1
|
Sacher M, DeLoriea J, Mehranfar M, Casey C, Naaz A, Gamberi C. TANGO2 deficiency disease is predominantly caused by a lipid imbalance. Dis Model Mech 2024; 17:dmm050662. [PMID: 38836374 PMCID: PMC11179719 DOI: 10.1242/dmm.050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
TANGO2 deficiency disease (TDD) is a rare genetic disorder estimated to affect ∼8000 individuals worldwide. It causes neurodegeneration often accompanied by potentially lethal metabolic crises that are triggered by diet or illness. Recent work has demonstrated distinct lipid imbalances in multiple model systems either depleted for or devoid of the TANGO2 protein, including human cells, fruit flies and zebrafish. Importantly, vitamin B5 supplementation has been shown to rescue TANGO2 deficiency-associated defects in flies and human cells. The notion that vitamin B5 is needed for synthesis of the lipid precursor coenzyme A (CoA) corroborates the hypothesis that key aspects of TDD pathology may be caused by lipid imbalance. A natural history study of 73 individuals with TDD reported that either multivitamin or vitamin B complex supplementation prevented the metabolic crises, suggesting this as a potentially life-saving treatment. Although recently published work supports this notion, much remains unknown about TANGO2 function, the pathological mechanism of TDD and the possible downsides of sustained vitamin supplementation in children and young adults. In this Perspective, we discuss these recent findings and highlight areas for immediate scientific attention.
Collapse
Affiliation(s)
- Michael Sacher
- Department of Biology, Concordia University, Montreal H4B 1R6, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada
| | - Jay DeLoriea
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA
| | - Mahsa Mehranfar
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Canada
| | - Cody Casey
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA
| | - Aaliya Naaz
- Department of Biology, Concordia University, Montreal H4B 1R6, Canada
| | - Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA
| |
Collapse
|
2
|
Zhang G, Huang C, Wang R, Guo J, Qin Y, Lv S. Chondroprotective effects of Apolipoprotein D in knee osteoarthritis mice through the PI3K/AKT/mTOR signaling pathway. Int Immunopharmacol 2024; 133:112005. [PMID: 38626543 DOI: 10.1016/j.intimp.2024.112005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Because the pathophysiology of osteoarthritis (OA) has not been fully elucidated, targeted treatments are lacking. In this study, we assessed the role and underlying mechanism apolipoprotein D (APOD) on the development of OA. METHODS To establish an in vitro OA model, we extracted primary chondrocytes from the cartilage of C57BL/6 mice and stimulated the chondrocytes with IL-1β. After APOD intervention or incubation with an overexpressing plasmid, we detected inflammatory-related markers using RT-qPCR, Western blotting, and ELISA. To detect apoptosis and autophagy-related markers, we used flow cytometry, immunofluorescence, and transmission electron microscopy (TEM). Finally, we measured the level of oxidative stress. We also used RNA-seq to identify the APOD-regulated downstream signaling pathways. We used an in vivo mice OA model of the anterior cruciate ligament transection (ACLT) and administered intra-articular adenovirus overexpressing APOD. To examine cartilage damage severity, we used immunohistochemical analysis (IHC), micro-CT, scanning electron microscopy (SEM), and Safranin O-fast green staining. RESULTS Our results showed that APOD inhibited chondrocyte inflammation, degeneration, and apoptosis induced by IL-1β. Additionally, APOD reversed autophagy inhibition and oxidative stress and also blocked activation of the PI3K/AKT/mTOR signaling pathway induced by IL-1β. Finally, overexpression of the APOD gene through adenovirus was sufficient to mitigate OA progression. CONCLUSIONS Our findings revealed that APOD had a chondroprotective role in OA progression by the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; Department of Orthopedics, Harbin First Hospital, Harbin, Heilongjiang Province, China; Future Medical Laboratory of the Second Affiliated Hospital of Harbin Medical University, China
| | - Chao Huang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ren Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiangrong Guo
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yong Qin
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Songcen Lv
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
3
|
Saberi R, Mirazi N, Amirahmadi S, Darbandi ZK, Vafaee F, Rajabian A, Hosseini M. Ameliorative effects of thiamin on learning behavior and memory dysfunction in a rat model of hypothyroidism: implication of oxidative stress and acetylcholinesterase. Metab Brain Dis 2023; 38:2603-2613. [PMID: 37906392 DOI: 10.1007/s11011-023-01317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
Hypothyroidism causes learning and memory impairment. Considering the neuroprotective properties of thiamine (Vitamin B1), this study was conducted to investigate the effects of thiamine on acetylcholinesterase (AChE) activity, oxidative damage, and memory deficits in hypothyroid rats.In this study, 50 rats (21 days old) were randomly divided into 5 groups and treated with propylthiouracil (0.05% in drinking water) and thiamine (50, 100, and 200 mg/kg, oral) for 7 weeks. Following that, Morris water maze (MWM) and passive avoidance (PA) tests were performed. Finally, oxidative stress indicators and AChE activity were measured in brain tissue.Treatment of hypothyroid rats with thiamine, especially at 100 and 200 mg/kg, alleviated the ability to remember the location of the platform as reflected by less time spent and distance to reach the platform, during the MWM test (P < 0.05 to P < 0.001). In the PA test, the latency to enter the dark chamber and light stay time were increased in rats who received thiamine compared to the hypothyroid group (P < 0.05 to P < 0.001). In addition, thiamine increased the levels of total thiol groups and superoxide dismutase while decreasing the levels of malondialdehyde and AChE.Our results suggest that thiamine supplementation could effectively improve memory loss in a rat model of hypothyroidism. The positive effects of thiamin on the learning and memory of hypothyroid rats may be due to amelioration of redox hemostasis and cholinergic disturbance.
Collapse
Affiliation(s)
- Rasul Saberi
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Sabiheh Amirahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Kioumarsi Darbandi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Fyfe-Desmarais G, Desmarais F, Rassart É, Mounier C. Apolipoprotein D in Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:antiox12051027. [PMID: 37237893 DOI: 10.3390/antiox12051027] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Apolipoprotein D (ApoD) is lipocalin able to bind hydrophobic ligands. The APOD gene is upregulated in a number of pathologies, including Alzheimer's disease, Parkinson's disease, cancer, and hypothyroidism. Upregulation of ApoD is linked to decreased oxidative stress and inflammation in several models, including humans, mice, Drosophila melanogaster and plants. Studies suggest that the mechanism through which ApoD modulates oxidative stress and regulate inflammation is via its capacity to bind arachidonic acid (ARA). This polyunsaturated omega-6 fatty acid can be metabolised to generate large variety of pro-inflammatory mediators. ApoD serves as a sequester, blocking and/or altering arachidonic metabolism. In recent studies of diet-induced obesity, ApoD has been shown to modulate lipid mediators derived from ARA, but also from eicosapentaenoic acid and docosahexaenoic acid in an anti-inflammatory way. High levels of ApoD have also been linked to better metabolic health and inflammatory state in the round ligament of morbidly obese women. Since ApoD expression is upregulated in numerous diseases, it might serve as a therapeutic agent against pathologies aggravated by OS and inflammation such as many obesity comorbidities. This review will present the most recent findings underlying the central role of ApoD in the modulation of both OS and inflammation.
Collapse
Affiliation(s)
- Guillaume Fyfe-Desmarais
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Fréderik Desmarais
- Department of Medecine, Faculty of Medecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Éric Rassart
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Catherine Mounier
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| |
Collapse
|
5
|
Necroptosis mediated by receptor interacting protein kinase 3 as critical players in experimental congenital hypothyroidism related neuronal damage. North Clin Istanb 2021; 8:472-478. [PMID: 34909585 PMCID: PMC8630716 DOI: 10.14744/nci.2021.26043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/25/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Congenital hypothyroidism (CH) is literally described as congenital thyroid hormone imperfection. The primary objective of this research was to reveal the possible relation between receptor-acting protein kinase 3 (RIPK3) activity and neuronal damages in rat pups with CH. In addition, we evaluated the favorable impacts of 3.6-dibromo-α-([phenylamino] methyl)-9H-carbazole-9-ethanol (P7C3) reducing RIPK3 activity. METHODS Adult rats were accordingly assigned into four groups: Group 1, which is called congenital hypothyroid; Group 2, which is called congenital hypothyroid administered P7C3; Group 3, called CH administered P7C3 and L-thyroxine; and Group 4, control group. RIPK3 level in plasma concentration and its expression in tissue was determined in all groups. RESULTS Increased RIPK3 expressions were detected as high in the CH group when it is compared to the control group. Furthermore; the expressions in neuronal cytoplasm were found similar among Groups II and III. RIPK3 expressions in those two groups were relatively higher than in the control group. Most reacted parts of the brain were especially Purkinje cells in the cerebellum. CONCLUSION It is concluded that there is excellent parallelism among damaged neurons and high RIPK3 activity in CH pathogenesis. P7C3 compounds may have a safeguarding impact on CH due to decreasing RIPK3 activity.
Collapse
|
6
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
7
|
de Souza Cardoso J, Baldissarelli J, Reichert KP, Teixeira FC, Pereira Soares MS, Chitolina Schetinger MR, Morsch VM, Farias Martins Filho AO, Duarte Junior HR, Ribeiro Coriolano FH, Spanevello RM, Stefanello FM, Tavares RG. Neuroprotection elicited by resveratrol in a rat model of hypothyroidism: Possible involvement of cholinergic signaling and redox status. Mol Cell Endocrinol 2021; 524:111157. [PMID: 33421531 DOI: 10.1016/j.mce.2021.111157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
Both the cholinergic pathway and oxidative stress are important mechanisms involved in the pathogenesis of hypothyroidism, a condition characterized by low levels of thyroid hormone that predispose the patient to brain dysfunction. Phenolic compounds have numerous health benefits, including antioxidant activity. This study evaluates the preventive effects of resveratrol in the cholinergic system and redox status in rats with methimazole-induced hypothyroidism. Hypothyroidism increases acetylcholinesterase (AChE) activity and density in the cerebral cortex and hippocampus and decreases the α7 and M1 receptor densities in the hippocampus. Hypothyroidism also increases cellular levels of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS), but reduces total thiol content, and catalase and superoxide dismutase activities in the serum. In the cerebral cortex and hippocampus, hypothyroidism increases the levels of ROS and nitrites. In this study, resveratrol (50 mg/kg) treatment prevents the observed increase in AChE in the cerebral cortex, and increases the protein levels of NeuN, a marker of mature neurons. Resveratrol also prevents changes in serum ROS levels and brain structure, as well as the levels of TBARS, total thiol content, and serum catalase enzyme activity. These collective findings suggest that resveratrol has a high antioxidant capacity and can restore hypothyroidism-triggered alterations related to neurotransmission. Thus, it is a promising agent for the prevention of brain damage resulting from hypothyroidism.
Collapse
Affiliation(s)
- Juliane de Souza Cardoso
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário Capão do Leão s/n, Pelotas, RS, Brazil
| | - Jucimara Baldissarelli
- Departamento de Fisiologia e Farmacologia, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Pelotas, RS, Brazil
| | - Karine Paula Reichert
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Cardoso Teixeira
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Pelotas, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Pelotas, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário Capão do Leão s/n, Pelotas, RS, Brazil.
| | - Rejane Giacomelli Tavares
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário Capão do Leão s/n, Pelotas, RS, Brazil; CBIOS- Universidade Lusófona de Lisboa, Lisboa, Portugal
| |
Collapse
|
8
|
Andersen SL, Andersen S. Hyperthyroidism in pregnancy: evidence and hypothesis in fetal programming and development. Endocr Connect 2021; 10:R77-R86. [PMID: 33444223 PMCID: PMC7983517 DOI: 10.1530/ec-20-0518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
The management of hyperthyroidism in pregnant patients has been a topic of raised clinical awareness for decades. It is a strong recommendation that overt hyperthyroidism of Graves' disease in pregnant women should be treated to prevent complications. The consequences of hyperthyroidism in pregnancy are less studied than hypothyroidism, and a literature review illustrates that the main burden of evidence to support current clinical guidance emerges from early observations of severe complications in Graves' disease patients suffering from untreated hyperthyroidism in the pregnancy. On the other hand, the more long-term consequences in children born to mothers with hyperthyroidism are less clear. A hypothesis of fetal programming by maternal hyperthyroidism implies that excessive levels of maternal thyroid hormones impair fetal growth and development. Evidence from experimental studies provides clues on such mechanisms and report adverse developmental abnormalities in the fetal brain and other organs. Only few human studies addressed developmental outcomes in children born to mothers with hyperthyroidism and did not consistently support an association. In contrast, large observational human studies performed within the last decade substantiate a risk of teratogenic side effects to the use of antithyroid drugs in early pregnancy. Thus, scientific and clinical practice are challenged by the distinct role of the various exposures associated with Graves' disease including the hyperthyroidism per se, the treatment, and thyroid autoimmunity. More basic and clinical studies are needed to extend knowledge on the effects of each exposure, on the potential interaction between exposures and with other determinants, and on the underlying mechanisms.
Collapse
Affiliation(s)
- Stine Linding Andersen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Correspondence should be addressed to S L Andersen:
| | - Stig Andersen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Geriatrics, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
9
|
Pascua-Maestro R, Corraliza-Gomez M, Fadrique-Rojo C, Ledesma MD, Schuchman EH, Sanchez D, Ganfornina MD. Apolipoprotein D-mediated preservation of lysosomal function promotes cell survival and delays motor impairment in Niemann-Pick type A disease. Neurobiol Dis 2020; 144:105046. [PMID: 32798728 DOI: 10.1016/j.nbd.2020.105046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 12/31/2022] Open
Abstract
Lysosomal Storage Diseases (LSD) are genetic diseases causing systemic and nervous system dysfunction. The glia-derived lipid binding protein Apolipoprotein D (ApoD) is required for lysosomal functional integrity in glial and neuronal cells, ensuring cell survival upon oxidative stress or injury. Here we test whether ApoD counteracts the pathogenic consequences of a LSD, Niemann Pick-type-A disease (NPA), where mutations in the acid sphingomyelinase gene result in sphingomyelin accumulation, lysosomal permeabilization and early-onset neurodegeneration. We performed a multivariable analysis of behavioral, cellular and molecular outputs in 12 and 24 week-old male and female NPA model mice, combined with ApoD loss-of-function mutation. Lack of ApoD in NPA mice accelerates cerebellar-dependent motor deficits, enhancing loss of Purkinje neurons. We studied ApoD expression in brain sections from a NPA patient and age-matched control, and the functional consequences of ApoD supplementation in primary human fibroblasts from two independent NPA patients and two control subjects. Cell viability, lipid peroxidation, and lysosomal functional integrity (pH, Cathepsin B activity, Galectin-3 exclusion) were examined. ApoD is endogenously overexpressed in NPA patients and NPA mouse brains and targeted to lysosomes of NPA patient cells, including Purkinje neurons and cultured fibroblasts. The accelerated lysosomal targeting of ApoD by oxidative stress is hindered in NPA fibroblasts, contributing to NPA lysosomes vulnerability. Exogenously added ApoD reduces NPA-prompted lysosomal permeabilization and alkalinization, reverts lipid peroxides accumulation, and significantly increases NPA cell survival. ApoD administered simultaneously to sphingomyelin overload results in complete rescue of cell survival. Our results reveal that ApoD protection of lysosomal integrity counteracts NPA pathology. ApoD supplementation could significantly delay not only the progression of NPA disease, but also of other LSDs through its beneficial effects in lysosomal functional maintenance.
Collapse
Affiliation(s)
- Raquel Pascua-Maestro
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Miriam Corraliza-Gomez
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Cristian Fadrique-Rojo
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Maria D Ledesma
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | | | - Diego Sanchez
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain.
| | - Maria D Ganfornina
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain.
| |
Collapse
|
10
|
Rassart E, Desmarais F, Najyb O, Bergeron KF, Mounier C. Apolipoprotein D. Gene 2020; 756:144874. [PMID: 32554047 DOI: 10.1016/j.gene.2020.144874] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022]
Abstract
ApoD is a 25 to 30 kDa glycosylated protein, member of the lipocalin superfamily. As a transporter of several small hydrophobic molecules, its known biological functions are mostly associated to lipid metabolism and neuroprotection. ApoD is a multi-ligand, multi-function protein that is involved lipid trafficking, food intake, inflammation, antioxidative response and development and in different types of cancers. An important aspect of ApoD's role in lipid metabolism appears to involve the transport of arachidonic acid, and the modulation of eicosanoid production and delivery in metabolic tissues. ApoD expression in metabolic tissues has been associated positively and negatively with insulin sensitivity and glucose homeostasis in a tissue dependent manner. ApoD levels rise considerably in association with aging and neuropathologies such as Alzheimer's disease, stroke, meningoencephalitis, moto-neuron disease, multiple sclerosis, schizophrenia and Parkinson's disease. ApoD is also modulated in several animal models of nervous system injury/pathology.
Collapse
Affiliation(s)
- Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Frederik Desmarais
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada; Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Karl-F Bergeron
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Catherine Mounier
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|