1
|
Naeimi Ghahroodi MH, Bahari Z, Mashhadi Akbar Boojar M. Comparative analysis of analgesic and anxiolytic effects of alcoholic extracts from Eryngium billardieri and Urtica dioica in a rat model of chronic pain. Behav Brain Res 2025; 485:115537. [PMID: 40086636 DOI: 10.1016/j.bbr.2025.115537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE The treatment of neuropathic pain is crucial, as it not only alleviates physical discomfort but also reduces anxiety associated with pain, ultimately enhancing the quality of life for affected individuals. This study investigates the protective effects of hydro-alcoholic extracts from Eryngium billardieri (Er) and Urtica dioica (Ur) on neuropathic pain and anxiety responses in an animal model. METHODS 40 male Wistar rats were used to investigate neuropathy induced by the chronic constriction injury (CCI) model. Animals were divided into five experimental groups (N = 8): [sham], [CCI], [CCI+Er], [CCI+Ur], and [CCI+Imipramine]. Er and Ur were administered orally for 30 days, starting on the day of surgery. Behavioral tests, including acetone for cold allodynia, the elevated plus maze for anxiety-like behaviors, and the open field for innate anxiety, were conducted on day -1 (before CCI) and on days 2, 4, 6, 14, 21, and 30. Data were analyzed by one-way analysis of variance test, and P < 0.05 was considered significant. RESULTS Neuropathic surgery resulted in cold allodynia and anxiety-like behaviors throughout the experiment as compared to the sham. Er extract significantly decreased both cold allodynia and anxiety-like behaviors in the CCI group. However, Ur extract only significantly reduced cold allodynia (and not anxiety-like behaviors). Additionally, there was no difference between the analgesic effects of Er and Ur extracts. CONCLUSIONS These findings support the use of Er as a potential comprehensive treatment for neuropathic pain and anxiety symptoms. Future research should focus on exploring the specific mechanisms behind these effects and the potential for synergistic treatments to improve outcomes for individuals suffering from neuropathy.
Collapse
Affiliation(s)
| | - Zahra Bahari
- Department of Physiology and Biophysics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Mashhadi Akbar Boojar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ling L, Luo M, Yin H, Tian Y, Wang T, Zhang B, Yin L, Zhang Y, Bian J. Sinomenine Ameliorated Microglial Activation and Neuropathic Pain After Chronic Constriction Injury Via TGF-β1/ALK5/Smad3 Signalling Pathway. J Cell Mol Med 2024; 28:e70214. [PMID: 39586784 PMCID: PMC11588427 DOI: 10.1111/jcmm.70214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
Sinomenine (SIN), a bioactive isoquinoline alkaloid extracted from the roots and stems of Sinomenium acutum, is efficacious against various chronic pain conditions. Inhibition of microglial activation at the spinal level contributes to the analgesic effects of SIN. Microglial activation in the spinal dorsal horn is key to sensitising neuropathic pain. Consequently, this study aimed to investigate whether the antinociceptive effects of SIN in neuropathic pain are induced through microglial inhibition and the underlying mechanisms. In this study, we observed that SIN alleviated chronic constriction injury (CCI)-induced pain hypersensitivity, spinal microglial activation and neuroinflammation. Consistently, SIN evoked the upregulation of transforming growth factor-beta1 (TGF-β1) and phosphorylated Smad3 in the L4-6 ipsilateral spinal dorsal horn of CCI mice. Intrathecal injection of TGF-β1 siRNA and an activin receptor-like receptor (ALK5) inhibitor reversed SIN's antinociceptive and antimicroglial effects on CCI mice. Moreover, targeting Smad3 in vitro with siRNA dampened the inhibitory effect of TGF-β1 on lipopolysaccharide-induced microglial activation. Finally, targeting Smad3 abrogated SIN-induced pain relief and microglial inhibition in CCI mice. These findings indicate that the TGF-β1/ALK5/Smad3 axis plays a key role in the antinociceptive effects of SIN on neuropathic pain, indicating its suppressive ability on microglia.
Collapse
Affiliation(s)
- Ling Ling
- Department of AnesthesiologyPanzhihua Central HospitalPanzhihuaSichuanChina
| | - Min Luo
- The Third Affiliated Hospital of Zunyi Medical UniversityThe First People's Hospital of ZunyiZunyiGuizhouChina
| | - Haolin Yin
- Department of AnesthesiologySchool of Clinic Medicine, Tsinghua UniversityBeijingChina
| | - Yunyun Tian
- Scientific Research and Discipline Construction OfficePanzhihua Central HospitalPanzhihuaSichuanChina
| | - Tao Wang
- Department of Anesthesiology, School of Clinic MedicineNorth Sichuan Medical UniversityNanchongSichuanChina
| | - Bangjian Zhang
- Department of AnesthesiologyPanzhihua Central HospitalPanzhihuaSichuanChina
| | - Li Yin
- Scientific Research and Discipline Construction OfficePanzhihua Central HospitalPanzhihuaSichuanChina
| | - Yuehui Zhang
- Department of NeurologyPanzhihua Central HospitalPanzhihuaSichuanChina
| | - Jiang Bian
- Department of AnesthesiologyPanzhihua Central HospitalPanzhihuaSichuanChina
| |
Collapse
|
3
|
Khan J, Ali G, Saeed A, Khurshid A, Ahmad S, Kashtoh H, Ataya FS, Bathiha GES, Ullah A, Khan A. Efficacy assessment of novel methanimine derivatives in chronic constriction injury-induced neuropathic model: An in-vivo, ex-vivo and In-Silico approach. Eur J Pharm Sci 2024; 198:106797. [PMID: 38735401 DOI: 10.1016/j.ejps.2024.106797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The multicomponent etiology, complex clinical implications, dose-based side effect and degree of pain mitigation associated with the current pharmacological therapy is incapable in complete resolution of chronic neuropathic pain patients which necessitates the perpetual requirement of novel medication therapy. Therefore, this study explored the ameliorative aptitude of two novel methanimine imitative like (E)-N-(4-nitrobenzylidene)-4‑chloro-2-iodobenzamine (KB 09) and (E)-N-(4-methylbenzylidene)-4‑chloro-2-iodobenzamine (KB 10) in chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rat model. Standard behavioral tests like dynamic and static allodynia, cold, thermal and mechanical hyperalgesia along with rotarod activity were performed at various experimental days like 0, 3, 7, 14 and 21. Enzyme linked immunosorbent assay (ELISA) on spinal tissue and antioxidant assays on sciatic nerve were executed accompanied by molecular docking and simulation studies. Prolonged ligation of sciatic nerve expressively induced hyperalgesia as well as allodynia in rats. KB 09 and KB 10 substantially attenuated the CCI elicited hyperalgesia and allodynia. They significantly reduced the biomarkers of pain and inflammation like Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in ELISA and while enhanced the GSH, SOD and CAT and diminished the MDA levels during antioxidant assays. KB 09 displayed -9.62 kcal/mol with TNF-α and -7.68 kcal/mol binding energy with IL-6 whereas KB 10 exhibited binding energy of -8.20 kcal/mol with IL-6 while -11.68 kcal/mol with TNF-α and hence both trial compounds ensured stable interaction with IL-6 and TNF-α during computational analysis. The results advocated that both methanimine derivatives might be novel candidates for attenuation of CCI-induced neuropathic pain prospects via anti-nociceptive, anti-inflammatory and antioxidant mechanisms.
Collapse
Affiliation(s)
- Jawad Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320, Pakistan
| | - Asma Khurshid
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320, Pakistan.
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University Peshawar 25000, Pakistan
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Korea.
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Gaber El-Saber Bathiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheria, Egypt
| | - Aman Ullah
- Department of Pharmacy, Saba Medical Center, Abu Dhabi PO Box 20316, United Arab Emirates
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| |
Collapse
|
4
|
Schafer RM, Giancotti LA, Davis DJ, Larrea IG, Farr SA, Salvemini D. Behavioral characterization of G-protein-coupled receptor 160 knockout mice. Pain 2024; 165:1361-1371. [PMID: 38198232 PMCID: PMC11090760 DOI: 10.1097/j.pain.0000000000003136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/23/2023] [Indexed: 01/12/2024]
Abstract
ABSTRACT Neuropathic pain is a devastating condition where current therapeutics offer little to no pain relief. Novel nonnarcotic therapeutic targets are needed to address this growing medical problem. Our work identified the G-protein-coupled receptor 160 (GPR160) as a potential target for therapeutic intervention. However, the lack of small-molecule ligands for GPR160 hampers our understanding of its role in health and disease. To address this void, we generated a global Gpr160 knockout (KO) mouse using CRISPR-Cas9 genome editing technology to validate the contributions of GPR160 in nociceptive behaviors in mice. Gpr160 KO mice are healthy and fertile, with no observable physical abnormalities. Gpr160 KO mice fail to develop behavioral hypersensitivities in a model of neuropathic pain caused by constriction of the sciatic nerve. On the other hand, responses of Gpr160 KO mice in the hot-plate and tail-flick assays are not affected. We recently deorphanized GPR160 and identified cocaine- and amphetamine-regulated transcript peptide (CARTp) as a potential ligand. Using Gpr160 KO mice, we now report that the development of behavioral hypersensitivities after intrathecal or intraplantar injections of CARTp are dependent on GPR160. Cocaine- and amphetamine-regulated transcript peptide plays a role in various affective behaviors, such as anxiety, depression, and cognition. There are no differences in learning, memory, and anxiety between Gpr160 KO mice and their age-matched and sex-matched control floxed mice. Results from these studies support the pronociceptive roles of CARTp/GPR160 and GPR160 as a potential therapeutic target for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Rachel M Schafer
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| | - Luigino A Giancotti
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| | - Daniel J Davis
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Ivonne G Larrea
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| | - Susan A Farr
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
- Department of Internal Medicine-Geriatrics, Saint Louis School of Medicine, St. Louis, MO, USA
- VA Medical Center, St Louis. MO 63106, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Chen JTC, Hu X, Otto IUC, Schürger C, von Bieberstein BR, Doppler K, Krug SM, Hankir MK, Blasig R, Sommer C, Brack A, Blasig IE, Rittner HL. Myelin barrier breakdown, mechanical hypersensitivity, and painfulness in polyneuropathy with claudin-12 deficiency. Neurobiol Dis 2023; 185:106246. [PMID: 37527762 DOI: 10.1016/j.nbd.2023.106246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The blood-nerve and myelin barrier shield peripheral neurons and their axons. These barriers are sealed by tight junction proteins, which control the passage of potentially noxious molecules including proinflammatory cytokines via paracellular pathways. Peripheral nerve barrier breakdown occurs in various neuropathies, such as chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and traumatic neuropathy. Here, we studied the functional role of the tight junction protein claudin-12 in regulating peripheral nerve barrier integrity and CIDP pathogenesis. METHODS Sections from sural nerve biopsies from 23 patients with CIDP and non-inflammatory idiopathic polyneuropathy (PNP) were analyzed for claudin-12 and -19 immunoreactivity. Cldn12-KO mice were generated and subjected to the chronic constriction injury (CCI) model of neuropathy. These mice were then characterized using a battery of barrier and behavioral tests, histology, immunohistochemistry, and mRNA/protein expression. In phenotype rescue experiments, the proinflammatory cytokine TNFα was neutralized with the anti-TNFα antibody etanercept; the peripheral nerve barrier was stabilized with the sonic hedgehog agonist smoothened (SAG). RESULTS Compared to those without pain, patients with painful neuropathy exhibited reduced claudin-12 expression independently of fiber loss. Accordingly, global Cldn12-KO in male mice, but not fertile female mice, selectively caused mechanical allodynia associated with a leaky myelin barrier, increased TNFα, decreased sonic hedgehog (SHH), and loss of small axons accompanied by reduced peripheral myelin protein 22 (Pmp22). Other barriers and neurological functions remained intact. The Cldn12-KO phenotype could be rescued either by neutralizing TNFα with etanercept or stabilizing the barrier with SAG, which both also upregulated the Schwann cell barrier proteins Cldn19 and Pmp22. CONCLUSION These results point to a critical role for claudin-12 in maintaining the myelin barrier presumably via Pmp22 and highlight restoration of the hedgehog pathway as a potential treatment strategy for painful inflammatory neuropathy.
Collapse
Affiliation(s)
- Jeremy Tsung-Chieh Chen
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Xiawei Hu
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Isabel U C Otto
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Christina Schürger
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Bruno Rogalla von Bieberstein
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Kathrin Doppler
- University Hospital Würzburg, Department of Neurology, 97080 Würzburg, Germany
| | - Susanne M Krug
- Charité-Universitätsmedizin Berlin, Clinical Physiology/Nutritional Medicine, 13125 Berlin, Germany
| | - Mohammed K Hankir
- University Hospital Würzburg, Department of General, Transplantation, Visceral, Vascular and Pediatric Surgery, 97080 Würzburg, Germany
| | - Rosel Blasig
- Leibnitz Institute of Molecular Pharmacology, Departments of Molecular Physiology and Cell Biology, 13125 Berlin, Germany
| | - Claudia Sommer
- University Hospital Würzburg, Department of Neurology, 97080 Würzburg, Germany
| | - Alexander Brack
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Ingolf E Blasig
- Leibnitz Institute of Molecular Pharmacology, Departments of Molecular Physiology and Cell Biology, 13125 Berlin, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany.
| |
Collapse
|
6
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
7
|
Wang Q, Li HY, Ling ZM, Chen G, Wei ZY. Inhibition of Schwann cell pannexin 1 attenuates neuropathic pain through the suppression of inflammatory responses. J Neuroinflammation 2022; 19:244. [PMID: 36195881 PMCID: PMC9531429 DOI: 10.1186/s12974-022-02603-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuropathic pain is still a challenge for clinical treatment as a result of the comprehensive pathogenesis. Although emerging evidence demonstrates the pivotal role of glial cells in regulating neuropathic pain, the role of Schwann cells and their underlying mechanisms still need to be uncovered. Pannexin 1 (Panx 1), an important membrane channel for the release of ATP and inflammatory cytokines, as well as its activation in central glial cells, contributes to pain development. Here, we hypothesized that Schwann cell Panx 1 participates in the regulation of neuroinflammation and contributes to neuropathic pain. METHODS A mouse model of chronic constriction injury (CCI) in CD1 adult mice or P0-Cre transgenic mice, and in vitro cultured Schwann cells were used. Intrasciatic injection with Panx 1 blockers or the desired virus was used to knock down the expression of Panx 1. Mechanical and thermal sensitivity was assessed using Von Frey and a hot plate assay. The expression of Panx 1 was measured using qPCR, western blotting, and immunofluorescence. The production of cytokines was monitored through qPCR and enzyme-linked immunosorbent assay (ELISA). Panx1 channel activity was detected by ethidium bromide (EB) uptake. RESULTS CCI induced persistent neuroinflammatory responses and upregulation of Panx 1 in Schwann cells. Intrasciatic injection of Panx 1 blockers, carbenoxolone (CBX), probenecid, and Panx 1 mimetic peptide (10Panx) effectively reduced mechanical and heat hyperalgesia. Probenecid treatment of CCI-induced mice significantly reduced Panx 1 expression in Schwann cells, but not in dorsal root ganglion (DRG). In addition, Panx 1 knockdown in Schwann cells with Panx 1 shRNA-AAV in P0-Cre mice significantly reduced CCI-induced neuropathic pain. To determine whether Schwann cell Panx 1 participates in the regulation of neuroinflammation and contributes to neuropathic pain, we evaluated its effect in LPS-treated Schwann cells. We found that inhibition of Panx 1 via CBX and Panx 1-siRNA effectively attenuated the production of selective cytokines, as well as its mechanism of action being dependent on both Panx 1 channel activity and its expression. CONCLUSION In this study, we found that CCI-related neuroinflammation correlates with Panx 1 activation in Schwann cells, indicating that inhibition of Panx 1 channels in Schwann cells reduces neuropathic pain through the suppression of neuroinflammatory responses.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Han-Yang Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhuo-Min Ling
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China.,Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China. .,Medical School of Nantong University, Nantong, 226001, Jiangsu, China. .,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
8
|
Sun C, Wu G, Zhang Z, Cao R, Cui S. Protein Tyrosine Phosphatase Receptor Type D Regulates Neuropathic Pain After Nerve Injury via the STING-IFN-I Pathway. Front Mol Neurosci 2022; 15:859166. [PMID: 35493326 PMCID: PMC9047945 DOI: 10.3389/fnmol.2022.859166] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Neuropathic pain is usually caused by injury or dysfunction of the somatosensory system, and medicine is a common way of treatment. Currently, there are still no satisfactory drugs, like opioids and lidocaine, which carry a high risk of addiction. Protein tyrosine phosphatase receptor type D (PTPRD) is a known therapeutic target in addiction pathways and small molecule inhibitors targeting it, such as 7-butoxy illudalic acid analog (7-BIA), have recently been developed to tackle addition. PTPRD is also upregulated in the dorsal root ganglion (DRG) in a rat model of neuropathic pain, but is not yet clear whether PTPRD contributes to the development of neuropathic pain. Here, we established a chronic constriction injury (CCI) and evaluated PTPRD expression and its association with neuropathic pain. PTPRD expression was found to gradually increase after CCI in DRGs, and its expression was concomitant with the progressive development of hypersensitivity as assessed by both mechanical and thermal stimuli. Both PTPRD knockdown and administration of PTPRD inhibitor 7-BIA alleviated CCI-induced neuropathic pain while upregulating STING and IFN-α in the DRG. Treatment with H-151, a STING inhibitor, abolished the analgesic effects of PTPRD knockdown. Taken together, our study suggests that increased levels of PTPRD in the DRG following CCI are involved in the development of neuropathic pain via the STING-IFN-I pathway. 7-BIA, a small molecule inhibitor of PTPRD with anti-addiction effects, may represent a novel and safe therapeutic strategy for the clinical management of neuropathic pain without the risk of addiction.
Collapse
|
9
|
Kasanetz F, Nevian T. Increased burst coding in deep layers of the ventral anterior cingulate cortex during neuropathic pain. Sci Rep 2021; 11:24240. [PMID: 34930957 PMCID: PMC8688462 DOI: 10.1038/s41598-021-03652-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022] Open
Abstract
Neuropathic pain induces changes in neuronal excitability and synaptic connectivity in deep layers of the anterior cingulate cortex (ACC) that play a central role in the sensory, emotional and affective consequences of the disease. However, how this impacts ACC in vivo activity is not completely understood. Using a mouse model, we found that neuropathic pain caused an increase in ACC in vivo activity, as measured by the indirect activity marker c-Fos and juxtacellular electrophysiological recordings. The enhanced firing rate of ACC neurons in lesioned animals was based on a change in the firing pattern towards bursting activity. Despite the proportion of ACC neurons recruited by noxious stimuli was unchanged during neuropathic pain, responses to noxious stimuli were characterized by increased bursting. Thus, this change in coding pattern may have important implications for the processing of nociceptive information in the ACC and could be of great interest to guide the search for new treatment strategies for chronic pain.
Collapse
Affiliation(s)
- Fernando Kasanetz
- Department of Physiology, University of Bern, Bühlplatz 5, 3012, Bern, Switzerland.
- Grupo de Neurociencias de Sistemas, IFIBIO Houssay - CONICET, Universidad de Buenos Aires, Paraguay 2155 piso 7, (1121), Buenos Aires, Argentina.
| | - Thomas Nevian
- Department of Physiology, University of Bern, Bühlplatz 5, 3012, Bern, Switzerland.
| |
Collapse
|
10
|
Ghasemzadeh Z, Seddighfar M, Alijanpour S, Rezayof A. Ventral tegmental area serotonin 5-HT 1A receptors and corticolimbic cFos/BDNF/GFAP signaling pathways mediate dextromethorphan/morphine anti-allodynia. Physiol Behav 2021; 239:113522. [PMID: 34242672 DOI: 10.1016/j.physbeh.2021.113522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/10/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
AIMS The present study examined the role of ventral tegmental area (VTA) serotonergic 5HT1A receptors in dextromethorphan/morphine-induced anti-allodynia and the possible changes of corticolimbic cFos, brain-derived neurotrophic factor (BDNF), and glial fibrillary acidic protein (GFAP) following the treatments. MATERIALS AND METHODS The VTA cannulation and the chronic constriction of the sciatic nerve were performed in male Wistar rats. Flexion withdrawal thresholds to mechanical stimulation in the hind-limb were determined using von Frey hairs. The expressions of cFos, BDNF, and GFAP were evaluated using the Western blotting technique. KEY FINDINGS BDNF (in the hippocampus), and GFAP (in the targeted sites) levels were increased following neuropathic pain. Morphine administration induced an anti-allodynic effect with a decrease in the amygdala BDNF level. Dextromethorphan/morphine-induced anti-allodynia was accompanied by the decrease of hippocampus/amygdala/PFC GFAP and amygdala cFos expressions. The PFC BDNF expression level was increased in dextromethorphan/morphine-treated rats. Intra-VTA microinjection of (S)-WAY100135 (1 µg/rat), a selective 5-HT1A receptor antagonist, inhibited the anti-allodynic effect of dextromethorphan/morphine. This treatment increased the cFos level in the hippocampus and the amygdala while decreased the PFC level of cFos. The hippocampal BDNF expression was significantly increased, while the amygdala and the PFC expressions of BDNF were decreased under treatment. (S)-WAY100135 plus dextromethorphan/morphine increased the hippocampal/amygdala and PFC levels of GFAP. SIGNIFICANCE These findings indicate that dextromethorphan could potentiate the analgesic effect of morphine via the implication of the VTA serotonin 5-HT1A receptors. It seems that the changes in the corticolimbic cFos/BDNF/GFAP signaling pathway may be involved in the observed anti-allodynic effect.
Collapse
Affiliation(s)
- Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Seddighfar
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Discrepancy in the Usage of GFAP as a Marker of Satellite Glial Cell Reactivity. Biomedicines 2021; 9:biomedicines9081022. [PMID: 34440226 PMCID: PMC8391720 DOI: 10.3390/biomedicines9081022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Satellite glial cells (SGCs) surrounding the neuronal somas in peripheral sensory ganglia are sensitive to neuronal stressors, which induce their reactive state. It is believed that such induced gliosis affects the signaling properties of the primary sensory neurons and is an important component of the neuropathic phenotype leading to pain and other sensory disturbances. Efforts to understand and manipulate such gliosis relies on reliable markers to confirm induced SGC reactivity and ultimately the efficacy of targeted intervention. Glial fibrillary acidic protein (GFAP) is currently the only widely used marker for such analyses. However, we have previously described the lack of SGC upregulation of GFAP in a mouse model of sciatic nerve injury, suggesting that GFAP may not be a universally suitable marker of SGC gliosis across species and experimental models. To further explore this, we here investigate the regulation of GFAP in two different experimental models in both rats and mice. We found that whereas GFAP was upregulated in both rodent species in the applied inflammation model, only the rat demonstrated increased GFAP in SGCs following sciatic nerve injury; we did not observe any such GFAP upregulation in the mouse model at either protein or mRNA levels. Our results demonstrate an important discrepancy between species and experimental models that prevents the usage of GFAP as a universal marker for SGC reactivity.
Collapse
|
12
|
Keay KA, Argueta MA, Zafir DN, Wyllie PM, Michael GJ, Boorman DC. Evidence that increased cholecystokinin (CCK) in the periaqueductal gray (PAG) facilitates changes in Resident-Intruder social interactions triggered by peripheral nerve injury. J Neurochem 2021; 158:1151-1171. [PMID: 34287873 DOI: 10.1111/jnc.15476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Abstract
Individual differences in the effects of a chronic neuropathic injury on social behaviours characterize both the human experience and pre-clinical animal models. The impacts of these changes to the well-being of the individual are often underappreciated. Earlier work from our laboratory using GeneChip® microarrays identified increased cholecystokinin (CCK) gene expression in the periaqueductal gray (PAG) of rats that showed persistent changes in social interactions during a Resident-Intruder encounter following sciatic nerve chronic constriction injury (CCI). In this study, we confirmed these gene regulation patterns using RT-PCR and identified the anatomical location of the CCK-mRNA as well as the translated CCK peptides in the midbrains of rats with a CCI. We found that rats with persistent CCI-induced changes in social behaviours had increased CCK-mRNA in neurons of the ventrolateral PAG and dorsal raphe nuclei, as well as increased CCK-8 peptide expression in terminal boutons located in the lateral and ventrolateral PAG. The functional significance of these changes was explored by microinjecting small volumes of CCK-8 into the PAG of uninjured rats and observing their Resident-Intruder social interactions. Disturbances to social interactions identical to those observed in CCI rats were evoked when injection sites were located in the rostral lateral and ventrolateral PAG. We suggest that CCI-induced changes in CCK expression in these PAG regions contributes to the disruptions to social behaviours experienced by a subset of individuals with neuropathic injury.
Collapse
Affiliation(s)
- Kevin A Keay
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales, Australia
| | - Manuel A Argueta
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales, Australia
| | - Daniel N Zafir
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales, Australia
| | - Peter M Wyllie
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales, Australia
| | - Gregory J Michael
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Damien C Boorman
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Kankowski S, Grothe C, Haastert-Talini K. Neuropathic pain: Spotlighting anatomy, experimental models, mechanisms, and therapeutic aspects. Eur J Neurosci 2021; 54:4475-4496. [PMID: 33942412 DOI: 10.1111/ejn.15266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
The International Association for the Study of Pain defines neuropathic pain as "pain arising as a direct consequence of a lesion or disease affecting the somatosensory system". The associated changes can be observed in the peripheral as well as the central nervous system. The available literature discusses a wide variety of causes as predisposing for the development and amplification of neuropathic pain. Further, key interactions within sensory pathways have been discovered, but no common molecular mechanism leading to neuropathic pain has been identified until now. In the first part of this review, the pain mediating lateral spinothalamic tract is described. Different in vivo models are presented that allow studying trauma-, chemotherapy-, virus-, and diabetes-induced neuropathic pain in rodents. We furthermore discuss approaches to assess neuropathic pain in these models. Second, the current knowledge about cellular and molecular mechanisms suggested to underlie the development of neuropathic pain is presented and discussed. A summary of established therapies that are already applied in the clinic and novel, promising approaches closes the paper. In conclusion, the established animal models are able to emulate the diversity of neuropathic pain observed in the clinics. However, the assessment of neuropathic pain in the presented in vivo models should be improved. The determination of common molecular markers with suitable in vitro models would simplify the assessment of neuropathic pain in vivo. This would furthermore provide insights into common molecular mechanisms of the disease and establish a basis to search for satisfying therapeutic approaches.
Collapse
Affiliation(s)
- Svenja Kankowski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany.,Center for Systems Neuroscience (ZNS) Hannover, Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany.,Center for Systems Neuroscience (ZNS) Hannover, Hannover, Germany
| |
Collapse
|
14
|
Bryk M, Karnas E, Mlost J, Zuba-Surma E, Starowicz K. Mesenchymal stem cells and extracellular vesicles for the treatment of pain: Current status and perspectives. Br J Pharmacol 2021; 179:4281-4299. [PMID: 34028798 DOI: 10.1111/bph.15569] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent progenitor cells of mesodermal origin. Due to their capacity for self-renewal and differentiation into several cell types, MSCs have been extensively studied in experimental biology and regenerative medicine in recent years. Moreover, MSCs release extracellular vesicles (EVs), which might be partly responsible for their regenerative properties. MSCs regulate several processes in target cells via paracrine signalling, such as immunomodulation, anti-apoptotic signalling, tissue remodelling, angiogenesis and anti-fibrotic signalling. The aim of this review is to provide a detailed description of the functional properties of MSCs and EVs and their potential clinical applications, with a special focus on pain treatment. The analgesic, anti-inflammatory and regenerative properties of MSCs and EVs will be discussed for several diseases, such as neuropathic pain, osteoarthritis and spinal cord injury.
Collapse
Affiliation(s)
- Marta Bryk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jakub Mlost
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
15
|
Shahid M, Subhan F, Islam NU, Ahmad N, Farooq U, Abbas S, Akbar S, Ullah I, Raziq N, Din ZU. The antioxidant N-(2-mercaptopropionyl)-glycine (tiopronin) attenuates expression of neuropathic allodynia and hyperalgesia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:603-617. [PMID: 33079239 DOI: 10.1007/s00210-020-01995-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
The current pharmacotherapy of neuropathic pain is inadequate as neuropathic pain involves varied clinical manifestations with multifactorial etiology, modulated by a cascade of physical and molecular events leading to different clinical presentations of pain. There is an accumulating evidence of the involvement of oxidative stress in neuropathy, and antioxidants have shown promise in mitigating neuropathic pain syndromes. To explore the evidence supporting this beneficial proclivity of antioxidants, this study investigated the antinociceptive effectiveness of N-(2-mercaptopropionyl)glycine or tiopronin, a well-recognized aminothiol antioxidant, in a refined chronic constriction injury (CCI) rat model of neuropathic pain. Tiopronin (10, 30, and 90 mg/kg, i.p.) and pregabalin (30 mg/kg, i.p.) were administered daily after CCI surgery. The neuropathic paradigms of mechanical/cold allodynia and mechanical/heat hyperalgesia were assessed on days 3, 7, 14, and 21 post-nerve ligation. At the end of study, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels were estimated in the sciatic nerve, dorsal root ganglion, and spinal cord for assessing the extent of oxidative stress. The expression of neuropathic nociception was attenuated by tiopronin which was observed as a significant attenuation of CCI-induced allodynia and hyperalgesia. Tiopronin reversed the neuronal oxidative stress by significantly reducing MDA, and increasing SOD, CAT, and GSH levels. Pregabalin also showed similar beneficial propensity on CCI-induced neuropathic aberrations. These findings suggest prospective neuropathic pain attenuating efficacy of tiopronin and further corroborated the notion that antioxidants are effective in mitigating the development and expression of neuropathic pain and underlying neuronal oxidative stress.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan.
| | - Fazal Subhan
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan.
| | - Nazar Ul Islam
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Nisar Ahmad
- Faculty of Pharmacy, National University of Pakistan, Sialkot, Punjab, Pakistan
| | - Umar Farooq
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Sudhair Abbas
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Shehla Akbar
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Ihsan Ullah
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Naila Raziq
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Zia Ud Din
- Department of Anatomy, Khyber Medical College, Peshawar, Pakistan
| |
Collapse
|
16
|
Gopalsamy B, Chia JSM, Farouk AAO, Sulaiman MR, Perimal EK. Zerumbone-Induced Analgesia Modulated via Potassium Channels and Opioid Receptors in Chronic Constriction Injury-Induced Neuropathic Pain. Molecules 2020; 25:molecules25173880. [PMID: 32858809 PMCID: PMC7503342 DOI: 10.3390/molecules25173880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Zerumbone, a monocyclic sesquiterpene from the wild ginger plant Zingiber zerumbet (L.) Smith, attenuates allodynia and hyperalgesia. Currently, its mechanisms of action in neuropathic pain conditions remain unclear. This study examines the involvement of potassium channels and opioid receptors in zerumbone-induced analgesia in a chronic constriction injury (CCI) neuropathic pain mice model. Male Institute of Cancer Research (ICR) mice were subjected to CCI and behavioral responses were tested on day 14. Responses toward mechanical allodynia and thermal hyperalgesia were tested with von Frey's filament and Hargreaves' tests, respectively. Symptoms of neuropathic pain were significantly alleviated following treatment with zerumbone (10 mg/kg; intraperitoneal, i.p.). However, when the voltage-dependent K+ channel blocker tetraethylammonium (TEA, 4 mg/kg; i.p.), ATP-sensitive K+ channel blocker, glibenclamide (GLIB, 10 mg/kg; i.p.); small-conductance Ca2+-activated K+ channel inhibitor apamin (APA, 0.04 mg/kg; i.p.), or large-conductance Ca2+-activated K+ channel inhibitor charybdotoxin (CHAR, 0.02 mg/kg; i.p.) was administered prior to zerumbone (10 mg/kg; i.p.), the antiallodynic and antihyperalgesic effects of zerumbone were significantly reversed. Additionally, non-specific opioid receptors antagonist, naloxone (NAL, 10 mg/kg; i.p.), selective µ-, δ- and κ-opioid receptor antagonists; β-funaltrexamine (β-FN, 40 mg/kg; i.p.), naltrindole (20 mg/kg; s.c.), nor-binaltorphamine (10 mg/kg; s.c.) respectively attenuated the antiallodynic and antihyperalgesic effects of zerumbone. This outcome clearly demonstrates the participation of potassium channels and opioid receptors in the antineuropathic properties of zerumbone. As various clinically used neuropathic pain drugs also share this similar mechanism, this compound is, therefore, a highly potential substitute to these therapeutic options.
Collapse
Affiliation(s)
- Banulata Gopalsamy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (B.G.); (A.A.O.F.); (M.R.S.)
| | - Jasmine Siew Min Chia
- Centre for Community Health Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Ahmad Akira Omar Farouk
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (B.G.); (A.A.O.F.); (M.R.S.)
| | - Mohd Roslan Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (B.G.); (A.A.O.F.); (M.R.S.)
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (B.G.); (A.A.O.F.); (M.R.S.)
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide 5000, Australia
- Correspondence: ; Tel./Fax: +61-603-8947-2774
| |
Collapse
|
17
|
Chia JSM, Izham NAM, Farouk AAO, Sulaiman MR, Mustafa S, Hutchinson MR, Perimal EK. Zerumbone Modulates α 2A-Adrenergic, TRPV1, and NMDA NR2B Receptors Plasticity in CCI-Induced Neuropathic Pain In Vivo and LPS-Induced SH-SY5Y Neuroblastoma In Vitro Models. Front Pharmacol 2020; 11:92. [PMID: 32194397 PMCID: PMC7064019 DOI: 10.3389/fphar.2020.00092] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
Zerumbone has shown great potential in various pathophysiological models of diseases, particularly in neuropathic pain conditions. Further understanding the mechanisms of action is important to develop zerumbone as a potential anti-nociceptive agent. Numerous receptors and pathways function to inhibit and modulate transmission of pain signals. Previously, we demonstrated involvement of the serotonergic system in zerumbone's anti-neuropathic effects. The present study was conducted to determine zerumbone's modulatory potential involving noradrenergic, transient receptor potential vanilloid type 1 (TRPV1) and N-methyl-D-aspartate (NMDA) receptors in chronic constriction injury (CCI)-induced in vitro and lipopolysaccharide (LPS)-induced SH-SY5Y in vitro neuroinflammatory models. von Frey filament and Hargreaves plantar tests were used to assess allodynia and hyperalgesia in the chronic constriction injury-induced neuropathic pain mouse model. Involvement of specific adrenoceptors were investigated using antagonists- prazosin (α1-adrenoceptor antagonist), idazoxan (α2-adrenoceptor antagonist), metoprolol (β1-adrenoceptor antagonist), ICI 118,551 (β2-adrenoceptor antagonist), and SR 59230 A (β3-adrenoceptor antagonist), co-administered with zerumbone (10 mg/kg). Involvement of excitatory receptors; TRPV and NMDA were conducted using antagonists capsazepine (TRPV1 antagonist) and memantine (NMDA antagonist). Western blot was conducted to investigate the effect of zerumbone on the expression of α2A-adrenoceptor, TRPV1 and NMDA NR2B receptors in CCI-induced whole brain samples of mice as well as in LPS-induced SH-SY5Y neuroblastoma cells. Pre-treatment with α1- and α2-adrenoceptor antagonists significantly attenuated both anti-allodynic and anti-hyperalgesic effects of zerumbone. For β-adrenoceptors, only β2-adrenoceptor antagonist significantly reversed the anti-allodynic and anti-hyperalgesic effects of zerumbone. β1-adrenoceptor antagonist only reversed the anti-allodynic effect of zerumbone. The anti-allodynic and anti-hyperalgesic effects of zerumbone were both absent when TRPV1 and NMDA receptors were antagonized in both nociceptive assays. Zerumbone treatment markedly decreased the expression of α2A-adrenoceptor, while an up-regulation was observed of NMDA NR2B receptors. Expression of TRPV1 receptors however did not significantly change. The in vitro study, representing a peripheral model, demonstrated the reduction of both NMDA NR2B and TRPV1 receptors while significantly increasing α2A-adrenoceptor expression in contrast to the brain samples. Our current findings suggest that the α1-, α2-, β1- and β2-adrenoceptors, TRPV1 and NMDA NR2B are essential for the anti-allodynic and antihyperalgesic effects of zerumbone. Alternatively, we demonstrated the plasticity of these receptors through their response to zerumbone's administration.
Collapse
Affiliation(s)
- Jasmine Siew Min Chia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Centre for Community Health Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noor Aishah Mohammed Izham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ahmad Akira Omar Farouk
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sanam Mustafa
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mark R Hutchinson
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
| | - Enoch Kumar Perimal
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|