1
|
Zhu L, Liu C, Wang Y, Zhu X, Wu L, Chen L, Zhou J, Wang F. METTL3/IGF2BP2/IκBα axis participates in neuroinflammation in Alzheimer's disease by regulating M1/M2 polarization of microglia. Neurochem Int 2025; 186:105964. [PMID: 40107503 DOI: 10.1016/j.neuint.2025.105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Microglia-mediated neuroinflammation is closely related to the development of Alzheimer's disease (AD). This study further elucidated the regulatory mechanism of microglia polarization in AD. METHOD Microglia polarization was assessed using RT-qPCR, ELISA, and immunofluorescence (IF). Western blot (WB) analyzed inflammation-related, p-tau, and apoptosis-related proteins. Neuronal damage was evaluated by immunofluorescence, and neuronal apoptosis by flow cytometry and TUNEL assay. METTL3 and IκBα expression were detected using RT-qPCR and WB. N6-methyladenosine (m6A) levels were quantified with a colorimetric assay. RNA pull-down assay examined METTL3, IGF2BP2, and IκBα mRNA binding. IGF2BP expression was assessed by RT-qPCR. Learning and memory abilities were evaluated using morris water maze (MWM) test and novel object recognition (NOR) test. Inflammation-related proteins were detected using IF. RESULTS Stimulation with Aβ1-42 led to microglia M1 polarization, upregulation of inflammation-related proteins, and exacerbation of neuronal injury and apoptosis, along with increased p-tau expression in neurons. METTL3/IGF2BP2 modulated IκBα m6A modification through binding to IκBα mRNA, enhancing its expression. Enhanced METTL3 or IGF2BP2 expression suppressed M1 polarization, inflammation, and neuronal apoptosis in microglia, reversed by knockdown of IκBα. AD model mice exhibited cognitive impairments, neuroinflammation, and elevated M1 polarization. METTL3 or IGF2BP2 overexpression improved cognitive function, reduced neuroinflammation, and inhibited M1 polarization, and this effect was similarly reversed by knockdown of IκBα. CONCLUSION Our study demonstrates that the METTL3/IGF2BP2/IκBα axis is involved in neuroinflammation in AD by modulating microglia M1/M2 polarization, which sheds light on the treatment of AD.
Collapse
Affiliation(s)
- Ling Zhu
- Department of neurology, Jingmen Central Hospital, Jingmen Central Hospital affiliated to Jingchu University of Technology, Jingmen, 448000, China
| | - Congyan Liu
- Department of pharmacy, Jingmen Central Hospital, Jingmen Central Hospital affiliated to Jingchu University of Technology, Jingmen, 448000, China
| | - Yang Wang
- Department of radiology, Jingmen Central Hospital, Jingmen Central Hospital affiliated to Jingchu University of Technology, Jingmen, 448000, China
| | - Xuanang Zhu
- Department of neurology, Jingmen Central Hospital, Jingmen Central Hospital affiliated to Jingchu University of Technology, Jingmen, 448000, China
| | - Lei Wu
- Department of neurology, Jingmen Central Hospital, Jingmen Central Hospital affiliated to Jingchu University of Technology, Jingmen, 448000, China
| | - Lvan Chen
- Department of neurosurgery, Jingmen Central Hospital, Jingmen Central Hospital affiliated to Jingchu University of Technology, Jingmen, 448000, China
| | - Jing Zhou
- College of Medical, Jingchu University of Technology, Jingmen, 448000, China.
| | - Fan Wang
- Department of neurosurgery, Jingmen Central Hospital, Jingmen Central Hospital affiliated to Jingchu University of Technology, Jingmen, 448000, China; College of Medical, Jingchu University of Technology, Jingmen, 448000, China.
| |
Collapse
|
2
|
Yang C, Zhao E, Zhang H, Duan L, Han X, Ding H, Cheng Y, Wang D, Lei X, Diwu Y. Xixin Decoction's novel mechanism for alleviating Alzheimer's disease cognitive dysfunction by modulating amyloid-β transport across the blood-brain barrier to reduce neuroinflammation. Front Pharmacol 2025; 15:1508726. [PMID: 39834810 PMCID: PMC11743276 DOI: 10.3389/fphar.2024.1508726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose Xixin Decoction (XXD) is a classical formula that has been used to effectively treat dementia for over 300 years. Modern clinical studies have demonstrated its significant therapeutic effects in treating Alzheimer's disease (AD) without notable adverse reactions. Nevertheless, the specific mechanisms underlying its efficacy remain to be elucidated. This investigation sought to elucidate XXD's impact on various aspects of AD pathology, including blood-brain barrier (BBB) impairment, neuroinflammatory processes, and amyloid-β (Aβ) deposition, as well as the molecular pathways involved in these effects. Methods In vitro experiments were conducted using hCMEC/D3 and HBVP cell coculture to establish an in vitro blood-brain barrier (BBB) model. BBB damage was induced in this model by 24-h exposure to 1 μg/mL lipopolysaccharide (LPS). After 24, 48, and 72 h of treatment with 10% XXD-medicated serum, the effects of XXD were assessed through Western blotting, RT-PCR, and immunofluorescence techniques. In vivo, SAMP8 mice were administered various doses of XXD via gavage for 8 weeks, including high-dose XXD group (H-XXD) at 5.07 g kg-1·d-1, medium-dose XXD group (M-XXD) at 2.535 g kg-1·d-1, and low-dose XXD group (L-XXD) at 1.2675 g kg-1·d-1. Cognitive function was subsequently evaluated using the Morris water maze test. BBB integrity was evaluated using Evans blue staining, and protein expression levels were analyzed via ELISA, Western blotting, and immunofluorescence. Results In vitro experiments revealed that XXD-containing serum, when cultured for 24, 48, and 72 h, could upregulate the expression of P-gp mRNA and protein, downregulate CB1 protein expression, and upregulate CB2 and Mfsd2a protein expression. In vivo studies demonstrated that XXD improved spatial learning and memory abilities in SAMP8 mice, reduced the amount of Evans blue extravasation in brain tissues, modulated the BBB-associated P-gp/ECS axis, RAGE/LRP1 receptor system, as well as MRP2 and Mfsd2a proteins, and decreased the accumulation of Aβ in the brains of SAMP8 mice. Additionally, XXD upregulated the expression of TREM2, downregulated IBA1, TLR1, TLR2, and CMPK2 expression, and reduced the levels of pro-inflammatory factors NLRP3, NF-κB p65, COX-2, TNF-α, and IL-1β in the hippocampal tissues. Conclusion XXD may exert its effects by regulating the P-gp/ECS axis, the RAGE/LRP1 receptor system, and the expression of MRP2 and Mfsd2a proteins, thereby modulating the transport function of the BBB to expedite the clearance of Aβ, reduce cerebral Aβ accumulation, and consequently inhibit the activation of microglia induced by Aβ aggregation. This process may suppress the activation of the CMPK2/NLRP3 and TLRs/NF-κB pathways, diminish the production of inflammatory cytokines and chemokines, alleviate neuroinflammation associated with microglia in the brain of AD, and ultimately improve AD pathology.
Collapse
Affiliation(s)
- Chaokai Yang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Enlong Zhao
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hu Zhang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liqi Duan
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xinyue Han
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hongli Ding
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yan Cheng
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dengkun Wang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaojing Lei
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yongchang Diwu
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
3
|
Pashaei S, Shabani S, Mohammadi S, Morozova-Roche LA, Salari N, Rahimi Z, Khodarahmi R. Differential Expression of Neurodegeneration-Related Genes in SH-SY5Y Neuroblastoma Cells Under the Influence of Cyclophilin A: Could the Enzyme be a Likely Trigger and Therapeutic Target for Alzheimer's Disease? Neurochem Res 2024; 50:47. [PMID: 39636462 DOI: 10.1007/s11064-024-04253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
The function and mechanism of Cyclophilin A (CypA) in modulating gene expression associated with Alzheimer's disease (AD) remain unclear. This multifunctional protein is found to be elevated in the cerebrospinal fluid (CSF) of individuals at risk for AD. The cytotoxic effects of CypA, including both wild-type and the mutant R55A, were assessed using the MTT assay. Prior to this evaluation, the purified recombinant protein was validated through enzymatic activity assays and western blot analysis. Following treatment with CypA and transient transfection using the CypA construct, real-time PCR (qRT-PCR) and western blotting were conducted to analyze the expression of factors involved in various signaling pathways, with an emphasis on inflammation, cell death, and intercellular communication. The findings indicate that CypA has a significant impact on the gene expression of factors associated with inflammation and the progression of AD in SH-SY5Y cells. It can be concluded that CypA is capable of regulating gene expression in SH-SY5Y cells, either in a manner dependent on or independent of its enzymatic activity. Additionally, the influence of this multifunctional protein on gene expression is contingent upon the specific site of action, as well as the dosage and duration of exposure to the cells.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sasan Shabani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Nader Salari
- Department of Biostatics, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Li L, Chen Q, Qin Y, Yu G, Qi T, Sui H, Qi X, Huang L. Regulation of TREM2 on BV2 inflammation through PI3K/AKT/mTOR pathway. Biotechnol Genet Eng Rev 2024; 40:4040-4061. [PMID: 37125903 DOI: 10.1080/02648725.2023.2204719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023]
Abstract
This work sought to determine how lipopolysaccharide (LPS)-induced pro-inflammatory factor production in BV2 microglia was influenced by myeloid cell 2 (TREM2) expressions. LPS (0.1, 1, and 10 µg/mL) induced inflammation in BV2 cells, MTT and QPCR were used to detect the occurrence of inflammation; TREM2 activation and inhibition vectors were used to activate and inhibit TREM2; Cell Proliferation was detected using CCK-8 and cell cloning experiments. LY294002 was used to inhibit the activity of PI3K/AKT signal pathway; Western blot and ELISA were used to detect cell polarization and signal pathway changes. CCK-8 and cell clone experiments found that the activation of TERM2 can promote the proliferation of BV2 cells; and the activation of TERM2 can promote the expression of IL6, IL1β, TNFα and the expression of M2 cell phenotype molecules Arg-1 and CD206. The effect of adding LY294002 signaling pathway by TERM2 activation was inhibited, indicating that TERM2 can affect the occurrence of inflammation by regulating the activity of PI3K/AKT signaling pathway. Finally, Western blotting and ELISA showed that activation of TERM2 can promote the expression of Arg-1 and CD206 in BV2 cells, and promote the transformation of BV2 cells to M2 polarization. TERM2 can affect the inflammatory response in microglia through the PI3K/AKT signaling pathway, suggesting that TERM2 may be a target for the treatment of inflammatory response in glial cells. This study provides a treatment plan for alleviating the impact of inflammation on central nervous system.
Collapse
Affiliation(s)
- Li Li
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Qingyou Chen
- Department of Electrical Biology, the Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Yinghui Qin
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Guangna Yu
- Medical examination center, the Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Tingting Qi
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Hesong Sui
- Department of Orthopedic surgery, Qiqihar Jianhua Hospital, Qiqihar, China
| | - Xin Qi
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Lijuan Huang
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| |
Collapse
|
5
|
Lu X, Sun W, Leng L, Yang Y, Gong S, Zou Q, Niu H, Wei C. Ultrasound Stimulation Modulates Microglia M1/M2 Polarization and Affects Hippocampal Proteomic Changes in a Mouse Model of Alzheimer's Disease. Immun Inflamm Dis 2024; 12:e70061. [PMID: 39588954 PMCID: PMC11590030 DOI: 10.1002/iid3.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/22/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The effectiveness of ultrasound stimulation in treating Alzheimer's disease (AD) has been reported in previous studies, but the underlying mechanisms remain unclear. This study investigated the effects of ultrasound stimulation on the proportion and function of microglia of different phenotypes, as well as on the levels of inflammatory factors. Additionally, it revealed the alterations in proteomic molecules in the mouse hippocampus following ultrasound stimulation treatment, aiming to uncover potential new molecular mechanisms. METHODS Ultrasound stimulation was used to stimulate the hippocampus for 30 min per day for 5 days in the ultrasound stimulation-treated group. Amyloid plaque deposition was measured using immunofluorescence staining. M1 and M2 type microglia were labeled using immunofluorescent double staining, and the ratio was calculated. The levels of Aβ42, IL-10, and TNF-α were determined using ELISA kits. The quantitative proteomics method was employed to explore molecular changes in hippocampal proteins. RESULTS Ultrasound stimulation treatment reduced the average fluorescence intensity of amyloid plaques and the concentration of Aβ42. Compared to the AD group, ultrasound stimulation resulted in a 14% reduction in the proportion of M1 microglia and a 12% increase in the proportion of M2 microglia. The concentration of the anti-inflammatory factor IL-10 was significantly increased in the ultrasound stimulation-treated group. Proteomics analysis revealed 753 differentially expressed proteins between the ultrasound stimulation-treated and AD groups, with most being enriched in the oxidative phosphorylation pathway of mitochondria. Additionally, the activity of cytochrome c oxidase, involved in oxidative phosphorylation, was increased after ultrasound stimulation treatment. CONCLUSIONS Ultrasound stimulation affects microglial polarization, reduces amyloid plaque load, and enhances levels of anti-inflammatory factors in APP/PS1 mice. Proteomics analysis reveals molecular changes in hippocampal proteins after ultrasound stimulation treatment. The mechanism behind ultrasound stimulation-induced modulation of microglial polarization may be related to changes in mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Xinliang Lu
- Department of Neurology, Xuan Wu HospitalCapital Medical UniversityBeijingChina
- School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Wenxian Sun
- Department of Neurology, Xuan Wu HospitalCapital Medical UniversityBeijingChina
| | - Li Leng
- School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Yuting Yang
- Department of Neurology, Xuan Wu HospitalCapital Medical UniversityBeijingChina
- School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Shuting Gong
- Department of Neurology, Xuan Wu HospitalCapital Medical UniversityBeijingChina
- School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Qi Zou
- Department of Neurology, Xuan Wu HospitalCapital Medical UniversityBeijingChina
| | - Haijun Niu
- School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Cuibai Wei
- Department of Neurology, Xuan Wu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Wang J, Du L, Zhang T, Chu Y, Wang Y, Wang Y, Ji X, Kang Y, Cui R, Zhang G, Liu J, Shi G. Edaravone Dexborneol ameliorates the cognitive deficits of APP/PS1 mice by inhibiting TLR4/MAPK signaling pathway via upregulating TREM2. Neuropharmacology 2024; 255:110006. [PMID: 38763325 DOI: 10.1016/j.neuropharm.2024.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Currently, there are no effective therapeutic agents available to treat Alzheimer's disease (AD). However, edaravone dexborneol (EDB), a novel composite agent used to treat acute ischemic stroke, has recently been shown to exert efficacious neuroprotective effects. However, whether EDB can ameliorate cognitive deficits in AD currently remains unclear. To this end, we explored the effects of EDB on AD and its potential mechanisms using an AD animal model (male APP/PS1 mice) treated with EDB for 10 weeks starting at 6 months of age. Subsequent analyses revealed that EDB-treated APP/PS1 mice exhibited improved cognitive abilities compared to untreated APP/PS1 mice. Administration of EDB in APP/PS1 mice further alleviated neuropathological alterations of the hippocampus, including Aβ deposition, pyramidal cell karyopyknosis, and oxidative damage, and significantly decreased the levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) and COX-2 in the hippocampus of APP/PS1 mice. Transcriptome sequencing analysis demonstrated the critical role of the inflammatory reaction in EDB treatment in APP/PS1 mice, indicating that the alleviation of the inflammatory reaction by EDB in the hippocampus of APP/PS1 mice was linked to the action of the TREM2/TLR4/MAPK signaling pathway. Further in vitro investigations showed that EDB suppressed neuroinflammation in LPS-stimulated BV2 cells by inhibiting the TLR4/MAPK signaling pathway and upregulating TREM2 expression. Thus, the findings of the present study demonstrate that EDB is a promising therapeutic agent for AD-related cognitive dysfunction.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China; Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Longyuan Du
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yun Chu
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yue Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guoliang Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Junyan Liu
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Geming Shi
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
7
|
Wang K, Zan S, Xu J, Sun W, Li C, Zhang W, Ni D, Cheng R, Li L, Yu Z, Zhang L, Liu S, Cui Y, Zhang Y. Yishen Huazhuo decoction regulates microglial polarization to reduce Alzheimer's disease-related neuroinflammation through TREM2. Heliyon 2024; 10:e35800. [PMID: 39220981 PMCID: PMC11363852 DOI: 10.1016/j.heliyon.2024.e35800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Background Aging is the primary risk factor for the onset of Alzheimer's disease (AD). Inflamma-aging is a major feature in the process of aging, and the chronic neuroinflammation caused by inflamma-aging is closely related to AD. As the main participant of neuroinflammation, the polarization of microglia (MG) could influence the development of neuroinflammation. Objective This study aims to observe the impact of YHD on microglia (MG) polarization and neuroinflammation to delay the onset and progression of AD. Methods In vivo experiment, four-month senescence accelerated mouse prone 8 (SAMP8) were used as the model group, the SAMR1 mice of the same age were used as the control group. In YHD group, 6.24 g/kg YHD was intragastrically administrated continuously for 12 weeks, and Ibuprofen 0.026 g/kg in positive control group. Morris Water Maze test was used to evaluate the learning and memory ability, Nissl's staining and immunofluorescence double staining for neuron damage and MG M1/M2 polarization, Enzyme-Linked Immunosorbent Assay (ELISA) for neuroinflammation biomarkers in hippocampus, Western blot for key protein expression of TREM2/NF-κB signaling pathway. In vitro experiments, 10 μM/l Aβ1-42 induced BV-2 cell model was used to re-verify the effect of YHD regulating MG polarization to reduce neuroinflammation. Also, TREM2 small interfering RNA (siRNA) was used to clarify the key target of YHD. Results YHD could improve the learning and memory ability of SAMP8 mice evaluated by the Morris Water Maze test. Like Ibuprofen, YHD could regulate the M1/M2 polarization of MG and the levels of neuroinflammatory markers TNF-α and IL-10 in hippocampus, and relieve neuroinflammation and neuron loss. In addition, YHD could also regulate the expression of PU.1, TREM2, p-NF-κB P65 in the TREM2/NF-κB signaling pathway. Further in vitro experiments, we found that YHD had a significant regulatory effect on Aβ1-42-induced BV-2 cell polarization, and it could significantly increase PU.1, TREM2, decrease p-NF-κB P65, p-IKKβ, TNF-α, IL-6, IL-1β. At the same time, using siRNA to inhibit TREM2, it proved that TREM2 was a key target for YHD to promote Aβ1-42-induced BV-2 cell M2 polarization to reduce neuroinflammation. Conclusions YHD could regulate the TREM2/NF-κB signaling pathway through TREM2, thereby to adjust MG polarization and reduce AD-related neuroinflammation.
Collapse
Affiliation(s)
- Kai Wang
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Shujie Zan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiachun Xu
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Weiming Sun
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Caixia Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100 China
| | - Wei Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Daoyan Ni
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Ruzhen Cheng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhen Yu
- Department of Encephalopathy, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Linlin Zhang
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Shuang Liu
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Yuanwu Cui
- Shenzhen Traditional Chinese Medicine Treatment Hospital, Shenzhen, 518100, China
| | - Yulian Zhang
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| |
Collapse
|
8
|
Li Y, Wang L, Wang H, Leng X, Gao J, Huang D. Polysaccharides from Eucommia ulmoides Oliv. leaves alleviates alcohol-induced mouse brain injury and BV-2 microglial dysfunction. Int J Biol Macromol 2024; 273:132887. [PMID: 38851621 DOI: 10.1016/j.ijbiomac.2024.132887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Acute alcohol intoxication is a harmful clinical condition characterized by behavioral and neurological symptoms, for which few effective therapies are available at present. Dysfunction of microglial BV-2 cells has been reported to be associated with acute alcohol-induced brain injuries. In the present study, the protective effects of Eucommia ulmoides Oliv. leaves polysaccharides (EULP) on acute alcoholic brain injury and microglial dysfunction were investigated. 14-day pretreatment of EULP significantly attenuated neurobehavioral deficit and neurotransmitter damage in the brain tissue of mice caused by acute alcohol exposure. Additionally, EULP regulated the metabolic disorder of brain tissue. Consistently, it was shown that EULP pretreatment significantly improved alcohol-induced phagocytosis decrease, oxidative stress and inflammation in BV-2 cells. Therefore, EULP may be proposed and employed as a potential therapeutic agent for alcohol-induced brain damage.
Collapse
Affiliation(s)
- Yingzhi Li
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Luchen Wang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Huimei Wang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xueping Leng
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiaming Gao
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
9
|
Li X, Wang J, Liao C, Yang X, Zhao Z, Liu Y, Xue Q, Luo Y, Liu X, Liu Z. The binding of PKCε and MEG2 to STAT3 regulates IL-6-mediated microglial hyperalgesia during inflammatory pain. FASEB J 2024; 38:e23590. [PMID: 38656553 DOI: 10.1096/fj.202300152rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Studies have suggested that microglial IL-6 modulates inflammatory pain; however, the exact mechanism of action remains unclear. We therefore hypothesized that PKCε and MEG2 competitively bind to STAT3 and contribute to IL-6-mediated microglial hyperalgesia during inflammatory pain. Freund's complete adjuvant (FCA) and lipopolysaccharide (LPS) were used to induce hyperalgesia model mice and microglial inflammation. Mechanical allodynia was evaluated using von Frey tests in vivo. The interaction among PKCε, MEG2, and STAT3 was determined using ELISA and immunoprecipitation assay in vitro. The PKCε, MEG2, t-STAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, GLUT3, and TREM2 were assessed by Western blot. IL-6 promoter activity and IL-6 concentration were examined using dual luciferase assays and ELISA. Overexpression of PKCε and MEG2 promoted and attenuated inflammatory pain, accompanied by an increase and decrease in IL-6 expression, respectively. PKCε displayed a stronger binding ability to STAT3 when competing with MEG2. STAT3Ser727 phosphorylation increased STAT3 interaction with both PKCε and MEG2. Moreover, LPS increased PKCε, MEG2, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and GLUT3 levels and decreased TREM2 during microglia inflammation. IL-6 promoter activity was enhanced or inhibited by PKCε or MEG2 in the presence of STAT3 and LPS stimulation, respectively. In microglia, overexpression of PKCε and/or MEG2 resulted in the elevation of tSTAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and TREM2, and the reduction of GLUT3. PKCε is more potent than MEG2 when competitively binding to STAT3, displaying dual modulatory effects of IL-6 production, thus regulating the GLUT3 and TREM2 in microglia during inflammatory pain sensation.
Collapse
Affiliation(s)
- Xiongjuan Li
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Junliang Wang
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Changjian Liao
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Xinping Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Zhao Zhao
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| |
Collapse
|
10
|
Bai H, Zeng HM, Zhang QF, Hu YZ, Deng FF. Correlative factors of poor prognosis and abnormal cellular immune function in patients with Alzheimer's disease. World J Clin Cases 2024; 12:1063-1075. [PMID: 38464932 PMCID: PMC10921302 DOI: 10.12998/wjcc.v12.i6.1063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a serious disease causing human dementia and social problems. The quality of life and prognosis of AD patients have attracted much attention. The role of chronic immune inflammation in the pathogenesis of AD is becoming more and more important. AIM To study the relationship among cognitive dysfunction, abnormal cellular immune function, neuroimaging results and poor prognostic factors in patients. METHODS A retrospective analysis of 62 hospitalized patients clinical diagnosed with AD who were admitted to our hospital from November 2015 to November 2020. Collect cognitive dysfunction performance characteristics, laboratory test data and neuroimaging data from medical records within 24 h of admission, including Mini Mental State Examination Scale score, drawing clock test, blood T lymphocyte subsets, and neutrophils and lymphocyte ratio (NLR), disturbance of consciousness, extrapyramidal symptoms, electroencephalogram (EEG) and head nucleus magnetic spectroscopy (MRS) and other data. Multivariate logistic regression analysis was used to determine independent prognostic factors. the modified Rankin scale (mRS) was used to determine whether the prognosis was good. The correlation between drug treatment and prognostic mRS score was tested by the rank sum test. RESULTS Univariate analysis showed that abnormal cellular immune function, extrapyramidal symptoms, obvious disturbance of consciousness, abnormal EEG, increased NLR, abnormal MRS, and complicated pneumonia were related to the poor prognosis of AD patients. Multivariate logistic regression analysis showed that the decrease in the proportion of T lymphocytes in the blood after abnormal cellular immune function (odd ratio: 2.078, 95% confidence interval: 1.156-3.986, P < 0.05) was an independent risk factor for predicting the poor prognosis of AD. The number of days of donepezil treatment to improve cognitive function was negatively correlated with mRS score (r = 0.578, P < 0.05). CONCLUSION The decrease in the proportion of T lymphocytes may have predictive value for the poor prognosis of AD. It is recommended that the proportion of T lymphocytes < 55% is used as the cut-off threshold for predicting the poor prognosis of AD. The early and continuous drug treatment is associated with a good prognosis.
Collapse
Affiliation(s)
- Hua Bai
- Department of Neurology, The Third Affiliated Hospital of Guizhou Medical University in China, Duyun 558099, Guizhou Province, China
| | - Hong-Mei Zeng
- Department of Neurology, Guizhou Medical University, Duyun 558099, Guizhou Province, China
| | - Qi-Fang Zhang
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yue-Zhi Hu
- Department of Neurology, Guizhou Medical University, Duyun 558099, Guizhou Province, China
| | - Fei-Fei Deng
- Department of Neurology, Guizhou Medical University, Duyun 558099, Guizhou Province, China
| |
Collapse
|
11
|
Zhang X, Chen X, Zhang L, Sun Y, Liang Y, Li H, Zhang Y. Role of trigger receptor 2 expressed on myeloid cells in neuroinflammation-neglected multidimensional regulation of microglia. Neurochem Int 2023; 171:105639. [PMID: 37926352 DOI: 10.1016/j.neuint.2023.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Neuroinflammation is an inflammatory cascade involved in various neurological disorders, including Alzheimer's disease, multiple sclerosis, and other relevant diseases. The triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane immune receptor that is primarily expressed by microglia in the central nervous system (CNS). While TREM2 is initially believed to be an anti-inflammatory factor in the CNS, increasing evidence suggests that TREM2 plays a more complex role in balancing neuroinflammation. However, the exact mechanism remains unclear. Notably, TREM2 directly regulates microglia inflammation through various signaling pathways. Additionally, studies have suggested that TREM2 mediates microglial phagocytosis, autophagy, metabolism, and microglia phenotypes, which may be involved in the modulation of neuroinflammation. In this review, we aim to discuss the critical role of TREM2 in several microglia functions and the underlying molecular mechanism the modulatory which further mediate neuroinflammation, and elaborate. Finally, we discuss the potential of TREM2 as a therapeutic target in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xue Chen
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huan Li
- Department of Cardiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Li Y, Xu H, Wang H, Yang K, Luan J, Wang S. TREM2: Potential therapeutic targeting of microglia for Alzheimer's disease. Biomed Pharmacother 2023; 165:115218. [PMID: 37517293 DOI: 10.1016/j.biopha.2023.115218] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, resulting in the loss of cognitive ability and memory. However, there is no specific treatment to mechanistically inhibit the progression of Alzheimer's disease, and most drugs only provide symptom relief and do not fundamentally reverse AD. Current studies show that triggering receptor expressed on myeloid cells 2 (TREM2) is predominantly expressed in microglia of the central nervous system (CNS) and is involved in microglia proliferation, survival, migration and phagocytosis. The current academic view suggests that TREM2 and its ligands have CNS protective effects in AD. Specifically, TREM2 acts by regulating the function of microglia and promoting the clearance of neuronal toxic substances and abnormal proteins by microglia. In addition, TREM2 is also involved in regulating inflammatory response and cell signaling pathways, affecting the immune response and regulatory role of microglia. Although the relationship between TREM2 and Alzheimer's disease has been extensively studied, its specific mechanism of action is not fully understood. The purpose of this review is to provide a comprehensive analysis of the research of TREM2, including its regulation of the inflammatory response, lipid metabolism and phagocytosis in microglia of CNS in AD, and to explore the potential application prospects as well as limitations of targeting TREM2 for the treatment of AD.
Collapse
Affiliation(s)
- Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Huifang Xu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Huifang Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China.
| |
Collapse
|
13
|
Wang H, Li X, Wang Q, Ma J, Gao X, Wang M. TREM2, microglial and ischemic stroke. J Neuroimmunol 2023; 381:578108. [PMID: 37302170 DOI: 10.1016/j.jneuroim.2023.578108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023]
Abstract
Ischemic stroke (IS) is a leading cause of morbidity and mortality worldwide. Immunity and inflammation are key factors in the pathophysiology of IS. The inflammatory response is involved in all stages of stroke, and microglia are the predominant cells involved in the post-stroke inflammatory response. Resident microglia are the main immune cells of the brain and the first line of defense of the nervous system. After IS, activated microglia can be both advantageous and detrimental to surrounding tissue; they can be divided into the harmful M1 types or the neuro-protective M2 type. Currently, with the latest progress of transcriptomics analysis, different and more complex phenotypes of microglia activation have been described, such as disease-related microglia (DAM) associated with Alzheimer's disease (AD), white matter associated microglia (WAMs) in aging, and stroke-related microglia (SAM) etc. The triggering receptor expressed on myeloid cell 2 (TREM2) is an immune-related receptor on the surface of microglia. Its expression increases after IS, which is related to microglial inflammation and phagocytosis, however, its relationship with the microglia phenotype is not clear. This paper reviews the following: 1) the phenotypic changes of microglia in various pathological stages after IS and its relationship with inflammatory factors; 2) the relationship between the expression of the TREM2 receptor and inflammatory factors; 3) the relationship between phenotypic changes of microglia and its surface receptor TREM2; 4) the TREM2-related signalling pathway of microglia after IS and treatment for TREM2 receptor; and finally 5) To clarify the relationship among TREM2, inflammation, and microglia phenotype after IS, as well as the mechanism among them and the some possible treatment of IS targeting TREM2. Moreover, the relationship between the new phenotype of microglia such as SAM and TREM2 has also been systematically summarized, but there are no relevant research reports on the relationship between TREM2 and SAM after IS.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Qi Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Jialiang Ma
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Xiaohong Gao
- Department of Neurology, Wuwei people's Hospital, North side of Xuanwu Street, Liangzhou District, Wuwei, Gansu 733000, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China.
| |
Collapse
|
14
|
Li X, Zheng P, Cao W, Cao Y, She X, Yang H, Ma K, Wu F, Gao X, Fu Y, Yin J, Wei F, Jiang S, Cui B. Lactobacillus rhamnosus GG ameliorates noise-induced cognitive deficits and systemic inflammation in rats by modulating the gut-brain axis. Front Cell Infect Microbiol 2023; 13:1067367. [PMID: 37180445 PMCID: PMC10169735 DOI: 10.3389/fcimb.2023.1067367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Background Environmental noise exposure is linked to neuroinflammation and imbalance of the gut microbiota. Promoting gut microbiota homeostasis may be a key factor in relieving the deleterious non-auditory effects of noise. This study aimed to investigate the effect of Lactobacillus rhamnosus GG (LGG) intervention on noise-induced cognitive deficits and systemic inflammation in rats. Methods Learning and memory were assessed using the Morris water maze, while 16S rRNA sequencing and gas chromatography-mass spectrometry were used to analyze the gut microbiota and short-chain fatty acid (SCFA) content. Endothelial tight junction proteins and serum inflammatory mediators were assessed to explore the underlying pathological mechanisms. Results The results indicated that Lactobacillus rhamnosus GG intervention ameliorated noise-induced memory deterioration, promoted the proliferation of beneficial bacteria, inhibited the growth of harmful bacteria, improved dysregulation of SCFA-producing bacteria, and regulated SCFA levels. Mechanistically, noise exposure led to a decrease in tight junction proteins in the gut and hippocampus and an increase in serum inflammatory mediators, which were significantly alleviated by Lactobacillus rhamnosus GG intervention. Conclusion Taken together, Lactobacillus rhamnosus GG intervention reduced gut bacterial translocation, restored gut and blood-brain barrier functions, and improved gut bacterial balance in rats exposed to chronic noise, thereby protecting against cognitive deficits and systemic inflammation by modulating the gut-brain axis.
Collapse
Affiliation(s)
- Xiaofang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Pengfang Zheng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Wa Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yang Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaojun She
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kefeng Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Fangshan Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Xiujie Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yu Fu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Jiayi Yin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Jinan, China
| | - Fei Wei
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shoufang Jiang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Binzhou Medical University, Yantai, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Jinan, China
| |
Collapse
|
15
|
Xu Z, Zhang G, Zhang X, Lei Y, Sun Y, He Y, Yang F, Nan W, Xing X, Li Y, Lin J. Menstrual blood-derived endometrial stem cells inhibit neuroinflammation by regulating microglia through the TLR4/MyD88/NLRP3/Casp1 pathway. Int J Biochem Cell Biol 2023; 157:106386. [PMID: 36754162 DOI: 10.1016/j.biocel.2023.106386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Neuroinflammation is a common response in various neurological disorders. Mesenchymal stem cell-based treatment has become a promising therapy for neuroinflammation-associated diseases. However, the effects of mesenchymal stem cells are controversial, and the underlying mechanism is incompletely understood. In the present study, menstrual blood-derived endometrial stem cells were intravenously transplanted into a mouse model of neuroinflammation established by peripheral injection of lipopolysaccharide. Microglial cells challenged with lipopolysaccharide were cultured with conditioned medium from endometrial stem cells. The levels of cytokines were detected by enzyme-linked immunosorbent assay. Cell proliferation and death were detected by Cell Counting Kit 8 and flow cytometry, respectively. The expression levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MyD88), NLR family pyrin domain containing 3 (NLRP3) and caspase 1 (Casp1) were evaluated by western blotting. The results showed that intravenous transplantation of endometrial stem cells downregulated proinflammatory factors and upregulated anti-inflammatory factors in the brain of mice with neuroinflammation. Conditioned medium suppressed the inflammatory reaction and hyperactivation of microglial cells and protected microglial cells from cell death induced by lipopolysaccharide in vitro. The expression of TLR4, MyD88, NLRP3 and Casp1 in the brain of mice with neuroinflammation and in lipopolysaccharide-stimulated microglial cells was downregulated by endometrial stem cells and conditioned medium, respectively. These data suggested that menstrual blood-derived endometrial stem cells may suppress neuroinflammatory reactions partially by regulating microglia through the TLR4/MyD88/NLRP3/Casp1 signalling pathway. Our findings may be very useful for the development of an alternative stem cell-based therapy for neuroinflammation-associated disorders.
Collapse
Affiliation(s)
- Zhihao Xu
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China.
| | - Guoqing Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China
| | - Xiaoyue Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China
| | - Yu Lei
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Yuliang Sun
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China; School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Ya'nan He
- Zhongyuan Stem Cell Research Institute, Xinxiang 453003, Henan, PR China
| | - Fen Yang
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China; School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Wenbin Nan
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Xuekun Xing
- College of Public Health, Guilin Medical University, Guilin 541199, Guangxi, PR China
| | - Yonghai Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China
| | - Juntang Lin
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China; School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China.
| |
Collapse
|
16
|
Lucas RM, Luo L, Stow JL. ERK1/2 in immune signalling. Biochem Soc Trans 2022; 50:1341-1352. [PMID: 36281999 PMCID: PMC9704528 DOI: 10.1042/bst20220271] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023]
Abstract
Extracellular signal-related kinases 1 and 2 (ERK1/2) are the final components of the mitogen-activated protein kinase (MAPK) phosphorylation cascade, an integral module in a diverse array of signalling pathways for shaping cell behaviour and fate. More recently, studies have shown that ERK1/2 plays an essential role downstream of immune receptors to elicit inflammatory gene expression in response to infection and cell or tissue damage. Much of this work has studied ERK1/2 activation in Toll-like receptor (TLR) pathways, providing mechanistic insights into its recruitment, compartmentalisation and activation in cells of the innate immune system. In this review, we summarise the typical activation of ERK1/2 in growth factor receptor pathways before discussing its known roles in immune cell signalling with a focus downstream of TLRs. We examine emerging research uncovering evidence of dysfunctional ERK1/2 signalling in inflammatory diseases and discuss the potential therapeutic benefit of targeting ERK1/2 pathways in inflammation.
Collapse
Affiliation(s)
- Richard M. Lucas
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lin Luo
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jennifer L. Stow
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
17
|
Liu S, Cao X, Wu Z, Deng S, Fu H, Wang Y, Liu F. TREM2 improves neurological dysfunction and attenuates neuroinflammation, TLR signaling and neuronal apoptosis in the acute phase of intracerebral hemorrhage. Front Aging Neurosci 2022; 14:967825. [PMID: 36353688 PMCID: PMC9637852 DOI: 10.3389/fnagi.2022.967825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Neuroinflammation contributes to secondary brain injury following intracerebral hemorrhage (ICH). Triggering receptor expressed on myeloid cells 2 (TREM2) confers strong neuroprotective effect by suppressing neuroinflammatory response in experimental ischemic stroke. This study aimed to clarify the neuroprotective role of TREM2 and potential underlying mechanism in a mouse model of ICH and in vitro. Adeno-associated virus (AAV) and green fluorescent protein-lentivirus (GFP-LV) strategies were employed to enhance TREM2 expression in the C57/BL6 mice and BV2 cells, respectively. The adult male C57/BL6 mice were subjected to ICH by administration of collagenase-IV in 1 month after the AAV particles injection. An in vitro ICH model was performed with oxygen hemoglobin in BV2 cells. Toll-like receptor 4 (TLR4) antagonist TAK242 was applied at 6 h following ICH. Neurological function, TREM2, pro-inflammatory cytokines, brain water content and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were evaluated at 24 h following ICH. TLR4, NF-κB and mitogen-activated protein kinases (MAPK) signaling pathways were also determined by Western blot analysis at the same time point. The levels of TREM2 were increased at 12 h, peaked at 24 h and recovered on 7d following ICH. TREM2 overexpression ameliorated ICH induced neurological dysfunction, inhibited neuroinflammation, and attenuated apoptosis and brain edema. Further mechanistic study revealed that TREM2 overexpression inhibited TLR4 activation and NF-κB and MAPK signaling pathways. ICH increased the percentage of TUNEL-positive cells, which was markedly decreased by TREM2 overexpression. A similar improvement was also observed by the administration of TAK242 following ICH. TREM2 improves neurological dysfunction and attenuates neuroinflammation and neuronal apoptosis in the acute phase of ICH, which is, at least in part, mediated by negatively regulating TLR4 signaling pathway. These findings highlight TREM2 as a potential target for early brain injury following ICH.
Collapse
Affiliation(s)
- Sidan Liu
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Xuezhao Cao
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Zhe Wu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Shumin Deng
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Hefei Fu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Yanzhe Wang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Fang Liu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
- *Correspondence: Fang Liu,
| |
Collapse
|
18
|
Heinz R, Schneider UC. TLR4-Pathway-Associated Biomarkers in Subarachnoid Hemorrhage (SAH): Potential Targets for Future Anti-Inflammatory Therapies. Int J Mol Sci 2022; 23:ijms232012618. [PMID: 36293468 PMCID: PMC9603851 DOI: 10.3390/ijms232012618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022] Open
Abstract
Subarachnoid hemorrhage is associated with severe neurological deficits for survivors. Among survivors of the initial bleeding, secondary brain injury leads to additional brain damage. Apart from cerebral vasospasm, secondary brain injury mainly results from cerebral inflammation taking place in the brain parenchyma after bleeding. The brain’s innate immune system is activated, which leads to disturbances in brain homeostasis, cleavage of inflammatory cytokines and, subsequently, neuronal cell death. The toll-like receptor (TLR)4 signaling pathway has been found to play an essential role in the pathophysiology of acute brain injuries such as subarachnoid hemorrhage (SAH). TLR4 is expressed on the cell surface of microglia, which are key players in the cellular immune responses of the brain. The participants in the signaling pathway, such as TLR4-pathway-like ligands, the receptor itself, and inflammatory cytokines, can act as biomarkers, serving as clues regarding the inflammatory status after SAH. Moreover, protein complexes such as the NLRP3 inflammasome or receptors such as TREM1 frame the TLR4 pathway and are indicative of inflammation. In this review, we focus on the activity of the TLR4 pathway and its contributors, which can act as biomarkers of neuroinflammation or even offer potential new treatment targets for secondary neuronal cell death after SAH.
Collapse
Affiliation(s)
- Rebecca Heinz
- Experimental Neurosurgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Ulf C. Schneider
- Experimental Neurosurgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Neurosurgery, Cantonal Hospital of Lucerne, 6000 Lucerne, Switzerland
- Correspondence:
| |
Collapse
|
19
|
Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, Kaddoumi A. Glial Cell-Mediated Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2022; 23:10572. [PMID: 36142483 PMCID: PMC9502483 DOI: 10.3390/ijms231810572] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder; it is the most common cause of dementia and has no treatment. It is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of Neurofibrillary tangles (NFTs). Yet, those two hallmarks do not explain the full pathology seen with AD, suggesting the involvement of other mechanisms. Neuroinflammation could offer another explanation for the progression of the disease. This review provides an overview of recent advances on the role of the immune cells' microglia and astrocytes in neuroinflammation. In AD, microglia and astrocytes become reactive by several mechanisms leading to the release of proinflammatory cytokines that cause further neuronal damage. We then provide updates on neuroinflammation diagnostic markers and investigational therapeutics currently in clinical trials to target neuroinflammation.
Collapse
Affiliation(s)
- Nour F. Al-Ghraiybah
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amer E. Alkhalifa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Andrew B. Roberts
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Euitaek Yang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| |
Collapse
|
20
|
Toll-Like Receptor 4: A Promising Therapeutic Target for Alzheimer's Disease. Mediators Inflamm 2022; 2022:7924199. [PMID: 36046763 PMCID: PMC9420645 DOI: 10.1155/2022/7924199] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that primarily manifests as memory deficits and cognitive impairment and has created health challenges for patients and society. In AD, amyloid β-protein (Aβ) induces Toll-like receptor 4 (TLR4) activation in microglia. Activation of TLR4 induces downstream signaling pathways and promotes the generation of proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), which also trigger the activation of astrocytes and influence amyloid-dependent neuronal death. Therefore, TLR4 may be an important molecular target for treating AD by regulating neuroinflammation. Moreover, TLR4 regulates apoptosis, autophagy, and gut microbiota and is closely related to AD. This article reviews the role of TLR4 in the pathogenesis of AD and a range of potential therapies targeting TLR4 for AD. Elucidating the regulatory mechanism of TLR4 in AD may provide valuable clues for developing new therapeutic strategies for AD.
Collapse
|
21
|
Cao C, Ding J, Cao D, Li B, Wu J, Li X, Li H, Cui G, Shen H, Chen G. TREM2 modulates neuroinflammation with elevated IRAK3 expression and plays a neuroprotective role after experimental SAH in rats. Neurobiol Dis 2022; 171:105809. [PMID: 35781003 DOI: 10.1016/j.nbd.2022.105809] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The modulation of neuroinflammation is a new direction that may alleviate the early brain injury after subarachnoid hemorrhage (SAH). Brain resident microglia/macrophages (Mi/MΦ) are the key drivers of neuroinflammation. Triggering receptor expressed on myeloid cells 2 (TREM2) has been reported to play a neuroprotective role by activating phagocytosis and suspending inflammatory response in experimental ischemic stroke and intracerebral hemorrhage. This study was designed to investigate the role of TREM2 on neuroinflammation and neuroprotective effects in a rat SAH model. METHODS Adult male Sprague-Dawley rats were induced SAH through endovascular perforation. Lentivirus vectors were administered by i.c.v. to induce TREM2 overexpression or knockdown 7 days before SAH induction. Short- and long-term neurobehavioral tests, western blotting, immunofluorescence, enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining were performed to explore the neuroprotective role of TREM2 after SAH. RESULTS The expression of TREM2 elevated in a rat SAH model with a peak at 48 h after SAH and mainly expressed in Mi/MΦ in brain. TREM2 overexpression improved short- and long-term neurological deficits induced by SAH in rats, while TREM2 knockdown worsened neurological dysfunction. The rats with TREM2 overexpressed presented less neuronal apoptosis and more neuronal survival at 48 h after SAH, while the rats with TREM2 knockdown presented on the contrary. TREM2 overexpression manifested activated phagocytosis and suppressed inflammatory response, with the increase of CD206+/CD11b+ cells and IL-10 expression as well as the decrease of the infiltration of MPO+ cells and the expression of TNF-α, IL-1β. While TREM2 knockdown abolished these effects. The protein level of IRAK3, a negative regulatory factor of inflammation, was significantly elevated after TREM2 overexpression and declined after TREM2 knockdown. CONCLUSIONS Our research suggested TREM2 played a neuroprotective role and improved the short- and long-term neurological deficits by modulating neuroinflammation after SAH. The modulation on neuroinflammation of TREM2 after SAH was related with the elevated protein level of IRAK3.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Neurocritical Intensive Care Unit, The Affiliated Jiangyin Hospital, School of Medicine, Southeast University, Jiangyin City 214400, Jiangsu Province, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Demao Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Bing Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
22
|
Zheng C, Fillmore NR, Ramos-Cejudo J, Brophy M, Osorio R, Gurney ME, Qiu WQ, Au R, Perry G, Dubreuil M, Chen SG, Qi X, Davis PB, Do N, Xu R. Potential long-term effect of tumor necrosis factor inhibitors on dementia risk: A propensity score matched retrospective cohort study in US veterans. Alzheimers Dement 2022; 18:1248-1259. [PMID: 34569707 PMCID: PMC8957621 DOI: 10.1002/alz.12465] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Tumor necrosis factor (TNF) inhibitors are widely used to treat rheumatoid arthritis (RA) and their potential to retard Alzheimer's disease (AD) progression has been reported. However, their long-term effects on the dementia/AD risk remain unknown. METHODS A propensity scored matched retrospective cohort study was conducted among 40,207 patients with RA within the US Veterans Affairs health-care system from 2000 to 2020. RESULTS A total of 2510 patients with RA prescribed TNF inhibitors were 1:2 matched to control patients. TNF inhibitor use was associated with reduced dementia risk (hazard ratio [HR]: 0.64, 95% confidence interval [CI]: 0.52-0.80), which was consistent as the study period increased from 5 to 20 years after RA diagnosis. TNF inhibitor use also showed a long-term effect in reducing the risk of AD (HR: 0.57, 95% CI: 0.39-0.83) during the 20 years of follow-up. CONCLUSION TNF inhibitor use is associated with lower long-term risk of dementia/AD among US veterans with RA.
Collapse
Affiliation(s)
- Chunlei Zheng
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Nathanael R. Fillmore
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jaime Ramos-Cejudo
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, Massachusetts, USA
- Division of Brain Aging, Department of Psychiatry, New York University School of Medicine, New York City, New York, USA
| | - Mary Brophy
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, Massachusetts, USA
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ricardo Osorio
- Department of Psychiatry, Healthy Brain Aging and Sleep Center, NYU Langone Medical Center, New York City, New York, USA
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York City, New York, USA
| | | | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University Medical Campus, Boston, Massachusetts, USA
- Alzheimer’s Disease Center, Boston University Medical Campus, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University Medical Campus, Boston, Massachusetts, USA
| | - Rhoda Au
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - George Perry
- College of Sciences, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Maureen Dubreuil
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, Massachusetts, USA
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Shu G Chen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Qi
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Pamela B Davis
- Center for Clinical Investigation, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nhan Do
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, Massachusetts, USA
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Li XX, Zhang F. Targeting TREM2 for Parkinson's Disease: Where to Go? Front Immunol 2022; 12:795036. [PMID: 35003116 PMCID: PMC8740229 DOI: 10.3389/fimmu.2021.795036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is one of most common neurodegenerative disorders caused by a combination of environmental and genetic risk factors. Currently, numerous population genetic studies have shown that polymorphisms in myeloid cell-triggered receptor II (TREM2) are associated with a variety of neurodegenerative disorders. Recently, TREM2 has been verified to represent a promising candidate gene for PD susceptibility and progression. For example, the expression of TREM2 was apparently increased in the prefrontal cortex of PD patients. Moreover, the rare missense mutations in TREM2 (rs75932628, p.R47H) was confirmed to be a risk factor of PD. In addition, overexpression of TREM2 reduced dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of PD. Due to the complex pathogenesis of PD, there is still no effective drug treatment. Thus, TREM2 has received increasing widespread attention as a potential therapeutic target. This review focused on the variation of TREM2 in PD and roles of TREM2 in PD pathogenesis, such as excessive-immune inflammatory response, α-Synuclein aggregation and oxidative stress, to further provide evidence for new immune-related biomarkers and therapies for PD.
Collapse
Affiliation(s)
- Xiao-Xian Li
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.,Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
24
|
Pons V, Rivest S. Targeting Systemic Innate Immune Cells as a Therapeutic Avenue for Alzheimer Disease. Pharmacol Rev 2022; 74:1-17. [PMID: 34987086 DOI: 10.1124/pharmrev.121.000400] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is the first progressive neurodegenerative disease worldwide, and the disease is characterized by an accumulation of amyloid in the brain and neurovasculature that triggers cognitive decline and neuroinflammation. The innate immune system has a preponderant role in AD. The last decade, scientists focused their efforts on therapies aiming to modulate innate immunity. The latter is of great interest, since they participate to the inflammation and phagocytose the amyloid in the brain and blood vessels. We and others have developed pharmacological approaches to stimulate these cells using various ligands. These include toll-like receptor 4, macrophage colony stimulating factor, and more recently nucleotide-binding oligomerization domain-containing 2 receptors. This review will discuss the great potential to take advantage of the innate immune system to fight naturally against amyloid β accumulation and prevent its detrimental consequence on brain functions and its vascular system. SIGNIFICANCE STATEMENT: The focus on amyloid β removal from the perivascular space rather than targeting CNS plaque formation and clearance represents a new direction with a great potential. Small molecules able to act at the level of peripheral immunity would constitute a novel approach for tackling aberrant central nervous system biology, one of which we believe would have the potential of generating a lot of interest.
Collapse
Affiliation(s)
- Vincent Pons
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| |
Collapse
|
25
|
Qiu H, Shao Z, Wen X, Jiang J, Ma Q, Wang Y, Huang L, Ding X, Zhang L. TREM2: Keeping Pace With Immune Checkpoint Inhibitors in Cancer Immunotherapy. Front Immunol 2021; 12:716710. [PMID: 34539652 PMCID: PMC8446424 DOI: 10.3389/fimmu.2021.716710] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
To date, immune checkpoint inhibitors have been successively approved and widely used in clinical cancer treatments, however, the overall response rates are very low and almost all cancer patients eventually progressed to drug resistance, this is mainly due to the intricate tumor microenvironment and immune escape mechanisms of cancer cells. One of the main key mechanisms leading to the evasion of immune attack is the presence of the immunosuppressive microenvironment within tumors. Recently, several studies illustrated that triggering receptor expressed on myeloid cells-2 (TREM2), a transmembrane receptor of the immunoglobulin superfamily, was a crucial pathology-induced immune signaling hub, and it played a vital negative role in antitumor immunity, such as inhibiting the proliferation of T cells. Here, we reviewed the recent advances in the study of TREM2, especially focused on its regulation of tumor-related immune signaling pathways and its role as a novel target in cancer immunotherapy.
Collapse
Affiliation(s)
- Hui Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jinghua Jiang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qinggong Ma
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yan Wang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Long Huang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xin Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
26
|
Ibanez L, Cruchaga C, Fernández MV. Advances in Genetic and Molecular Understanding of Alzheimer's Disease. Genes (Basel) 2021; 12:1247. [PMID: 34440421 PMCID: PMC8394321 DOI: 10.3390/genes12081247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) has become a common disease of the elderly for which no cure currently exists. After over 30 years of intensive research, we have gained extensive knowledge of the genetic and molecular factors involved and their interplay in disease. These findings suggest that different subgroups of AD may exist. Not only are we starting to treat autosomal dominant cases differently from sporadic cases, but we could be observing different underlying pathological mechanisms related to the amyloid cascade hypothesis, immune dysfunction, and a tau-dependent pathology. Genetic, molecular, and, more recently, multi-omic evidence support each of these scenarios, which are highly interconnected but can also point to the different subgroups of AD. The identification of the pathologic triggers and order of events in the disease processes are key to the design of treatments and therapies. Prevention and treatment of AD cannot be attempted using a single approach; different therapeutic strategies at specific disease stages may be appropriate. For successful prevention and treatment, biomarker assays must be designed so that patients can be more accurately monitored at specific points during the course of the disease and potential treatment. In addition, to advance the development of therapeutic drugs, models that better mimic the complexity of the human brain are needed; there have been several advances in this arena. Here, we review significant, recent developments in genetics, omics, and molecular studies that have contributed to the understanding of this disease. We also discuss the implications that these contributions have on medicine.
Collapse
Affiliation(s)
- Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA; (L.I.); (C.C.)
- Neurogenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA; (L.I.); (C.C.)
- Neurogenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO 63110, USA
| | - Maria Victoria Fernández
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA; (L.I.); (C.C.)
- Neurogenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| |
Collapse
|
27
|
TREM2 Regulates High Glucose-Induced Microglial Inflammation via the NLRP3 Signaling Pathway. Brain Sci 2021; 11:brainsci11070896. [PMID: 34356130 PMCID: PMC8306970 DOI: 10.3390/brainsci11070896] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 01/04/2023] Open
Abstract
Background: TREM2 expressed on microglia plays an important role in modulating inflammation in neurodegenerative diseases. It remains unknown whether TREM2 modulates hyperglycemia-induced microglial inflammation. Methods: We investigated the molecular function of TREM2 in high glucose-induced microglial inflammation using western blotting, qPCR, ELISA, pulldown, and co-IP methods. Results: Our data showed that in high glucose-induced BV2 cells, TREM2 was increased, and the proinflammatory cytokine IL-1β was increased. TREM2 knockout (KO) attenuated the proinflammatory cytokine IL-1β; conversely, TREM2 overexpression (OE) exacerbated IL-1β expression. Furthermore, we found that high glucose promoted the interaction of TREM2 with NLRP3. TREM2 KO abolished the interaction of TREM2 with NLRP3, while TREM2 OE enhanced the interaction. Moreover, TREM2 KO reduced high glucose-induced NLRP3 inflammasome activation, and TREM2 OE augmented high glucose-induced NLRP3 inflammasome activation, indicating that high glucose enhances the expression of TREM2, which activates the NLRP3 inflammasome. To further clarify whether the NLRP3 signaling pathway mediates the TREM2-regulated inflammatory response, we blocked the NLRP3 inflammasome by knocking out NLRP3 and treating cells with a caspase1 inhibitor, which decreased the levels of the IL-1β proinflammatory cytokine but did not affect the high glucose-induced expression of TREM2. Conclusions: TREM2 modulates high glucose-induced microglial inflammation via the NLRP3 signaling pathway.
Collapse
|
28
|
Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021; 15:652593. [PMID: 33841102 PMCID: PMC8032904 DOI: 10.3389/fncel.2021.652593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are increasingly recognized as vital players in the pathology of a variety of neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease. While microglia have a protective role in the brain, their dysfunction can lead to neuroinflammation and contributes to disease progression. Also, a growing body of literature highlights the seven phosphoinositides, or PIPs, as key players in the regulation of microglial-mediated neuroinflammation. These small signaling lipids are phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have well-established roles in both homeostasis and disease.Disrupted PIP levels and signaling has been detected in a variety of dementias. Moreover, many known AD disease modifiers identified via genetic studies are expressed in microglia and are involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being investigated as a potential therapeutic target.Perhaps unsurprisingly, neurodegenerative conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of microglial function regulated by these lipids. In particular, phosphoinositides regulate the activities of proteins and enzymes required for endocytosis, toll-like receptor signaling, purinergic signaling, chemotaxis, and migration, all of which are affected in a variety of neurodegenerative conditions. These functions are crucial to allow microglia to adequately survey the brain and respond appropriately to invading pathogens and other abnormalities, including misfolded proteins. AD and PD therapies are being developed to target many of the above pathways, and although not yet investigated, simultaneous PIP manipulation might enhance the beneficial effects observed. Currently, only limited therapeutics are available for dementia, and although these show some benefits for symptom severity and progression, they are far from curative. Given the importance of microglia and PIPs in dementia development, this review summarizes current research and asks whether we can exploit this information to design more targeted, or perhaps combined, dementia therapeutics. More work is needed to fully characterize the pathways discussed in this review, but given the strength of the current literature, insights in this area could be invaluable for the future of neurodegenerative disease research.
Collapse
Affiliation(s)
| | - Emily Maguire
- UK Dementia Research Institute at Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
29
|
Friker LL, Scheiblich H, Hochheiser IV, Brinkschulte R, Riedel D, Latz E, Geyer M, Heneka MT. β-Amyloid Clustering around ASC Fibrils Boosts Its Toxicity in Microglia. Cell Rep 2021; 30:3743-3754.e6. [PMID: 32187546 PMCID: PMC8729885 DOI: 10.1016/j.celrep.2020.02.025] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease is the world’s most common neurodegenerative disorder. It is associated with neuroinflammation involving activation of microglia by β-amyloid (Aβ) deposits. Based on previous studies showing apoptosis-associated speck-like protein containing a CARD (ASC) binding and cross-seeding extracellular Aβ, we investigate the propagation of ASC between primary microglia and the effects of ASC-Aβ composites on microglial inflammasomes and function. Indeed, ASC released by a pyroptotic cell can be functionally built into the neighboring microglia NOD-like receptor protein (NLRP3) inflammasome. Compared with protein-only application, exposure to ASC-Aβ composites amplifies the proinflammatory response, resulting in pyroptotic cell death, setting free functional ASC and inducing a feedforward stimulating vicious cycle. Clustering around ASC fibrils also compromises clearance of Aβ by microglia. Together, these data enable a closer look at the turning point from acute to chronic Aβ-related neuroinflammation through formation of ASC-Aβ composites. Friker et al. investigate the reaction of primary microglia to exogenous ASC and ASC-Aβ composites. They uncover a vicious circle involving amplified NLRP3 inflammasome activity and reduced Aβ clearance in the presence of ASC that might play a key role in Alzheimer’s disease progression.
Collapse
Affiliation(s)
- Lea L Friker
- Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Hannah Scheiblich
- Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Inga V Hochheiser
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | | | - Dietmar Riedel
- Max Planck Institute for Biophysical Chemistry, Department of Structural Dynamics, 37077 Göttingen, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, 53127 Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
30
|
Xu Y, Yu L, Liu Y, Tang X, Wang X. Lipopolysaccharide-Induced Microglial Neuroinflammation: Attenuation by FK866. Neurochem Res 2021; 46:1291-1304. [PMID: 33713324 DOI: 10.1007/s11064-021-03267-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Alleviating microglia-mediated neuroinflammation bears great promise to reduce neurodegeneration. Nicotinamide phosphoribosyltransferase (NAMPT) may exert cytokine-like effect in the brain. However, it remains unclear about role of NAMPT in microglial inflammation. Also, it remains unknown about effect of NAMPT inhibition on microglial inflammation. In the present study, we observed that FK866 (a specific noncompetitive NAMPT inhibitor) dose-dependently inhibited lipopolysaccharide (LPS)-induced proinflammatory mediator (interleukin (IL)-6, IL-1β, inducible nitric oxide synthase, nitric oxide and reactive species) level increase in BV2 microglia cultures. FK866 also significantly inhibited LPS-induced polarization change in microglia. Furthermore, LPS significantly increased NAMPT expression and nuclear factor kappa B (NF-κB) phosphorylation in microglia. FK866 significantly decreased NAMPT expression and NF-κB phosphorylation in LPS-treated microglia. Finally, conditioned medium from microglia cultures co-treated with FK866 and LPS significantly increased SH-SY5Y and PC12 cell viability compared with conditioned medium from microglia cultures treated with LPS alone. Our study strongly indicates that NAMPT may be a promising target for microglia modulation and NAMPT inhibition may attenuate microglial inflammation.
Collapse
Affiliation(s)
- Yaling Xu
- Department of Neurology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Lijia Yu
- Department of Neurology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Ying Liu
- Department of Neurology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Xiaohui Tang
- Department of Neurology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Xijin Wang
- Department of Neurology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
31
|
Zheng Y, Zhang J, Zhao Y, Zhang Y, Zhang X, Guan J, Liu Y, Fu J. Curcumin protects against cognitive impairments in a rat model of chronic cerebral hypoperfusion combined with diabetes mellitus by suppressing neuroinflammation, apoptosis, and pyroptosis. Int Immunopharmacol 2021; 93:107422. [PMID: 33548579 DOI: 10.1016/j.intimp.2021.107422] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) is regarded as a high-risk factor for cognitive decline in vascular dementia (VaD). We have previously shown that diabetes mellitus (DM) synergistically promotes CCH-induced cognitive dysfunction via exacerbating neuroinflammation. Furthermore, curcumin has been shown to exhibit anti-inflammatory and neuroprotective activities. However, the effects of curcumin on CCH-induced cognitive impairments in DM have remained unknown. METHODS Rats were fed with a high-fat diet (HFD) and injected with low-dose streptozotocin (STZ), followed by bilateral common carotid artery occlusion (BCCAO), to model DM and CCH in vivo. After BCCAO, curcumin (50 mg/kg) was administered intraperitoneally every two days for eight weeks to evaluate its therapeutic effects. Additionally, mouse BV2 microglial cells were exposed to hypoxia and high glucose to model CCH and DM pathologies in vitro. RESULTS Curcumin treatment significantly improved DM/CCH-induced cognitive deficits and attenuated neuronal cell death. Molecular analysis revealed that curcumin exerted protective effects via suppressing neuroinflammation induced by microglial activation, regulating the triggering receptor expressed on myeloid cells 2 (TREM2)/toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway, alleviating apoptosis, and reducing nod-like receptor protein 3 (NLRP3)-dependent pyroptosis. CONCLUSIONS Taken together, our findings suggest that curcumin represents a promising therapy for DM/CCH-induced cognitive impairments.
Collapse
Affiliation(s)
- Yaling Zheng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jiawei Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yao Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yaxuan Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jian Guan
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu Liu
- Department of Medicine, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
32
|
Akhter R, Shao Y, Formica S, Khrestian M, Bekris LM. TREM2 alters the phagocytic, apoptotic and inflammatory response to Aβ 42 in HMC3 cells. Mol Immunol 2021; 131:171-179. [PMID: 33461764 DOI: 10.1016/j.molimm.2020.12.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation in the brain of extracellular amyloid β (Aβ) plaques as well as intraneuronal inclusions (neurofibrillary tangles) consisting of total tau and phosphorylated tau. Also present are dystrophic neurites, loss of synapses, neuronal death, and gliosis. AD genetic studies have highlighted the importance of inflammation in this disease by identifying several risk associated immune response genes, including TREM2. TREM2 has been strongly implicated in basic microglia function including, phagocytosis, apoptosis, and the inflammatory response to Aβ in mouse brain and primary cells. These studies show that microglia are key players in the response to Aβ and in the accumulation of AD pathology. However, details are still missing about which apoptotic or inflammatory factors rely on TREM2 in their response to Aβ, especially in human cell lines. Given these previous findings our hypothesis is that TREM2 influences the response to Aβ toxicity by enhancing phagocytosis and inhibiting both the BCL-2 family of apoptotic proteins and pro-inflammatory cytokines. Aβ42 treatment of the human microglial cell line, HMC3 cells, was performed and TREM2 was overexpressed or silenced and the phagocytosis, apoptosis and inflammatory response were evaluated. Results indicate that a robust phagocytic response to Aβ after 24 h requires TREM2 in HMC3 cells. Also, TREM2 inhibits Aβ induced apoptosis by activating the Mcl-1/Bim complex. TREM2 is involved in activation of IP-10, MIP-1a, and IL-8, while it inhibits FGF-2, VEGF and GRO. Taken together, TREM2 plays a role in enhancing the microglial functional response to Aβ toxicity in HMC3 cells. This novel information suggests that therapeutic strategies that seek to activate TREM2 may not only enhance phagocytosis and inhibit apoptosis, but may also inhibit beneficial inflammatory factors, emphasizing the need to define TREM2-related inflammatory activity in not only mouse models of AD, but also in human AD.
Collapse
Affiliation(s)
- Rumana Akhter
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Yvonne Shao
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shane Formica
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Maria Khrestian
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Lynn M Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
33
|
Zhou Y, Chen Y, Xu C, Zhang H, Lin C. TLR4 Targeting as a Promising Therapeutic Strategy for Alzheimer Disease Treatment. Front Neurosci 2020; 14:602508. [PMID: 33390886 PMCID: PMC7775514 DOI: 10.3389/fnins.2020.602508] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022] Open
Abstract
Alzheimer disease (AD) is a devastating neurodegenerative disorder characterized by extracellular accumulation of amyloid-beta and formation of intracellular neurofibrillary tangles. Microglia activation and neuroinflammation play important roles in the pathogenesis of AD; Toll-like receptor 4 (TLR4)-a key component of the innate immune system-in microglia is also thought to be involved based on the observed association between TLR gene polymorphisms and AD risk. TLR4 has been shown to exert both detrimental and beneficial effects on AD-related pathologies. In preclinical models, experimental manipulations targeting TLR4 were shown to improve learning and memory, which was related to inhibition of pro-inflammatory cytokine release and reduction of oxidative stress. In this review, we summarize the key evidence supporting TLR4 as a promising therapeutic target in AD treatment.
Collapse
Affiliation(s)
- Yongji Zhou
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Congcong Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Zhang
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caixiu Lin
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Toll-like receptors in Alzheimer's disease. J Neuroimmunol 2020; 348:577362. [DOI: 10.1016/j.jneuroim.2020.577362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
|
35
|
Zhang RY, Tu JB, Ran RT, Zhang WX, Tan Q, Tang P, Kuang T, Cheng SQ, Chen CZ, Jiang XJ, Chen C, Han TL, Zhang T, Cao XQ, Peng B, Zhang H, Xia YY. Using the Metabolome to Understand the Mechanisms Linking Chronic Arsenic Exposure to Microglia Activation, and Learning and Memory Impairment. Neurotox Res 2020; 39:720-739. [PMID: 32955723 DOI: 10.1007/s12640-020-00286-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022]
Abstract
The activation of microglia is a hallmark of neuroinflammation and contributes to various neurodegenerative diseases. Chronic inorganic arsenic exposure is associated with impaired cognitive ability and increased risk of neurodegeneration. The present study aimed to investigate whether chronic inorganic arsenic-induced learning and memory impairment was associated with microglial activation, and how organic (DMAV 600 μM, MMAV 0.1 μM) and inorganic arsenic (NaAsO2 0.6 μM) affect the microglia. Male C57BL/6J mice were divided into two groups: a control group and a group exposed to arsenic in their drinking water (50 mg/L NaAsO2 for 24 weeks). The Morris water maze was performed to analyze neuro-behavior and transmission electron microscopy was used to assess alterations in cellular ultra-structures. Hematoxylin-eosin and Nissl staining were used to observe pathological changes in the cerebral cortex and hippocampus. Flow cytometry was used to reveal the polarization of the arsenic-treated microglia phenotype and GC-MS was used to assess metabolomic differences in the in vitro microglia BV-2 cell line model derived from mice. The results showed learning and memory impairments and activation of microglia in the cerebral cortex and dentate gyrus (DG) zone of the hippocampus, in mice chronically exposed to arsenic. Flow cytometry demonstrated that BV-2 cells were activated with the treatment of different arsenic species. The GC-MS data showed three important metabolites to be at different levels according to the different arsenic species used to treat the microglia. These included tyrosine, arachidonic acid, and citric acid. Metabolite pathway analysis showed that a metabolic pathways associated with tyrosine metabolism, the dopaminergic synapse, Parkinson's disease, and the citrate cycle were differentially affected when comparing exposure to organic arsenic and inorganic arsenic. Organic arsenic MMAV was predominantly pro-inflammatory, and inorganic arsenic exposure contributed to energy metabolism disruptions in BV-2 microglia. Our findings provide novel insight into understanding the neurotoxicity mechanisms of chronic arsenic exposure and reveal the changes of the metabolome in response to exposure to different arsenic species in the microglia.
Collapse
Affiliation(s)
- Rui-Yuan Zhang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jie-Bai Tu
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Rui-Tu Ran
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wen-Xuan Zhang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiang Tan
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ping Tang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Tao Kuang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shu-Qun Cheng
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Cheng-Zhi Chen
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xue-Jun Jiang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ting-Li Han
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ting Zhang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xian-Qing Cao
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Peng
- Department of Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hua Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yin-Yin Xia
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
36
|
Yang Y, Zhang Z. Microglia and Wnt Pathways: Prospects for Inflammation in Alzheimer's Disease. Front Aging Neurosci 2020; 12:110. [PMID: 32477095 PMCID: PMC7241259 DOI: 10.3389/fnagi.2020.00110] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/30/2020] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) has been a major health issue for more than one century since it was first reported in 1906. As one of the most common neurodegenerative diseases, AD is characterized by the presence of senile plaques and neurofibrillary tangles (NFTs) in the affected brain area. Microglia are the major regulators of neuroinflammation in the brain, and neuroinflammation has become recognized as the core pathophysiological process of various neurodegenerative diseases. In the central nervous system (CNS), microglia play a dual role in AD development. For one thing, they degrade amyloid β (Aβ) to resist its deposition; for another, microglia release pro-inflammatory and inflammatory factors, contributing to neuroinflammation as well as the spreading of Aβ and tau pathology. Wnt pathways are important regulators of cell fate and cell activities. The dysregulation of Wnt pathways is responsible for both abnormal tau phosphorylation and synaptic loss in AD. Recent studies have also confirmed the regulatory effect of Wnt signaling on microglial inflammation. Thus, the study of microglia, Wnt pathways, and their possible interactions may open up a new direction for understanding the mechanisms of neuroinflammation in AD. In this review, we summarize the functions of microglia and Wnt pathways and their roles in AD in order to provide new ideas for understanding the pathogenesis of AD.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Zhou M, Xu R, Kaelber DC, Gurney ME. Tumor Necrosis Factor (TNF) blocking agents are associated with lower risk for Alzheimer's disease in patients with rheumatoid arthritis and psoriasis. PLoS One 2020; 15:e0229819. [PMID: 32203525 PMCID: PMC7089534 DOI: 10.1371/journal.pone.0229819] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/16/2020] [Indexed: 01/03/2023] Open
Abstract
This large, retrospective case-control study of electronic health records from 56 million unique adult patients examined whether or not treatment with a Tumor Necrosis Factor (TNF) blocking agent is associated with lower risk for Alzheimer’s disease (AD) in patients with rheumatoid arthritis (RA), psoriasis, and other inflammatory diseases which are mediated in part by TNF and for which a TNF blocker is an approved treatment. The analysis compared the diagnosis of AD as an outcome measure in patients receiving at least one prescription for a TNF blocking agent (etanercept, adalimumab, and infliximab) or for methotrexate. Adjusted odds ratios (AORs) were estimated using the Cochran-Mantel-Haenszel (CMH) method and presented with 95% confidence intervals (CIs) and p-values. RA was associated with a higher risk for AD (Adjusted Odds Ratio (AOR) = 2.06, 95% Confidence Interval: (2.02–2.10), P-value <0.0001) as did psoriasis (AOR = 1.37 (1.31–1.42), P <0.0001), ankylosing spondylitis (AOR = 1.57 (1.39–1.77), P <0.0001), inflammatory bowel disease (AOR = 2.46 (2.33–2.59), P < 0.0001), ulcerative colitis (AOR = 1.82 (1.74–1.91), P <0.0001), and Crohn’s disease (AOR = 2.33 (2.22–2.43), P <0.0001). The risk for AD in patients with RA was lower among patients treated with etanercept (AOR = 0.34 (0.25–0.47), P <0.0001), adalimumab (AOR = 0.28 (0.19–0.39), P < 0.0001), or infliximab (AOR = 0.52 (0.39–0.69), P <0.0001). Methotrexate was also associated with a lower risk for AD (AOR = 0.64 (0.61–0.68), P <0.0001), while lower risk was found in patients with a prescription history for both a TNF blocker and methotrexate. Etanercept and adalimumab also were associated with lower risk for AD in patients with psoriasis: AOR = 0.47 (0.30–0.73 and 0.41 (0.20–0.76), respectively. There was no effect of gender or race, while younger patients showed greater benefit from a TNF blocker than did older patients. This study identifies a subset of patients in whom systemic inflammation contributes to risk for AD through a pathological mechanism involving TNF and who therefore may benefit from treatment with a TNF blocking agent.
Collapse
Affiliation(s)
- Mengshi Zhou
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
- * E-mail: (R.X.); (M.E.G.)
| | - David C. Kaelber
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
- Departments of Internal Medicine and Pediatrics and the Center for Clinical Informatics Research and Education, The MetroHealth System, Cleveland, OH, United States of America
| | - Mark E. Gurney
- Tetra Therapeutics, Grand Rapids, MI, United States of America
- * E-mail: (R.X.); (M.E.G.)
| |
Collapse
|
38
|
Impact of HMGB1, RAGE, and TLR4 in Alzheimer's Disease (AD): From Risk Factors to Therapeutic Targeting. Cells 2020; 9:cells9020383. [PMID: 32046119 PMCID: PMC7072620 DOI: 10.3390/cells9020383] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder and a leading cause of dementia, with accumulation of amyloid-beta (Aβ) and neurofibrillary tangles (NFTs) as defining pathological features. AD presents a serious global health concern with no cure to date, reflecting the complexity of its pathogenesis. Recent evidence indicates that neuroinflammation serves as the link between amyloid deposition, Tau pathology, and neurodegeneration. The high mobility group box 1 (HMGB1) protein, an initiator and activator of neuroinflammatory responses, has been involved in the pathogenesis of neurodegenerative diseases, including AD. HMGB1 is a typical damage-associated molecular pattern (DAMP) protein that exerts its biological activity mainly through binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). RAGE and TLR4 are key components of the innate immune system that both bind to HMGB1. Targeting of HMGB1, RAGE, and TLR4 in experimental AD models has demonstrated beneficial effects in halting AD progression by suppressing neuroinflammation, reducing Aβ load and production, improving spatial learning, and inhibiting microglial stimulation. Herein, we discuss the contribution of HMGB1 and its receptor signaling in neuroinflammation and AD pathogenesis, providing evidence of its beneficial effects upon therapeutic targeting.
Collapse
|