy for its proper functioning. Mitochondria are the key cellular organelles and produce most of the energy in the form of ATP, required for all the crucial functions of neurons. Hence, the regulation of mitochondrial biogenesis and quality control is important for maintaining neuronal health. As a part of mitochondrial quality control, the aged and damaged mitochondria are removed through a selective mode of autophagy called mitophagy. However, in different pathological conditions, this process is impaired in neuronal cells and lead to a variety of neurodegenerative disease (NDD). Various studies indicate that specific protein aggregates, the characteristics of different NDDs, affect this process of mitophagy, adding to the severity and progression of diseases. Though, the detailed process of this association is yet to be explored. In light of the significant role of impaired mitophagy in NDDs, further studies have also investigated a large number of therapeutic strategies to target mitophagy in these diseases. Our current review summarizes the abnormalities in different mitophagy pathways and their association with different NDDs. We have also elaborated upon various novel therapeutic strategies and their limitations to enhance mitophagy in NDDs that may help in the management of symptoms and increasing the life expectancy of NDD patients. Thus, our study provides an overview of mitophagy in NDDs and emphasizes the need to elucidate the mechanism of impaired mitophagy prevalent across different NDDs in future research. This will help designing better treatment options with high efficacy and specificity.
Collapse
Affiliation(s)
- Shalini Mani
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India.
| | - Geeta Swargiary
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India
| | - Radhika Chadha
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, USA
| |
Collapse
|
26
|
Maiuri T, Hung CL, Suart C, Begeja N, Barba-Bazan C, Peng Y, Savic N, Wong T, Truant R. DNA Repair in Huntington's Disease and Spinocerebellar Ataxias: Somatic Instability and Alternative Hypotheses. J Huntingtons Dis 2021; 10:165-173. [PMID: 33579859 PMCID: PMC7990435 DOI: 10.3233/jhd-200414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of genome wide association studies (GWAS) in Huntington's disease (HD) research, driven by unbiased human data analysis, has transformed the focus of new targets that could affect age at onset. While there is a significant depth of information on DNA damage repair, with many drugs and drug targets, most of this development has taken place in the context of cancer therapy. DNA damage repair in neurons does not rely on DNA replication correction mechanisms. However, there is a strong connection between DNA repair and neuronal metabolism, mediated by nucleotide salvaging and the poly ADP-ribose (PAR) response, and this connection has been implicated in other age-onset neurodegenerative diseases. Validation of leads including the mismatch repair protein MSH3, and interstrand cross-link repair protein FAN1, suggest the mechanism is driven by somatic CAG instability, which is supported by the protective effect of CAA substitutions in the CAG tract. We currently do not understand: how somatic instability is triggered; the state of DNA damage within expanding alleles in the brain; whether this damage induces mismatch repair and interstrand cross-link pathways; whether instability mediates toxicity, and how this relates to human ageing. We discuss DNA damage pathways uncovered by HD GWAS, known roles of other polyglutamine disease proteins in DNA damage repair, and a panel of hypotheses for pathogenic mechanisms.
Collapse
Affiliation(s)
- Tamara Maiuri
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Claudia L.K. Hung
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Celeste Suart
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Nola Begeja
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Carlos Barba-Bazan
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Yi Peng
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Natasha Savic
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Timothy Wong
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Ray Truant
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
27
|
Sherin F, Gomathy S, Antony S. Sirtuin3 in Neurological Disorders. Curr Drug Res Rev 2020; 13:140-147. [PMID: 33290206 DOI: 10.2174/2589977512666201207200626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/16/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
Sirtuins are NAD+ dependent enzymes that have a predominant role in neurodegenerative disorders and also regulate the inflammatory process, protein aggregation, etc. The relation between Sirtuins with that of the nervous system and neurodegeneration are widely studied consequently. Sirtuins have a strong role in metabolic syndrome in mitochondria also. The activities of Sirtuins can be altered by using small molecules that would be developed into drugs and it is proven that manipulation of SIRT1 activity influences neurodegenerative disease models. They are especially thrilling since using small molecules, which would be developed into a drug, it is feasible to alter the activities of sirtuins. Different functions of Sirtuins are depended upon their subcellular localization. In this review paper, we are discussing different Sirtuins, differential expression of sirtuins, and expression of sirtuin in the brain and briefly about sirtuin3 (SIRT3).
Collapse
Affiliation(s)
- Farhath Sherin
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty,. India
| | - S Gomathy
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty,. India
| | - Shanish Antony
- Department of Pharmacy, Govt. Medical College of Pharmaceutical Sciences, Kerala University of Health Sciences, Kottayam, . India
| |
Collapse
|
28
|
Cross-sectional analysis of plasma and CSF metabolomic markers in Huntington's disease for participants of varying functional disability: a pilot study. Sci Rep 2020; 10:20490. [PMID: 33235276 PMCID: PMC7686309 DOI: 10.1038/s41598-020-77526-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/04/2020] [Indexed: 01/24/2023] Open
Abstract
Huntington’s Disease (HD) is a progressive, fatal neurodegenerative condition. While generally considered for its devastating neurological phenotype, disturbances in other organ systems and metabolic pathways outside the brain have attracted attention for possible relevance to HD pathology, potential as therapeutic targets, or use as biomarkers of progression. In addition, it is not established how metabolic changes in the HD brain correlate to progression across the full spectrum of early to late-stage disease. In this pilot study, we sought to explore the metabolic profile across manifest HD from early to advanced clinical staging through metabolomic analysis by mass spectrometry in plasma and cerebrospinal fluid (CSF). With disease progression, we observed nominally significant increases in plasma arginine, citrulline, and glycine, with decreases in total and d-serine, cholesterol esters, diacylglycerides, triacylglycerides, phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins. In CSF, worsening disease was associated with nominally significant increases in NAD+, arginine, saturated long chain free fatty acids, diacylglycerides, triacylglycerides, and sphingomyelins. Notably, diacylglycerides and triacylglyceride species associated with clinical progression were different between plasma and CSF, suggesting different metabolic preferences for these compartments. Increasing NAD+ levels strongly correlating with disease progression was an unexpected finding. Our data suggest that defects in the urea cycle, glycine, and serine metabolism may be underrecognized in the progression HD pathology, and merit further study for possible therapeutic relevance.
Collapse
|
29
|
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD + metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther 2020; 5:227. [PMID: 33028824 PMCID: PMC7539288 DOI: 10.1038/s41392-020-00311-7] [Citation(s) in RCA: 512] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its metabolites function as critical regulators to maintain physiologic processes, enabling the plastic cells to adapt to environmental changes including nutrient perturbation, genotoxic factors, circadian disorder, infection, inflammation and xenobiotics. These effects are mainly achieved by the driving effect of NAD+ on metabolic pathways as enzyme cofactors transferring hydrogen in oxidation-reduction reactions. Besides, multiple NAD+-dependent enzymes are involved in physiology either by post-synthesis chemical modification of DNA, RNA and proteins, or releasing second messenger cyclic ADP-ribose (cADPR) and NAADP+. Prolonged disequilibrium of NAD+ metabolism disturbs the physiological functions, resulting in diseases including metabolic diseases, cancer, aging and neurodegeneration disorder. In this review, we summarize recent advances in our understanding of the molecular mechanisms of NAD+-regulated physiological responses to stresses, the contribution of NAD+ deficiency to various diseases via manipulating cellular communication networks and the potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Peter Ernst Huber
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Abstract
IMPACT STATEMENT NAD is a central metabolite connecting energy balance and organismal growth with genomic integrity and function. It is involved in the development of malignancy and has a regulatory role in the aging process. These processes are mediated by a diverse series of enzymes whose common focus is either NAD's biosynthesis or its utilization as a redox cofactor or enzyme substrate. These enzymes include dehydrogenases, cyclic ADP-ribose hydrolases, mono(ADP-ribosyl)transferases, poly(ADP-ribose) polymerases, and sirtuin deacetylases. This article describes the manifold pathways that comprise NAD metabolism and promotes an increased awareness of how perturbations in these systems may be important in disease prevention and/or progression.
Collapse
Affiliation(s)
- John Wr Kincaid
- Department of Nutrition, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nathan A Berger
- 151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biochemistry, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Medicine, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Science, Health and Society, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Williams AC, Hill LJ. The 4 D's of Pellagra and Progress. Int J Tryptophan Res 2020; 13:1178646920910159. [PMID: 32327922 PMCID: PMC7163231 DOI: 10.1177/1178646920910159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide homeostasis is a candidate common denominator to explain smooth transitions, whether demographic, epidemiological or economic. This 'NAD world', dependent on hydrogen-based energy, is not widely recognised as it is neither measured nor viewed from a sufficiently multi-genomic or historical perspective. Reviewing the importance of meat and nicotinamide balances during our co-evolution, recent history suggests that populations only modernise and age well with low fertility on a suitably balanced diet. Imbalances on the low meat side lead to an excess of infectious disease, short lives and boom-bust demographics. On the high side, meat has led to an excess of degenerative, allergic and metabolic disease and low fertility. A 'Goldilocks' diet derived from mixed and sustainable farming (preserving the topsoil) allows for high intellectual capital, height and good health with controlled population growth resulting in economic growth and prosperity. Implementing meat equity worldwide could lead to progress for future generations on 'spaceship' earth by establishing control over population quality, thermostat and biodiversity, if it is not already too late.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
32
|
Anaizi N. Nicotinamide adenine dinucleotide, the sirtuins, and the secret of a long health span. IBNOSINA JOURNAL OF MEDICINE AND BIOMEDICAL SCIENCES 2020. [DOI: 10.4103/ijmbs.ijmbs_6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Aman Y, Frank J, Lautrup SH, Matysek A, Niu Z, Yang G, Shi L, Bergersen LH, Storm-Mathisen J, Rasmussen LJ, Bohr VA, Nilsen H, Fang EF. The NAD +-mitophagy axis in healthy longevity and in artificial intelligence-based clinical applications. Mech Ageing Dev 2020; 185:111194. [PMID: 31812486 PMCID: PMC7545219 DOI: 10.1016/j.mad.2019.111194] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an important natural molecule involved in fundamental biological processes, including the TCA cycle, OXPHOS, β-oxidation, and is a co-factor for proteins promoting healthy longevity. NAD+ depletion is associated with the hallmarks of ageing and may contribute to a wide range of age-related diseases including metabolic disorders, cancer, and neurodegenerative diseases. One of the central pathways by which NAD+ promotes healthy ageing is through regulation of mitochondrial homeostasis via mitochondrial biogenesis and the clearance of damaged mitochondria via mitophagy. Here, we highlight the contribution of the NAD+-mitophagy axis to ageing and age-related diseases, and evaluate how boosting NAD+ levels may emerge as a promising therapeutic strategy to counter ageing as well as neurodegenerative diseases including Alzheimer's disease. The potential use of artificial intelligence to understand the roles and molecular mechanisms of the NAD+-mitophagy axis in ageing is discussed, including possible applications in drug target identification and validation, compound screening and lead compound discovery, biomarker development, as well as efficacy and safety assessment. Advances in our understanding of the molecular and cellular roles of NAD+ in mitophagy will lead to novel approaches for facilitating healthy mitochondrial homoeostasis that may serve as a promising therapeutic strategy to counter ageing-associated pathologies and/or accelerated ageing.
Collapse
Affiliation(s)
- Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Johannes Frank
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Sofie Hindkjær Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Adrian Matysek
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway; School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 40-055, Katowice, Poland
| | - Zhangming Niu
- Aladdin Healthcare Technologies Ltd., 24-26 Baltic Street West, London, EC1Y OUR, UK
| | - Guang Yang
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW3 6NP, UK; National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Linda H Bergersen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316, Oslo, Norway; Amino Acid Transporters, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB) and Healthy Brain Ageing Centre (SERTA), University of Oslo, NO-0317, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Jon Storm-Mathisen
- Amino Acid Transporters, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB) and Healthy Brain Ageing Centre (SERTA), University of Oslo, NO-0317, Oslo, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Lene J Rasmussen
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway; Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, United States; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway; Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway.
| |
Collapse
|
34
|
Abstract
NAD+ is a pivotal metabolite involved in cellular bioenergetics, genomic stability, mitochondrial homeostasis, adaptive stress responses, and cell survival. Multiple NAD+-dependent enzymes are involved in synaptic plasticity and neuronal stress resistance. Here, we review emerging findings that reveal key roles for NAD+ and related metabolites in the adaptation of neurons to a wide range of physiological stressors and in counteracting processes in neurodegenerative diseases, such as those occurring in Alzheimer's, Parkinson's, and Huntington diseases, and amyotrophic lateral sclerosis. Advances in understanding the molecular and cellular mechanisms of NAD+-based neuronal resilience will lead to novel approaches for facilitating healthy brain aging and for the treatment of a range of neurological disorders.
Collapse
Affiliation(s)
- Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway.
| |
Collapse
|