1
|
Tamkini M, Nourbakhsh M, Movahedi M, Golestani A. Unveiling the role of miR-186 in SIRT1 regulation in adipocytes: implications for adipogenesis and inflammation in obesity. J Diabetes Metab Disord 2025; 24:42. [PMID: 39801683 PMCID: PMC11711434 DOI: 10.1007/s40200-024-01525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/19/2024] [Indexed: 01/16/2025]
Abstract
Objectives MicroRNAs (miRNAs) play a crucial role in the onset and progress of obesity. The inflammation of adipose tissue is deemed causative of the complications associated with obesity. This study delved into the potential mechanisms of miRNA-mediated SIRT1 regulation and inflammatory factors modulation in 3T3-L1 cells. Methods 3T3-L1 cells were differentiated into mature and hypertrophied adipocytes and the expression of selected miRNAs was evaluated by real-time PCR. 3T3-L1 cells were transfected with the mimic and inhibitor sequences of miR-186, together with the appropriate controls. Western blot analysis assessed the expression level of SIRT1 protein, and the interaction between miR-186 and SIRT1 was scrutinized through a luciferase reporter gene assay. Results Across all the mature and hypertrophied cells, the evaluated miRNAs exhibited a significant increase in expression, highlighting their involvement in fat accumulation at a cellular scale. Notably, miR-186-5p displayed the highest expression in differentiated cells and the hypertrophy model. Induction of miR-186 led to attenuation of SIRT1, while its inhibition by miR-186 inhibitor resulted in upregulation of SIRT1 expression. miR-186 caused a remarkable elevation in the expression of inflammatory genes, including IL-6, IL-1β, TNF-α, and MCP-1, indicating a noticeable pattern of relationship between miR-186-induced SIRT-1 inhibition and inflammation. Conclusions miR-186 emerges as a pivotal factor in amplifying inflammatory cytokines and down-regulates SIRT1, an effect that might highlight the involvement of SIRT1 in the inflammatory responses of adipocytes, as well as underscoring the crucial role of miR-186 in this process. These findings present miR-186 as a promising target for addressing health challenges related to obesity. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01525-0.
Collapse
Affiliation(s)
- Mahdieh Tamkini
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mitra Nourbakhsh
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Movahedi
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Abolfazl Golestani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Yang Y, Li C, Lu Z, Cao X, Wu Q. METTL3-mediated m6A Modification Promotes miR-221-3p Expression to Exacerbate Ischemia/Reperfusion-Induced Acute Lung Injury. J Biochem Mol Toxicol 2025; 39:e70235. [PMID: 40127211 DOI: 10.1002/jbt.70235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/19/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
Ischemia/reperfusion (I/R)-induced acute lung injury (ALI) represents a prevalent pulmonary pathology. The N6-methyladenosine (m6A) RNA modification is integral in regulating numerous biological processes across various human diseases through the modulation of gene expression. Nevertheless, the precise role and underlying molecular mechanisms of m6A modifications in ALI remain inadequately understood. This study aimed to elucidate the impact of RNA methyltransferase 3 (METTL3)-mediated m6A modification of miR-221-3p on the progression of I/R-induced ALI. Our initial findings demonstrated an upregulation of m6A levels and METTL3 expression in I/R-induced ALI in murine models and hypoxia/reoxygenation (H/R)-induced murine lung epithelial (MLE)-12 cells. Inhibition of METTL3 was observed to reverse H/R-induced apoptotic cell death, oxidative stress, and inflammatory cytokine secretion. Furthermore, METTL3 was found to enhance the expression of miR-221-3p in an m6A-dependent manner, thereby contributing to ALI pathogenesis. In addition, miR-221-3p was shown to negatively regulate PTEN expression, while METTL3 facilitated phosphorylated AKT expression via the miR-221-3p/PTEN axis. Functional experiments further revealed that the downregulation of PTEN negated the inhibitory effects of METTL3 knockdown in H/R-treated MLE-12 cells. In conclusion, our study demonstrates that the METTL3-mediated m6A modification of miR-221-3p exacerbates ALI through modulation of the PTEN/AKT pathway. Therapeutic strategies aimed at targeting the METTL3/m6A/miR-221-3p/PTEN/AKT axis may offer a promising approach to mitigate I/R-induced ALI.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chenlu Li
- Department of Nursing, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ziwang Lu
- Department of Cardiovascular Medicine, Bao Ji People's Hospital, Bao ji, Shaanxi, China
| | - Xiantong Cao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Liu J, Zhang L, Wang Z, Li H, Wang B, Liu X. Prognostic value of miR-190a-5p in renal cell cancer and its regulatory effect on tumor progression. Int J Biol Markers 2024; 39:310-318. [PMID: 39415706 DOI: 10.1177/03936155241290251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
PURPOSE As a usual malignant tumor in urinary system, renal cell cancer is regulated by microRNAs (miRNAs). This study revealed the prognostic value and regulatory effect of miR-190a-5p in renal cell cancer patients. METHODS A total of 253 renal cell cancer patients were included for prognostic value analysis. The target gene of miR-190a-5p was detected by luciferase reporter assay. Cell Counting Kit-8 analysis and Transwell analysis were performed to explore the proliferation, removal capability, and invasiveness of 786-0 and A498 cells. Prognostic value was calculated by Kaplan-Meier curve and Cox regression analysis. RESULTS miR-190a-5p was more down-regulated in tumor tissues than in adjacent tissues. Renal cell cancer cases were differed as low and high groups ground on mean miR-190a-5p expression in tumor tissues. Overall survival probability was obviously high in patients with high miR-190a-5p level (log-rank test P = 0.011). Cox regression analysis revealed that miR-190a-5p expression (relative risk (RR) = 1.751, 95% confidence interval (CI) = 1.057-2.900, P = 0.030) and tumor node metastasis stage (RR = 1.719, 95% CI = 1.059-2.792, P = 0.028) were specialty indicators for poor renal cell cancer prognosis. GDF11 was directly targeting miR-190a-5p. Overexpressed miR-190a-5p could reduce the GDF11 expression, proliferation, removal capability, and invasiveness of renal cell cancer 786-0 and A498 cells. Elevated GDF11 could lead to a changeover of proliferation, removal capability, and invasiveness inhibition, which is induced by miR-190a-5p. CONCLUSION miR-190a-5p was reduced in renal cell cancer tissues, and predicted worse outcomes of renal cell cancer cases. Overexpressed miR-190a-5p could restrain the proliferation, removal capability, and invasiveness of renal cell cancer cells via suppressing GDF11.
Collapse
Affiliation(s)
- Jun Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lili Zhang
- Department of Laboratory Medicine, Huxi Affiliated Hospital of Jining Medical College (Shanxian Central Hospital), Heze, China
| | - Zhancheng Wang
- Department of Urology, Huxi Affiliated Hospital of Jining Medical College (Shanxian Central Hospital), Heze, China
| | - Hu Li
- Department of Urology, Huxi Affiliated Hospital of Jining Medical College (Shanxian Central Hospital), Heze, China
| | - Bo Wang
- Department of Urology, Huxi Affiliated Hospital of Jining Medical College (Shanxian Central Hospital), Heze, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Peng J, Li Q, Liu L, Gao P, Xing L, Chen L, Liu H, Liu Z. Exploring the material basis and molecular targets of Changma Xifeng tablet in treating Tourette syndrome: an integrative approach of network pharmacology and miRNA analysis. Metab Brain Dis 2024; 39:1573-1590. [PMID: 39436634 DOI: 10.1007/s11011-024-01408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 10/23/2024]
Abstract
This study was to investigate the mechanism of Changma Xifeng tablet, a traditional Chinese medicine in the treatment of Tourette syndrome. Network pharmacology was utilized to pinpoint blood-entering constituents of Changma Xifeng and explore their potential targets. Additionally, differential microRNA expression analysis was conducted to predict Tourette syndrome-associated targets, complemented by molecular docking and dynamics simulations to support the interactions of the active compounds with these targets. The study identified 98 common targets between Changma Xifeng and Tourette syndrome, which may be involved in the treatment process. A protein-protein interaction network and a drug-active ingredient-disease target network highlighted the formulation's multi-component, multi-target therapeutic approach. Eight pivotal targets-AR, GRM5, MET, RORA, HTR2A, CNR1, PDE4B, and TOP1-were identified at the intersection of microRNA and drug targets. Molecular docking revealed 12 complexes with favorable binding energies below - 7 kcal/mol, specifically: AR with Alfacalcidol, TOP1 with Albiflorin, GRM5 with Arachidic Acid, GRM5 with Palmitic Acid, AR with Arachidic Acid, AR with 2-Hydroxyoctadecanoic Acid, RORA with Pinellic Acid, RORA with Palmitic Acid, AR with Acoronene, AR with Epiacoronene, AR with 4,4'-Methylenediphenol, and HTR2A with Calycosin. Our molecular docking and molecular dynamics simulations suggest potential stable interactions between the formulation's active components and target proteins. These computational methods provide a preliminary theoretical framework that will guide our future experimental work. The study provides a scientific rationale for the use of traditional Chinese medicine in Tourette syndrome management and offers new insights for drug development.
Collapse
Affiliation(s)
- Jing Peng
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiang'an District, Wuhan, Hubei, 430016, China.
| | - Qiaoling Li
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiang'an District, Wuhan, Hubei, 430016, China
| | - Linhui Liu
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiang'an District, Wuhan, Hubei, 430016, China
| | - Ping Gao
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiang'an District, Wuhan, Hubei, 430016, China
| | - Lipeng Xing
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiang'an District, Wuhan, Hubei, 430016, China
| | - Li Chen
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiang'an District, Wuhan, Hubei, 430016, China
| | - Hui Liu
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiang'an District, Wuhan, Hubei, 430016, China
| | - Zhisheng Liu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Liu Y, Zhao X, Long Q, Guo Z, Cao X, Wu X, Tu F, Zhang Y, You X, Shi X, Teng Z, Zeng Y. Investigating the role of miR-26b-5p and PTGS2 in schizophrenia treatment using Wendan decoction: Network pharmacology and experimental validation. Eur J Integr Med 2024; 69:102380. [DOI: 10.1016/j.eujim.2024.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
|
6
|
Li Y, Zhang C, Zhao Z. KNOCKDOWN OF CIRC_0114428 ALLEVIATES LPS-INDUCED HK2 CELL APOPTOSIS AND INFLAMMATION INJURY VIA TARGETING MIR-215-5P/TRAF6/NF-ΚB AXIS IN SEPTIC ACUTE KIDNEY INJURY. Shock 2024; 61:620-629. [PMID: 38010029 DOI: 10.1097/shk.0000000000002245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Background: Sepsis is a systemic inflammatory disease that can cause multiple organ damage. Circular RNAs (circRNAs) have been reported to play a regulatory role in sepsis-induced acute kidney injury (AKI); however, the role of circ_0114428 has not been studied. Methods: In this study, HK2 cells were treated with different concentrations of LPS to induce cell damage, and then the expressions of circ_0114428, microRNA-215-5p (miR-215-5p), and tumor necrosis factor receptor-associated factor 6 (TRAF6) were detected by quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot examined the Bax and cleaved-Caspase-3 proteins. Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and thymidine analog 5-ethynyl-2'-deoxyuridine (EdU) assay. In addition, cell apoptosis was detected by flow cytometry, and the levels of inflammatory factors were detected by enzyme-linked immunosorbent assay. Results: After LPS treatment with different concentrations, we found that LPS at 10 μg/mL had the best effect on HK2 cells. Circ_0114428 was highly expressed in sepsis-AKI patients and LPS-treated HK2 cells. Knockdown of circ_0114428 restored the effects of LPS treatment on proliferation, apoptosis, and inflammatory response of HK2 cells. MiR-215-5p was a target of circ_0114428, and TRAF6 was a downstream target of miR-215-5p. Circ_0114428 regulated TRAF6 expression by sponging miR-215-5p in LPS-treated HK2 cells. Circ_0114428 regulated LPS-induced NF-κB signaling in HK2 cells by targeting miR-215-5p/TRAF6 axis. Conclusion: Circ_0114428 knockdown abolished the cell proliferation, apoptosis, and inflammatory damage in LPS-induced HK2 cells by targeting miR-215-5p/TRAF6/NF-κB.
Collapse
Affiliation(s)
- Yan Li
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chunmei Zhang
- Department of Critical Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongyan Zhao
- Department of Critical Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Martinez B, Peplow PV. MicroRNAs as potential biomarkers for diagnosis of attention deficit hyperactivity disorder. Neural Regen Res 2024; 19:557-562. [PMID: 37721284 PMCID: PMC10581556 DOI: 10.4103/1673-5374.380880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
Inappropriate levels of hyperactivity, impulsivity, and inattention characterize attention deficit hyperactivity disorder, a common childhood-onset neuropsychiatric disorder. The cognitive function and learning ability of children with attention deficit hyperactivity disorder are affected, and these symptoms may persist to adulthood if they are not treated. The diagnosis of attention deficit hyperactivity disorder is only based on symptoms and objective tests for attention deficit hyperactivity disorder are missing. Treatments for attention deficit hyperactivity disorder in children include medications, behavior therapy, counseling, and education services which can relieve many of the symptoms of attention deficit hyperactivity disorder but cannot cure it. There is a need for a molecular biomarker to distinguish attention deficit hyperactivity disorder from healthy subjects and other neurological conditions, which would allow for an earlier and more accurate diagnosis and appropriate treatment to be initiated. Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of attention deficit hyperactivity disorder. The recent studies reviewed had performed microRNA profiling in whole blood, white blood cells, blood plasma, and blood serum of children with attention deficit hyperactivity disorder. A large number of microRNAs were dysregulated when compared to healthy controls and with some overlap between individual studies. From the studies that had included a validation set of patients and controls, potential candidate biomarkers for attention deficit hyperactivity disorder in children could be miR-140-3p, let-7g-5p, -30e-5p, -223-3p, -142-5p, -486-5p, -151a-3p, -151a-5p, and -126-5p in total white blood cells, and miR-4516, -6090, -4763-3p, -4281, -4466, -101-3p, -130a-3p, -138-5p, -195-5p, and -106b-5p in blood serum. Further studies are warranted with children and adults with attention deficit hyperactivity disorder, and consideration should be given to utilizing rat models of attention deficit hyperactivity disorder. Animal studies could be used to confirm microRNA findings in human patients and to test the effects of targeting specific microRNAs on disease progression and behavior.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology, University of Nevada-Reno, Reno, USA
- Department of Medicine, University of Nevada-Reno, Reno, USA
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Zhang M, Han Y. MicroRNAs in chronic pediatric diseases (Review). Exp Ther Med 2024; 27:100. [PMID: 38356668 PMCID: PMC10865459 DOI: 10.3892/etm.2024.12388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/15/2023] [Indexed: 02/16/2024] Open
Abstract
MicroRNAs are small non-coding RNAs with a length of 20-24 nucleotides. They bind to the 3'-untranslated region of target genes to induce the degradation of target mRNAs or inhibit their translation. Therefore, they are involved in the regulation of development, apoptosis, proliferation, differentiation and other biological processes (including hormone secretion, signaling and viral infections). Chronic diseases in children may be difficult to treat and are often associated with malnutrition resulting from a poor diet. Consequently, further complications, disease aggravation and increased treatment costs impose a burden on patients and their families. Existing evidence suggests that microRNAs are involved in various chronic non-neoplastic diseases in children. The present review discusses the roles of microRNAs in five major chronic diseases in children, namely, diabetes mellitus, congenital heart diseases, liver diseases, bronchial asthma and epilepsy, providing a theoretical basis for them to become therapeutic biomarkers in chronic pediatric diseases.
Collapse
Affiliation(s)
- Mingyao Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Yanhua Han
- Department of Pediatrics, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
9
|
Song Y, Song Q, Hu D, Sun B, Gao M, Liang X, Qu B, Suo L, Yin Z, Wang L. The potential applications of artificially modified exosomes derived from mesenchymal stem cells in tumor therapy. Front Oncol 2024; 13:1299384. [PMID: 38250549 PMCID: PMC10798044 DOI: 10.3389/fonc.2023.1299384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tumor-homing ability and play critical roles in tumor treatment, but their dual influences on tumor progression limit their therapeutic applications. Exosomes derived from MSCs (MSC-exosomes) exhibit great potential in targeted tumor treatment due to their advantages of high stability, low immunogenicity, good biocompatibility, long circulation time and homing characteristics. Furthermore, the artificial modification of MSC-exosomes could amplify their advantages and their inhibitory effect on tumors and could overcome the limit of tumor-promoting effect. In this review, we summarize the latest therapeutic strategies involving artificially modified MSC-exosomes in tumor treatment, including employing these exosomes as nanomaterials to carry noncoding RNAs or their inhibitors and anticancer drugs, and genetic engineering modification of MSC-exosomes. We also discuss the feasibility of utilizing artificially modified MSC-exosomes as an emerging cell-free method for tumor treatment and related challenges.
Collapse
Affiliation(s)
- Yilin Song
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanlin Song
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Daosheng Hu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Binwen Sun
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingwei Gao
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangnan Liang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Boxin Qu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lida Suo
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zeli Yin
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Subaiea GM, Syed RU, Afsar S, Alhaidan TMS, Alzammay SA, Alrashidi AA, Alrowaili SF, Alshelaly DA, Alenezi AMSRA. Non-coding RNAs (ncRNAs) and multidrug resistance in glioblastoma: Therapeutic challenges and opportunities. Pathol Res Pract 2024; 253:155022. [PMID: 38086292 DOI: 10.1016/j.prp.2023.155022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Non-coding RNAs (ncRNAs) have been recognized as pivotal regulators of transcriptional and post-transcriptional gene modulation, exerting a profound influence on a diverse array of biological and pathological cascades, including the intricate mechanisms underlying tumorigenesis and the acquisition of drug resistance in neoplastic cells. Glioblastoma (GBM), recognized as the foremost and most aggressive neoplasm originating in the brain, is distinguished by its formidable resistance to the cytotoxic effects of chemotherapeutic agents and ionizing radiation. Recent years have witnessed an escalating interest in comprehending the involvement of ncRNAs, particularly lncRNAs, in GBM chemoresistance. LncRNAs, a subclass of ncRNAs, have been demonstrated as dynamic modulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Disruption in the regulation of lncRNAs has been observed across various human malignancies, including GBM, and has been linked with developing multidrug resistance (MDR) against standard chemotherapeutic agents. The potential of targeting specific ncRNAs or their downstream effectors to surmount chemoresistance is also critically evaluated, specifically focusing on ongoing preclinical and clinical investigations exploring ncRNA-based therapeutic strategies for glioblastoma. Nonetheless, targeting lncRNAs for therapeutic objectives presents hurdles, including overcoming the blood-brain barrier and the brief lifespan of oligonucleotide RNA molecules. Understanding the complex relationship between ncRNAs and the chemoresistance characteristic in glioblastoma provides valuable insights into the fundamental molecular mechanisms. It opens the path for the progression of innovative and effective therapeutic approaches to counter the therapeutic challenges posed by this aggressive brain tumor. This comprehensive review highlights the complex functions of diverse ncRNAs, including miRNAs, circRNAs, and lncRNAs, in mediating glioblastoma's chemoresistance.
Collapse
Affiliation(s)
- Gehad Mohammed Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | | | - Seham Ahmed Alzammay
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
11
|
Grosso C, Santos M, Barroso MF. From Plants to Psycho-Neurology: Unravelling the Therapeutic Benefits of Bioactive Compounds in Brain Disorders. Antioxidants (Basel) 2023; 12:1603. [PMID: 37627598 PMCID: PMC10451187 DOI: 10.3390/antiox12081603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The brain's sensitivity to oxidative stress and neuronal cell death requires effective pharmacotherapy approaches. Current pharmacological therapies are frequently ineffective and display negative side effects. Bioactive chemicals found in plants may provide a potential alternative due to their antioxidant and neuroprotective properties and can be used in therapy and the management of a variety of neuropsychiatric, neurodevelopmental, and neurodegenerative illnesses. Several natural products, including vitamin C, Cammelia sinensis polyphenols, Hypericum perforatum, and Crocus sativus have shown promise in lowering oxidative stress and treating symptoms of major depressive disorder (MDD). Similarly, bioactive compounds such as curcumin, luteolin, resveratrol, quercetin, and plants like Acorus gramineus, Rhodiola rosea, and Ginkgo biloba are associated with neuroprotective effects and symptom improvement in neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Furthermore, in neurodegenerative diseases, natural compounds from Rhodiola rosea, Morinda lucida, and Glutinous rehmannia provide neurological improvement. Further study in clinical samples is required to thoroughly investigate the therapeutic advantages of these bioactive substances for persons suffering from these illnesses.
Collapse
Affiliation(s)
- Clara Grosso
- REQUIMTE–LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Marlene Santos
- CISA|ESS, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal;
| | - M. Fátima Barroso
- REQUIMTE–LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| |
Collapse
|
12
|
Bravo-Vázquez LA, Méndez-García A, Rodríguez AL, Sahare P, Pathak S, Banerjee A, Duttaroy AK, Paul S. Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives. Front Bioeng Biotechnol 2023; 11:1208547. [PMID: 37576994 PMCID: PMC10416113 DOI: 10.3389/fbioe.2023.1208547] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
MicroRNAs (miRNAs) are short (18-25 nt), non-coding, widely conserved RNA molecules responsible for regulating gene expression via sequence-specific post-transcriptional mechanisms. Since the human miRNA transcriptome regulates the expression of a number of tumor suppressors and oncogenes, its dysregulation is associated with the clinical onset of different types of cancer. Despite the fact that numerous therapeutic approaches have been designed in recent years to treat cancer, the complexity of the disease manifested by each patient has prevented the development of a highly effective disease management strategy. However, over the past decade, artificial miRNAs (i.e., anti-miRNAs and miRNA mimics) have shown promising results against various cancer types; nevertheless, their targeted delivery could be challenging. Notably, numerous reports have shown that nanotechnology-based delivery of miRNAs can greatly contribute to hindering cancer initiation and development processes, representing an innovative disease-modifying strategy against cancer. Hence, in this review, we evaluate recently developed nanotechnology-based miRNA drug delivery systems for cancer therapeutics and discuss the potential challenges and future directions, such as the promising use of plant-made nanoparticles, phytochemical-mediated modulation of miRNAs, and nanozymes.
Collapse
Affiliation(s)
| | | | - Alma L. Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro, México
| | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro, México
| |
Collapse
|
13
|
Hadipour M, Fasihi Harandi M, Mirhendi H, Yousofi Darani H. Diagnosis of echinococcosis by detecting circulating cell-free DNA and miRNA. Expert Rev Mol Diagn 2023; 23:133-142. [PMID: 36756744 DOI: 10.1080/14737159.2023.2178903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Diagnosis of echinococcosis is difficult and usually performed based on clinical findings, imaging, and serological test. However, all of them have limitations, especially in follow-up approaches. AREAS COVERED Detection of cell-free DNA (cfDNA) and micro-RNA (miRNA) is currently a hot topic for diagnosis of echinococcosis diseases. For detecting cell-free DNA in echinococcosis patient's samples such as sera, some techniques are based on next-generation sequencing (NGS), DNA-deep sequencing, some are based on PCR-based methods, and a few works related to the detection of miRNA for the diagnosis of human echinococcosis. EXPERT OPINION In the detection of cell-free DNA in echinococcosis patient' samples, NGS and DNA-deep sequencing have shown high level of sensitivity, but are not suitable for routine clinical examination as they are expensive and inaccessible in the majority of endemic areas. However, PCR-based methods have shown a sensitivity of about 20-25%. To improve the sensitivity of these tests, improving the DNA extraction method, designing appropriate primers for detecting short-length fragments of circulating DNA, using a higher volume of a serum sample, and application of more sensitive PCR methods are recommended. In the field of miRNA detection, further works are recommended.
Collapse
Affiliation(s)
- Mahboubeh Hadipour
- Department of parasitology and mycology, Faculty of medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Majid Fasihi Harandi
- Research center for Hydatid disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Mirhendi
- Department of parasitology and mycology, Faculty of medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Hossein Yousofi Darani
- Department of parasitology and mycology, Faculty of medicine, Isfahan University of Medical sciences, Isfahan, Iran
| |
Collapse
|
14
|
Zhang M, Wang J, Li J, Kong F, Lin S. miR-101-3p improves neuronal morphology and attenuates neuronal apoptosis in ischemic stroke in young mice by downregulating HDAC9. Transl Neurosci 2023; 14:20220286. [PMID: 37250142 PMCID: PMC10224617 DOI: 10.1515/tnsci-2022-0286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Objective MiRNAs play a key role in ischemic stroke (IS). Although miR-101-3p can participate in multiple disease processes, its role and mechanism in IS are not clear. The aim of the present study was to observe the effect of miR-101-3p activation on IS in young mice and the role of HDAC9 in this effect. Methods The young mice were first subjected to transient middle cerebral artery occlusion (tMCAO) or sham surgery, and the cerebral infarct area was assessed with 2,3,5-triphenyltetrazolium chloride staining. Meanwhile, the expressions of miR-101-3p and HDAC9 were tested using RT-qPCR or western blot. Besides, neuron morphology and apoptosis were confirmed using Nissl staining and TUNEL staining. Results We first verified that miR-101-3p was downregulated and HDAC9 was upregulated in the brain tissue of tMCAO young mice. Moreover, we proved that overexpression of miR-101-3p could improve cerebral infarction, neuronal morphology, and neuronal apoptosis in tMCAO young mice by lowering the expression of HDAC9. Conclusions Activation of miR-101-3p can protect against IS in young mice, and its mechanism is relevant to the inhibition of HDAC9. Therefore, miR-101-3p and HDAC9 might be the latent targets for IS therapy.
Collapse
Affiliation(s)
- Mengru Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Jianjun Wang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Encephalopathy and Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Jinfang Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Encephalopathy and Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Fanxin Kong
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Encephalopathy and Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Songjun Lin
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Encephalopathy and Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| |
Collapse
|
15
|
Bravo-Vázquez LA, Frías-Reid N, Ramos-Delgado AG, Osorio-Pérez SM, Zlotnik-Chávez HR, Pathak S, Banerjee A, Bandyopadhyay A, Duttaroy AK, Paul S. MicroRNAs and long non-coding RNAs in pancreatic cancer: From epigenetics to potential clinical applications. Transl Oncol 2023; 27:101579. [PMID: 36332600 PMCID: PMC9637816 DOI: 10.1016/j.tranon.2022.101579] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022] Open
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two relevant classes of non-coding RNAs (ncRNAs) that play a pivotal role in a number of molecular processes through different epigenetic regulatory mechanisms of gene expression. As a matter of fact, the altered expression of these types of RNAs leads to the development and progression of a varied range of multifactorial human diseases. Several recent reports elucidated that miRNA and lncRNAs have been implicated in pancreatic cancer (PC). For instance, dysregulation of such ncRNAs has been found to be associated with chemoresistance, apoptosis, autophagy, cell differentiation, tumor suppression, tumor growth, cancer cell proliferation, migration, and invasion in PC. Moreover, several aberrantly expressed miRNAs and lncRNAs have the potential to be used as biomarkers for accurate PC diagnosis. Additionally, miRNAs and lncRNAs are considered as promising clinical targets for PC. Therefore, in this review, we discuss recent experimental evidence regarding the clinical implications of miRNAs and lncRNAs in the pathophysiology of PC, their future potential, as well as the challenges that have arisen in this field of study in order to drive forward the design of ncRNA-based diagnostics and therapeutics for PC.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Natalia Frías-Reid
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Ana Gabriela Ramos-Delgado
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Sofía Madeline Osorio-Pérez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Hania Ruth Zlotnik-Chávez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines; Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046, Blindern, Oslo, Norway.
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico.
| |
Collapse
|
16
|
Shahcheraghi SH, Ayatollahi J, Lotfi M, Aljabali AAA, Al-Zoubi MS, Panda PK, Mishra V, Satija S, Charbe NB, Serrano-Aroca Á, Bahar B, Takayama K, Goyal R, Bhatia A, Almutary AG, Alnuqaydan AM, Mishra Y, Negi P, Courtney A, McCarron PA, Bakshi HA, Tambuwala MM. Gene Therapy for Neuropsychiatric Disorders: Potential Targets and Tools. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:51-65. [PMID: 35249508 DOI: 10.2174/1871527321666220304153719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 01/01/2023]
Abstract
Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mazhar S Al-Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Kazuo Takayama
- Center for IPS Cell Research and Application, Kyoto University, Kyoto, 606-8397, Japan
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No. 9, Solan, Himachal Pradesh 173212, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab 151001, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Yachana Mishra
- Shri Shakti Degree College, Sankhahari, Ghatampur 209206, India
| | - Poonam Negi
- Shoolini University of Biotechnology and Management Sciences, Solan 173 212, India
| | - Aaron Courtney
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
17
|
Functional Implications and Clinical Potential of MicroRNAs in Irritable Bowel Syndrome: A Concise Review. Dig Dis Sci 2023; 68:38-53. [PMID: 35507132 PMCID: PMC9066399 DOI: 10.1007/s10620-022-07516-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
MicroRNAs (miRNAs) are tiny (20-24 nucleotides long), non-coding, highly conserved RNA molecules that play a crucial role within the post-transcriptional regulation of gene expression via sequence-specific mechanisms. Since the miRNA transcriptome is involved in multiple molecular processes needed for cellular homeostasis, its altered expression can trigger the development and progression of several human pathologies. In this context, over the last few years, several relevant studies have demonstrated that dysregulated miRNAs affect a wide range of molecular mechanisms associated with irritable bowel syndrome (IBS), a common gastrointestinal disorder. For instance, abnormal miRNA expression in IBS patients is related to the alteration of intestinal permeability, visceral hyperalgesia, inflammatory pathways, and pain sensitivity. Besides, specific miRNAs are differentially expressed in the different subtypes of IBS, and therefore, they might be used as biomarkers for precise diagnosis of these pathological conditions. Accordingly, miRNAs have noteworthy potential as theragnostic targets for IBS. Hence, in this current review, we present an overview of the recent discoveries regarding the clinical relevance of miRNAs in IBS, which might be useful in the future for the development of miRNA-based drugs against this disorder.
Collapse
|
18
|
Suvarna V, Deshmukh K, Murahari M. miRNA and antisense oligonucleotide-based α-synuclein targeting as disease-modifying therapeutics in Parkinson's disease. Front Pharmacol 2022; 13:1034072. [PMID: 36506536 PMCID: PMC9728483 DOI: 10.3389/fphar.2022.1034072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
α-synuclein is the synaptic protein majorly involved in neuronal dysfunction and death and it is well known for the last two decades as a hallmark of Parkinson's disease. Alpha-synuclein is involved in neurodegeneration mediated through various neurotoxic pathways, majorly including autophagy or lysosomal dysregulation, mitochondrial disruption, synaptic dysfunction, and oxidative stress. Moreover, the alpha-synuclein aggregation has been associated with the development of several neurodegenerative conditions such as various forms of Parkinson's disease. The recent discovery in oligonucleotide chemistry has developed potential alpha-synuclein targeting molecules for the treatment of neurodegenerative diseases. The present review article focuses on recent advances in the applications of oligonucleotides acting via alpha-synuclein targeting mechanisms and their implication in combating Parkinson's disease. Moreover, the article emphasizes the potential of miRNAs, and antisense oligonucleotides and the challenges associated with their use in the therapeutical management of Parkinson's disease.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Kajal Deshmukh
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manikanta Murahari
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India,*Correspondence: Manikanta Murahari,
| |
Collapse
|
19
|
SNPs in 3'UTR miRNA Target Sequences Associated with Individual Drug Susceptibility. Int J Mol Sci 2022; 23:ijms232213725. [PMID: 36430200 PMCID: PMC9692299 DOI: 10.3390/ijms232213725] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The complementary interaction of microRNAs (miRNAs) with their binding sites in the 3'untranslated regions (3'UTRs) of target gene mRNAs represses translation, playing a leading role in gene expression control. MiRNA recognition elements (MREs) in the 3'UTRs of genes often contain single nucleotide polymorphisms (SNPs), which can change the binding affinity for target miRNAs leading to dysregulated gene expression. Accumulated data suggest that these SNPs can be associated with various human pathologies (cancer, diabetes, neuropsychiatric disorders, and cardiovascular diseases) by disturbing the interaction of miRNAs with their MREs located in mRNA 3'UTRs. Numerous data show the role of SNPs in 3'UTR MREs in individual drug susceptibility and drug resistance mechanisms. In this review, we brief the data on such SNPs focusing on the most rigorously proven cases. Some SNPs belong to conventional genes from the drug-metabolizing system (in particular, the genes coding for cytochromes P450 (CYP 450), phase II enzymes (SULT1A1 and UGT1A), and ABCB3 transporter and their expression regulators (PXR and GATA4)). Other examples of SNPs are related to the genes involved in DNA repair, RNA editing, and specific drug metabolisms. We discuss the gene-by-gene studies and genome-wide approaches utilized or potentially utilizable to detect the MRE SNPs associated with individual response to drugs.
Collapse
|
20
|
Wang P, Zhou Y, Zhao Y, Zhao W, Wang H, Li J, Zhang L, Wu M, Xiao X, Shi H, Ma W, Zhang Y. Prenatal fine particulate matter exposure associated with placental small extracellular vesicle derived microRNA and child neurodevelopmental delays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156747. [PMID: 35716750 DOI: 10.1016/j.scitotenv.2022.156747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Prenatal fine particulate matter (PM2.5) exposure has been linked to adverse neurodevelopment. However, epidemiological evidence remains inconclusive and little information about the effects of various PM2.5 components on child neurodevelopment is currently known. The underlying mechanism was also not elucidated. The study aimed to evaluate the effects of PM2.5 and components exposure on child neurodevelopmental delays and the role of placental small extracellular vesicles (sEVs)-derived miRNAs in the associations. METHODS We included 267 mother-child pairs in this analysis. Prenatal PM2.5 and components (i.e. elements, water-soluble ions, and PAHs) exposure during three trimesters were monitored through personal PM2.5 sampling. Child neurodevelopment at 2, 6, and 12 months old were evaluated by Ages and Stages Questionnaire (ASQ). We isolated sEVs from placental tissue to analyze the change of sEVs-derived miRNAs in response to PM2.5. Associations between the PM2.5-associated miRNAs and child neurodevelopment were evaluated using multivariate linear regression models. RESULTS The PM2.5 exposure levels in the three trimesters range from 2.51 to 185.21 μg/m3. Prenatal PM2.5 and the components of Pb, Al, V and Ti exposure in the second and third trimester were related to decreased ASQ scores communication, problem-solving and personal-social domains in children aged 2 or 6 months. RNA sequencing identified fifteen differentially expressed miRNAs. The miR-101-3p and miR-520d-5p were negatively associated with PM2.5 and Pb component. miR-320a-3p expression was positively associated with PM2.5 and V component. Meanwhile, the miR-320a-3p was associated with decreased ASQ scores, as reflected by ASQ-T (β: -2.154, 95 % CI: -4.313, -0.516) and problem-solving domain (β: -0.605, 95 % CI: -1.111, -0.099) in children aged 6 months. CONCLUSION Prenatal exposure to PM2.5 and its Pb, Al, V & Ti component were associated with infant neurodevelopmental delays. The placenta sEVs derived miRNAs, especially miR-320a-3p, might contribute to an increased risk of neurodevelopmental delays.
Collapse
Affiliation(s)
- Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yingya Zhao
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Wenxuan Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jinhong Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Min Wu
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xirong Xiao
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Huijing Shi
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenjuan Ma
- Minhang Hospital, Fudan University, Shanghai 201199, China.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
21
|
Estrada-Meza C, Torres-Copado A, Loreti González-Melgoza L, Ruiz-Manriquez LM, De Donato M, Sharma A, Pathak S, Banerjee A, Paul S. Recent insights into the microRNA and long non-coding RNA-mediated regulation of stem cell populations. 3 Biotech 2022; 12:270. [PMID: 36101546 PMCID: PMC9464284 DOI: 10.1007/s13205-022-03343-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Stem cells are undifferentiated cells that have multi-lineage differentiation. The transition from self-renewal to differentiation requires rapid and extensive gene expression alterations. Since different stem cells exhibit diverse non-coding RNAs (ncRNAs) expression profiles, the critical roles of ncRNAs in stem cell reprogramming, pluripotency maintenance, and differentiation have been widely investigated over the past few years. Hence, in this current review, the two main categories of ncRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are discussed. While the primary way by which miRNAs restrict mRNA transcription is through miRNA-mRNA interaction, lncRNAs have a wide range of effects on mRNA functioning, including interactions with miRNAs. Both of these ncRNAs participate in the post-transcriptional regulation of crucial biological mechanisms, such as cell cycle regulation, apoptosis, aging, and cell fate decisions. These findings shed light on a previously unknown aspect of gene regulation in stem cell fate determination and behavior. Overall, we summarized the key roles of miRNAs (including exosomal miRNAs) and lncRNAs in the regulation of stem cell populations, such as cardiac, hematopoietic, mesenchymal, neural, and spermatogonial, as well ncRNAs' influence on malignancy through modulating cancer stem cells, which might significantly contribute to clinical stem cell therapy and in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Andrea Torres-Copado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Luisa Loreti González-Melgoza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Luis M. Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Marcos De Donato
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| |
Collapse
|
22
|
Wang Y, Xu X, Chen H, Zhu M, Guo X, Gao F. Micro-RNAs from Plasma-Derived Small Extracellular Vesicles as Potential Biomarkers for Tic Disorders Diagnosis. Brain Sci 2022; 12:brainsci12070829. [PMID: 35884636 PMCID: PMC9312839 DOI: 10.3390/brainsci12070829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Tic disorders (TDs) are a series of childhood neuropsychiatric disorders characterized by involuntary motor and/or vocal tics and commonly comorbid with several other psychopathological and/or behavioral disorders (e.g., attention deficit hyperactivity disorder and obsessive–compulsive disorder), which indeed aggravate clinical symptoms and complicate diagnosis and treatment. Micro-RNAs (miRNAs) derived from small extracellular vesicles (sEVs) have been recognized as novel circulating biomarkers of disease. To identify specific miRNAs derived from plasma sEVs for TDs’ diagnosis and prognosis, we used official EV isolation and purification methods to characterize the plasma-derived EV miRNAs from children with different types of TDs. Nanoparticle tracking analysis, transmission electron microscopy, and immunoblot analysis of EV surface markers were applied to confirm the features and quality of sEVs. The RNA sequencing (RNA-seq) approach was adapted to identify novel circulating sEVs-derived miRNAs with altered expression levels in paired comparisons of TDs versus healthy controls (HCs), transient tic disorder (TTD) versus chronic motor or vocal tic disorder (CTD), and TTD versus Tourette Syndrome (TS). GO term and KEGG pathway were performed for functional analysis and the receiver operator curve analysis was followed to test the diagnosis efficacy of differentially expressed miRNAs (DEMs) derived from plasma sEVs among paired groups, namely, TDs versus HCs, TTD versus CTD, and TTD versus TS. As a result, 10 miRNAs (hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7e, hsa-let-7f, hsa-miR-25-3p, hsa-miR-29a-3p, hsa-miR-30b-5p, hsa-miR-125b-5p, and hsa-miR-1469) have demonstrated a significantly different expression signature in the TDs group compared to HCs with excellent area under curve (AUC) values of 0.99, 0.973, 0.997, 1, 0.99, 0.997, 0.987, 0.993, 0.977, and 0.997, respectively, and the diagnostic efficacy of miRNAs was also estimated for discriminating TTD from CTD or TS. In our research, we finally obtained several potential sEVs-derived miRNA biomarkers to assess the diagnosis and prognosis of TDs.
Collapse
Affiliation(s)
- Yilong Wang
- Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; (Y.W.); (X.X.); (H.C.); (M.Z.); (X.G.)
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xuebin Xu
- Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; (Y.W.); (X.X.); (H.C.); (M.Z.); (X.G.)
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Haihua Chen
- Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; (Y.W.); (X.X.); (H.C.); (M.Z.); (X.G.)
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Mengying Zhu
- Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; (Y.W.); (X.X.); (H.C.); (M.Z.); (X.G.)
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiaotong Guo
- Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; (Y.W.); (X.X.); (H.C.); (M.Z.); (X.G.)
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Feng Gao
- Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; (Y.W.); (X.X.); (H.C.); (M.Z.); (X.G.)
- National Clinical Research Center for Child Health, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Correspondence: ; Tel.: +86-133-965-185-10
| |
Collapse
|
23
|
Paul S, Ruiz-Manriquez LM, Ambriz-Gonzalez H, Medina-Gomez D, Valenzuela-Coronado E, Moreno-Gomez P, Pathak S, Chakraborty S, Srivastava A. Impact of smoking-induced dysregulated human miRNAs in chronic disease development and their potential use in prognostic and therapeutic purposes. J Biochem Mol Toxicol 2022; 36:e23134. [PMID: 35695328 DOI: 10.1002/jbt.23134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/20/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are evolutionary conserved small noncoding RNA molecules with a significant ability to regulate gene expression at the posttranscriptional level either through translation repression or messenger RNA degradation. miRNAs are differentially expressed in various pathophysiological conditions, affecting the course of the disease by modulating several critical target genes. As the persistence of irreversible molecular changes caused by cigarette smoking is central to the pathogenesis of various chronic diseases, several studies have shown its direct correlation with the dysregulation of different miRNAs, affecting numerous essential biological processes. This review provides an insight into the current status of smoking-induced miRNAs dysregulation in chronic diseases such as COPD, atherosclerosis, pulmonary hypertension, and different cancers and explores the diagnostic/prognostic potential of miRNA-based biomarkers and their efficacy as therapeutic targets.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Luis M Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Hector Ambriz-Gonzalez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Daniel Medina-Gomez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Estefania Valenzuela-Coronado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Paloma Moreno-Gomez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, India
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
Jothimani G, Bhatiya M, Pathak S, Paul S, Banerjee A. Tumor Suppressor microRNAs in Gastrointestinal Cancers: A Mini-Review. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:5-15. [PMID: 35670340 DOI: 10.2174/2772270816666220606112727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Gastrointestinal (GI) cancer is associated with a group of cancers affecting the organs in the GI tract, with a high incidence and mortality rate. This type of cancer development involves a series of molecular events that arise by the dysregulation of gene expressions and microRNAs (miRNAs). OBJECTIVES This mini-review focuses on elucidating the mechanism of tumor suppressor miRNA-mediated oncogenic gene silencing, which may contribute to a better understanding of miRNA-mediated gene expression regulation of cell cycle, proliferation, invasion, and apoptosis in GI cancers. In this review, the biological significance of tumor suppressor miRNAs involved in gastrointestinal cancers is briefly explained. METHODS The articles were searched with the keywords 'miRNA', 'gastrointestinal cancers', 'esophageal cancer', 'gastric cancer', 'colorectal cancer', 'pancreatic cancer', 'liver cancer', and 'gall bladder cancer' from the Google Scholar and PubMed databases. A total of 71 research and review articles have been collected and referred for this study. RESULTS This review summarises recent research enhancing the effectiveness of miRNAs as novel prognostic, diagnostic, and therapeutic markers for GI cancer treatment strategies. The expression pattern of various miRNAs has been dysregulated in GI cancers, which are associated with proliferation, cell cycle regulation, apoptosis, migration, and invasion. CONCLUSION The role of tumor suppressor miRNAs in the negative regulation of oncogenic gene expression was thoroughly explained in this review. Its potential role as a microRNA therapeutic candidate is also discussed. Profiling and regulating tumor suppressor miRNA expression in gastrointestinal cancers using miRNA mimics could be used as a prognostic, diagnostic, and therapeutic marker, as well as an elucidating molecular therapeutic approach to tumor suppression.
Collapse
Affiliation(s)
- Ganesan Jothimani
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Meenu Bhatiya
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Querétaro CP 76130, Mexico
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
25
|
Yang C, Kang B, Cao Z, Zhang J, Zhao F, Wang D, Su P, Chen J. Early-Life Pb Exposure Might Exert Synapse-Toxic Effects Via Inhibiting Synapse-Associated Membrane Protein 2 (VAMP2) Mediated by Upregulation of miR-34b. J Alzheimers Dis 2022; 87:619-633. [DOI: 10.3233/jad-215638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Early-life Pb exposure can cause behavioral and cognitive problems and induce symptoms of hyperactivity, impulsivity, and inattention in children. Studies showed that blood lead levels were highly correlated with neuropsychiatric disorders, and effects of neurotoxicity might persist and affect the incidence of neurodegenerative diseases, for example Alzheimer’s disease (AD). Objective: To explore possible mechanisms of developmental Pb-induced neuropsychiatric dysfunctions. Methods: Children were divided into low blood lead level (BLL) group (0–50.00μg/L) and high BLL group (> 50.00μg/L) and blood samples were collected. miRNA array was used to testify miRNA expression landscape between two groups. Correlation analysis and real-time PCR were applied to find miRNAs that altered in Pb and neuropsychiatric diseases. Animal models and cell experiments were used to confirm the effect of miRNAs in response to Pb, and siRNA and luciferase experiments were conducted to examine their effect on neural functions. Results: miRNA array data and correlation analysis showed that miR-34b was the most relevant miRNA among Pb neurotoxicity and neuropsychiatric disorders, and synapse-associated membrane protein 2 (VAMP2) was the target gene regulating synapse function. In vivo and in vitro studies showed Pb exposure injured rats’ cognitive abilities and induced upregulation of miR-34b and downregulation of VAMP2, resulting in decreases of hippocampal synaptic vesicles. Blockage of miR-34b mitigated Pb’s effects on VAMP2 in vitro. Conclusion: Early-life Pb exposure might exert synapse-toxic effects via inhibiting VAMP2 mediated by upregulation of miR-34b and shed a light on the underlying relationship between Pb neurotoxicity and developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Changhao Yang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Beipei Kang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Zipeng Cao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Fang Zhao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Diya Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jingyuan Chen
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Wang LJ, Kuo HC, Lee SY, Huang LH, Lin Y, Lin PH, Li SC. MicroRNAs serve as prediction and treatment-response biomarkers of attention-deficit/hyperactivity disorder and promote the differentiation of neuronal cells by repressing the apoptosis pathway. Transl Psychiatry 2022; 12:67. [PMID: 35184133 PMCID: PMC8858317 DOI: 10.1038/s41398-022-01832-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder. This study aimed to examine whether miRNA expression abundance in total white blood cells (WBCs) facilitated the identification of ADHD and reflected its response to treatment. Furthermore, whether miRNA markers facilitated the growth of the human cortical neuronal (HCN-2) cells was also investigated. Total WBC samples were collected from 145 patients and 83 controls, followed by RNA extraction and qPCR assays. Subsequently, WBC samples were also collected at the endpoint from ADHD patients who had undergone 12 months of methylphenidate treatment. The determined ΔCt values of 12 miRNAs were applied to develop an ADHD prediction model and to estimate the correlation with treatment response. The prediction model applying the ΔCt values of 12 examined miRNAs (using machine learning algorithm) demonstrated good validity in discriminating ADHD patients from controls (sensitivity: 96%; specificity: 94.2%). Among the 92 ADHD patients completing the 12-month follow-up, miR-140-3p, miR-27a-3p, miR-486-5p, and miR-151-5p showed differential trends of ΔCt values between treatment responders and non-responders. In addition, the in vitro cell model revealed that miR-140-3p and miR-126-5p promoted the differentiation of HCN-2 cells by enhancing the length of neurons and the number of junctions. Microarray and flow cytometry assays confirmed that this promotion was achieved by repressing apoptosis and/or necrosis. The findings of this study suggest that the expression levels of miRNAs have the potential to serve as both diagnostic and therapeutic biomarkers for ADHD. The possible biological mechanisms of these biomarker miRNAs in ADHD pathophysiology were also clarified.
Collapse
Affiliation(s)
- Liang-Jen Wang
- grid.145695.a0000 0004 1798 0922Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- grid.145695.a0000 0004 1798 0922Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.413804.aKawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sheng-Yu Lee
- grid.415011.00000 0004 0572 9992Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Psychiatry, College of Medicine, Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lien-Hung Huang
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yuyu Lin
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsien Lin
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
27
|
Ruiz-Manriquez LM, Ledesma Pacheco SJ, Medina-Gomez D, Uriostegui-Pena AG, Estrada-Meza C, Bandyopadhyay A, Pathak S, Banerjee A, Chakraborty S, Srivastava A, Paul S. A Brief Review on the Regulatory Roles of MicroRNAs in Cystic Diseases and Their Use as Potential Biomarkers. Genes (Basel) 2022; 13:genes13020191. [PMID: 35205236 PMCID: PMC8872411 DOI: 10.3390/genes13020191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
miRNAs are small endogenous conserved non-coding RNA molecules that regulate post-transcriptional gene expression through mRNA degradation or translational inhibition, modulating nearly 60% of human genes. Cystic diseases are characterized by the presence of abnormal fluid-filled sacs in the body, and though most cysts are benign, they can grow inside tumors and turn malignant. Recent evidence has revealed that the aberrant expression of a number of miRNAs present in extracellular fluids, including plasma or serum, urine, saliva, follicular fluid, and semen, contribute to different cystic pathologies. This review aims to describe the role of different miRNAs in three worldwide relevant cystic diseases: polycystic ovarian syndrome (PCOS), polycystic kidney disease (PKD), and pancreatic cyst tumors (PCTs), as well as their potential use as novel biomarkers.
Collapse
Affiliation(s)
- Luis M. Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico; (L.M.R.-M.); (S.J.L.P.); (D.M.-G.); (A.G.U.-P.); (C.E.-M.)
| | - Schoenstatt Janin Ledesma Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico; (L.M.R.-M.); (S.J.L.P.); (D.M.-G.); (A.G.U.-P.); (C.E.-M.)
| | - Daniel Medina-Gomez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico; (L.M.R.-M.); (S.J.L.P.); (D.M.-G.); (A.G.U.-P.); (C.E.-M.)
| | - Andrea G. Uriostegui-Pena
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico; (L.M.R.-M.); (S.J.L.P.); (D.M.-G.); (A.G.U.-P.); (C.E.-M.)
| | - Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico; (L.M.R.-M.); (S.J.L.P.); (D.M.-G.); (A.G.U.-P.); (C.E.-M.)
| | - Anindya Bandyopadhyay
- C4 Rice Center, International Rice Research Institute, Manila 4031, Philippines;
- Synthetic Biology, Biofuel and Genome Editing R&D, Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Faculty of Allied Health Sciences, Chennai 603103, India; (S.P.); (A.B.)
| | - Antara Banerjee
- Department of Medical Biotechnology, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Faculty of Allied Health Sciences, Chennai 603103, India; (S.P.); (A.B.)
| | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Aashish Srivastava
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico; (L.M.R.-M.); (S.J.L.P.); (D.M.-G.); (A.G.U.-P.); (C.E.-M.)
- Correspondence:
| |
Collapse
|
28
|
A Brief Review on the Regulatory Roles of MicroRNAs in Cystic Diseases and Their Use as Potential Biomarkers. Genes (Basel) 2022; 13:191. [PMID: 35205236 PMCID: PMC8872411 DOI: 10.3390/genes13020191&set/a 867452130+949943291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
miRNAs are small endogenous conserved non-coding RNA molecules that regulate post-transcriptional gene expression through mRNA degradation or translational inhibition, modulating nearly 60% of human genes. Cystic diseases are characterized by the presence of abnormal fluid-filled sacs in the body, and though most cysts are benign, they can grow inside tumors and turn malignant. Recent evidence has revealed that the aberrant expression of a number of miRNAs present in extracellular fluids, including plasma or serum, urine, saliva, follicular fluid, and semen, contribute to different cystic pathologies. This review aims to describe the role of different miRNAs in three worldwide relevant cystic diseases: polycystic ovarian syndrome (PCOS), polycystic kidney disease (PKD), and pancreatic cyst tumors (PCTs), as well as their potential use as novel biomarkers.
Collapse
|
29
|
A Brief Review on the Regulatory Roles of MicroRNAs in Cystic Diseases and Their Use as Potential Biomarkers. Genes (Basel) 2022. [DOI: 10.3390/genes13020191
expr 889616206 + 938882164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
miRNAs are small endogenous conserved non-coding RNA molecules that regulate post-transcriptional gene expression through mRNA degradation or translational inhibition, modulating nearly 60% of human genes. Cystic diseases are characterized by the presence of abnormal fluid-filled sacs in the body, and though most cysts are benign, they can grow inside tumors and turn malignant. Recent evidence has revealed that the aberrant expression of a number of miRNAs present in extracellular fluids, including plasma or serum, urine, saliva, follicular fluid, and semen, contribute to different cystic pathologies. This review aims to describe the role of different miRNAs in three worldwide relevant cystic diseases: polycystic ovarian syndrome (PCOS), polycystic kidney disease (PKD), and pancreatic cyst tumors (PCTs), as well as their potential use as novel biomarkers.
Collapse
|
30
|
Deng M, Wang Y, Yu S, Fan Q, Qiu J, Wang Z, Xiao Z. Exploring Association Between Serotonin and Neurogenesis Related Genes in Obsessive-Compulsive Disorder in Chinese Han People: Promising Association Between DMRT2, miR-30a-5p, and Early-Onset Patients. Front Psychiatry 2022; 13:857574. [PMID: 35633798 PMCID: PMC9137639 DOI: 10.3389/fpsyt.2022.857574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a deliberating disorder with complex genetic and environmental etiologies. Hypotheses about OCD mainly include dysregulated neurotransmitters, especially serotonin, and disturbed neurodevelopment. Single nucleotide polymorphism (SNP) association studies regarding OCD are often met with inconsistent results. However, stratification by age of onset may sometimes help to limit the heterogenicity of OCD patients. Therefore, we conducted a stratified SNP association study enrolling 636 patients and 612 healthy controls. Patients were stratified by age of onset as early-onset (EO-OCD) and late-onset (LO-OCD). Blood extracted from the patients was used to genotype 18 loci, including serotonin system genes, Slitrk1, Slitrk5, and DMRT2 and related miRNA genes. Logistic regression was used to compare allele and genotype frequencies of variants. A general linear model was used to evaluate the association between variants and trait anxiety. In our study, rs3824419 in DMRT2 was associated with EO-OCD, G allele was the risk allele. Rs2222722 in miR-30a-5p was associated with EO-OCD, with the C allele being the risk allele. Rs1000952 in HTR3D was found associated with trait anxiety in OCD patients. The significance disappeared after FDR correction. Our results supported neurodevelopment-related genes, DMRT2 and miR-30a-5p, to be related to EO-OCD. However, we cannot prove serotonin genes to be directly associated with EO-OCD. While an association between HTR3D and trait anxiety was discovered, comparisons based on biological or clinical traits may be helpful in future studies. As our detective powers were limited, more large-scale studies will be needed to confirm our conclusion.
Collapse
Affiliation(s)
- Miaohan Deng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyin Qiu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeping Xiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Bravo Vázquez LA, Moreno Becerril MY, Mora Hernández EO, de León Carmona GG, Aguirre Padilla ME, Chakraborty S, Bandyopadhyay A, Paul S. The Emerging Role of MicroRNAs in Bone Diseases and Their Therapeutic Potential. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010211. [PMID: 35011442 PMCID: PMC8746945 DOI: 10.3390/molecules27010211] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are a class of small (20-24 nucleotides), highly conserved, non-coding RNA molecules whose main function is the post-transcriptional regulation of gene expression through sequence-specific manners, such as mRNA degradation or translational repression. Since these key regulatory molecules are implicated in several biological processes, their altered expression affects the preservation of cellular homeostasis and leads to the development of a wide range of pathologies. Over the last few years, relevant investigations have elucidated that miRNAs participate in different stages of bone growth and development. Moreover, the abnormal expression of these RNA molecules in bone cells and tissues has been significantly associated with the progression of numerous bone diseases, including osteoporosis, osteosarcoma, osteonecrosis and bone metastasis, among others. In fact, miRNAs regulate multiple pathological mechanisms, including altering either osteogenic or osteoblast differentiation, metastasis, osteosarcoma cell proliferation, and bone loss. Therefore, in this present review, aiming to impulse the research arena of the biological implications of miRNA transcriptome in bone diseases and to explore their potentiality as a theragnostic target, we summarize the recent findings associated with the clinical significance of miRNAs in these ailments.
Collapse
Affiliation(s)
- Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - Mariana Yunuen Moreno Becerril
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - Erick Octavio Mora Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Mexico City, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico;
| | - Gabriela García de León Carmona
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - María Emilia Aguirre Padilla
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines;
- Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
- Correspondence:
| |
Collapse
|
32
|
Ruiz-Manriquez LM, Estrada-Meza C, Benavides-Aguilar JA, Ledesma-Pacheco SJ, Torres-Copado A, Serrano-Cano FI, Bandyopadhyay A, Pathak S, Chakraborty S, Srivastava A, Sharma A, Paul S. Phytochemicals mediated modulation of microRNAs and long non-coding RNAs in cancer prevention and therapy. Phytother Res 2021; 36:705-729. [PMID: 34932245 DOI: 10.1002/ptr.7338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are two main categories of noncoding RNAs (ncRNAs) that can influence essential biological functions in various ways, as well as their expression and function are tightly regulated in physiological homeostasis. Additionally, the dysregulation of these ncRNAs seems to be crucial to the pathogenesis of human diseases. The latest findings indicate that ncRNAs execute vital roles in cancer initiation and progression, and the cancer phenotype can be reversed by modulating their expression. Available scientific discoveries suggest that phytochemicals such as polyphenols, alkaloids, terpenoids, and organosulfur compounds can significantly modulate multiple cancer-associated miRNAs and lncRNAs, thereby inhibiting cancer initiation and development. However, despite promising outcomes of experimental research, only a few clinical trials are currently being conducted to evaluate the therapeutic effectiveness of these compounds. Nevertheless, understanding phytochemical-mediated ncRNA regulation in cancer and the underlying molecular mechanisms on tumor pathophysiology can aid in the development of novel therapeutic strategies to combat this deadly disease.
Collapse
Affiliation(s)
- Luis M Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | | | - S Janin Ledesma-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Andrea Torres-Copado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Francisco I Serrano-Cano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Anindya Bandyopadhyay
- C4 Rice Center, International Rice Research Institute, Manila, Philippines.,Synthetic Biology, Biofuel and Genome Editing R&D, Reliance Industries Ltd, Navi Mumbai, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| |
Collapse
|
33
|
Ren J, Xu G, Sun H, Lin T, Xu S, Zhao Y. Inhibition of miR-483-5p improves the proliferation, invasion and inflammatory response of triple-negative breast cancer cells by targeting SOCS3. Exp Ther Med 2021; 22:1047. [PMID: 34434261 PMCID: PMC8353637 DOI: 10.3892/etm.2021.10480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/21/2021] [Indexed: 01/26/2023] Open
Abstract
microRNAs (miRs) have been indicated to serve oncogenic or tumor suppressor roles. However, the role of miR-483-5p in breast cancer and its associated molecular mechanisms remain unclear. In the present study, compared with adjacent normal tissues and MCF-10a cells, the expression level of miR-483-5p was upregulated in triple-negative breast cancer (TNBC) tissues and TNBC cell lines. Bioinformatic analysis and luciferase reporter assay confirmed the presence of miR-483-5p binding sites in the 3'-untranslated region of suppressor of cytokine signaling 3 (SOCS3). In addition, the expression level of SOCS3 protein in TNBC tissues was markedly lower compared with in adjacent tissues, and miR-483-5p expression was negatively correlated with SOCS3 expression in TNBC tissues. Cell proliferation and flow cytometry assays indicated that knockdown of miR-483-5p inhibited the proliferation and promoted apoptosis in the TNBC cell line BT-549. This effect was markedly attenuated by SOCS3 small interfering (si)RNA transfection. Additionally, wound healing and Transwell assays demonstrated that SOCS3 siRNA reversed the inhibitory effects of miR-483-5p inhibitor on the migration and invasion of BT-549 cells. Moreover, the decrease in miR-483-5p expression significantly reduced the secretion of TNF-α, IL-6, IL-1β and monocyte chemoattractant protein-1 in BT-549 cells, while SOCS3 siRNA could partially reverse this effect. Additionally, SOCS3 overexpression reversed the effects of miR-483-5p mimic on the proliferation, migration, invasion and inflammation of BT-549 cells. Taken together, these data demonstrated that the inhibition of miR-483-5p could inhibit the proliferation, migration, invasion and inflammatory response, while promoting the apoptosis of TNBC cells by negatively regulating SOCS3. miR-483-5p may be a potential target for TNBC therapy.
Collapse
Affiliation(s)
- Jianbo Ren
- Department of Oncology, Yantai Muping Hospital of Traditional Chinese Medicine, Yantai, Shandong 264100, P.R. China
| | - Gang Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Hongyan Sun
- Endoscopy Center, Yantai Muping Hospital of Traditional Chinese Medicine, Yantai, Shandong 264100, P.R. China
| | - Ting Lin
- Department of Breast Surgery, Tangshan People's Hospital, Lunan, Tangshan, Hebei 063000, P.R. China
| | - Sanhui Xu
- 1st Laboratory Department, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Yating Zhao
- Breast Health Department, Tangshan Maternal Child Health Care Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
34
|
Suster I, Feng Y. Multifaceted Regulation of MicroRNA Biogenesis: Essential Roles and Functional Integration in Neuronal and Glial Development. Int J Mol Sci 2021; 22:ijms22136765. [PMID: 34201807 PMCID: PMC8269442 DOI: 10.3390/ijms22136765] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that function as endogenous gene silencers. Soon after the discovery of miRNAs, a subset of brain-enriched and brain-specific miRNAs were identified and significant advancements were made in delineating miRNA function in brain development. However, understanding the molecular mechanisms that regulate miRNA biogenesis in normal and diseased brains has become a prevailing challenge. Besides transcriptional regulation of miRNA host genes, miRNA processing intermediates are subjected to multifaceted regulation by canonical miRNA processing enzymes, RNA binding proteins (RBPs) and epitranscriptomic modifications. Further still, miRNA activity can be regulated by the sponging activity of other non-coding RNA classes, namely circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs). Differential abundance of these factors in neuronal and glial lineages partly underlies the spatiotemporal expression and function of lineage-specific miRNAs. Here, we review the continuously evolving understanding of the regulation of neuronal and glial miRNA biogenesis at the transcriptional and posttranscriptional levels and the cooperativity of miRNA species in targeting key mRNAs to drive lineage-specific development. In addition, we review dysregulation of neuronal and glial miRNAs and the detrimental impacts which contribute to developmental brain disorders.
Collapse
Affiliation(s)
| | - Yue Feng
- Correspondence: ; Tel.: +1-404-727-0351
| |
Collapse
|
35
|
Paul S, Bravo Vázquez LA, Uribe SP, Manzanero Cárdenas LA, Ruíz Aguilar MF, Chakraborty S, Sharma A. Roles of microRNAs in carbohydrate and lipid metabolism disorders and their therapeutic potential. Biochimie 2021; 187:83-93. [PMID: 34082043 DOI: 10.1016/j.biochi.2021.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small (∼21 nucleotides), endogenous, non-coding RNA molecules implicated in the post-transcriptional gene regulation performed through target mRNA cleavage or translational inhibition. In recent years, several investigations have demonstrated that miRNAs are involved in regulating both carbohydrate and lipid homeostasis in humans and other organisms. Moreover, it has been observed that the dysregulation of these metabolism-related miRNAs leads to the development of several metabolic disorders, such as type 2 diabetes, obesity, nonalcoholic fatty liver, insulin resistance, and hyperlipidemia. Hence, in this current review, with the aim to impulse the research arena of the micro-transcriptome implications in vital metabolic pathways as well as to highlight the remarkable potential of miRNAs as therapeutic targets for metabolic disorders in humans, we provide an overview of the regulatory roles of metabolism-associated miRNAs in humans and murine models.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico
| | - Samantha Pérez Uribe
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico
| | - Luis Aarón Manzanero Cárdenas
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Ciudad de Mexico, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, CP 14380, Mexico City, Mexico
| | - María Fernanda Ruíz Aguilar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Ciudad de Mexico, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, CP 14380, Mexico City, Mexico
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, MA, 02115, USA
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico.
| |
Collapse
|
36
|
Paul S, Licona-Vázquez I, Serrano-Cano FI, Frías-Reid N, Pacheco-Dorantes C, Pathak S, Chakraborty S, Srivastava A. Current insight into the functions of microRNAs in common human hair loss disorders: a mini review. Hum Cell 2021; 34:1040-1050. [PMID: 33908022 DOI: 10.1007/s13577-021-00540-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
Alopecia areata (AA) and Androgenic alopecia (AGA) are the most common multifactorial hair loss disorders that have a serious psychological impact on the affected individuals, while frontal fibrosing alopecia (FFA) is comparatively less common. However, due to the unknown etiology and the effect of many adverse factors, the prognosis of these conditions is challenging to predict. Moreover, no approved therapy has been available to date to prevent or treat these disorders. MicroRNAs (miRNAs) are a group of evolutionary conserved small non-coding RNA molecules with significant roles in the posttranscriptional gene regulation either through mRNA degradation or translational repression. A number of biological processes are controlled by these molecules, including cell growth and differentiation, proliferation, inflammation, immune responses, and apoptosis. Recently, a handful of studies have demonstrated the impact of miRNAs on common hair loss-related disorders; however, the exhaustive molecular mechanisms are still unclear. In this review, we discussed the functional implications of miRNAs in common hair loss-related disorders and addressed their efficacy to be used for theranostic purposes shortly.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Epigmenio González No. 500 Fracc. San Pablo, 76130, Querétaro, México.
| | - Iván Licona-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Epigmenio González No. 500 Fracc. San Pablo, 76130, Querétaro, México
| | - Francisco I Serrano-Cano
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Epigmenio González No. 500 Fracc. San Pablo, 76130, Querétaro, México
| | - Natalia Frías-Reid
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Epigmenio González No. 500 Fracc. San Pablo, 76130, Querétaro, México
| | - Carolina Pacheco-Dorantes
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Epigmenio González No. 500 Fracc. San Pablo, 76130, Querétaro, México
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, 603103, Tamil Nadu, India
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| |
Collapse
|
37
|
Paul S, Ruiz-Manriquez LM, Ledesma-Pacheco SJ, Benavides-Aguilar JA, Torres-Copado A, Morales-Rodríguez JI, De Donato M, Srivastava A. Roles of microRNAs in chronic pediatric diseases and their use as potential biomarkers: A review. Arch Biochem Biophys 2021; 699:108763. [PMID: 33460581 DOI: 10.1016/j.abb.2021.108763] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/22/2020] [Accepted: 01/10/2021] [Indexed: 02/09/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding highly conserved RNA molecules that can act as master regulators of gene expression in a sequence-specific manner either by translation repression or mRNA degradation, influencing a wide range of biologic processes that are essential for the maintenance of cellular homeostasis. Chronic pediatric diseases are the leading cause of death worldwide among children and the recent evidence indicates that aberrant miRNA expression significantly contributes to the development of chronic pediatric diseases. This review focuses on the role of miRNAs in five major chronic pediatric diseases including bronchial asthma, congenital heart diseases, cystic fibrosis, type 1 diabetes mellitus, and epilepsy, and their potential use as novel biomarkers for the diagnosis and prognosis of these disorders.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| | - Luis M Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - S Janin Ledesma-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Javier A Benavides-Aguilar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Andrea Torres-Copado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Jonathan I Morales-Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Marcos De Donato
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, Bergen, 5021, Norway; Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
| |
Collapse
|
38
|
Grinkevich LN. The role of microRNAs in learning and long-term memory. Vavilovskii Zhurnal Genet Selektsii 2020; 24:885-896. [PMID: 35088002 PMCID: PMC8763713 DOI: 10.18699/vj20.687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023] Open
Abstract
The mechanisms of long-term memory formation and ways to improve it (in the case of its impairment) remain an extremely difficult problem yet to be solved. Over the recent years, much attention has been
paid to microRNAs in this regard. MicroRNAs are unique endogenous non-coding RNAs about 22 nucleotides in
length; each can regulate translation of hundreds of messenger RNA targets, thereby controlling entire gene networks. MicroRNAs are widely represented in the central nervous system. A large number of studies are currently
being conducted to investigate the role of microRNAs in the brain functioning. A number of microRNAs have
been shown to be involved in the process of synaptic plasticity, as well as in the long-term memory formation.
Disruption of microRNA biogenesis leads to significant cognitive dysfunctions. Moreover, impaired microRNA
biogenesis is one of the causes of the pathogenesis of mental disorders, neurodegenerative illnesses and senile
dementia, which are often accompanied by deterioration in the learning ability and by memory impairment.
Optimistic predictions are made that microRNAs can be used as targets for therapeutic treatment and for diagnosing the above pathologies. The importance of applications related to microRNAs significantly raises interest
in studying their functions in the brain. Thus, this review is focused on the role of microRNAs in cognitive processes. It describes microRNA biogenesis and the role of miRNAs in the regulation of gene expression, as well
as the latest achievements in studying the functional role of microRNAs in learning and in long-term memory
formation, depending on the activation or inhibition of their expression. The review presents summarized data
on the effect of impaired microRNA biogenesis on long-term memory formation, including those associated with
sleep deprivation. In addition, analysis is provided of the current literature related to the prospects of improving
cognitive processes by influencing microRNA biogenesis via the use of CRISPR/Cas9 technologies and active
mental and physical exercises.
Collapse
Affiliation(s)
- L. N. Grinkevich
- Pavlov Institute of Physiology of the Russian Academy of Sciences
| |
Collapse
|
39
|
Paul S, Ruiz-Manriquez LM, Serrano-Cano FI, Estrada-Meza C, Solorio-Diaz KA, Srivastava A. Human microRNAs in host-parasite interaction: a review. 3 Biotech 2020; 10:510. [PMID: 33178551 PMCID: PMC7644590 DOI: 10.1007/s13205-020-02498-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNA molecules with significant capacity to regulate the gene expression at the post-transcriptional level in a sequence-specific manner either through translation repression or mRNA degradation triggering a fine-tuning biological impact. They have been implicated in several processes, including cell growth and development, signal transduction, cell proliferation and differentiation, metabolism, apoptosis, inflammation, and immune response modulation. However, over the last few years, extensive studies have shown the relevance of miRNAs in human pathophysiology. Common human parasitic diseases, such as Malaria, Leishmaniasis, Amoebiasis, Chagas disease, Schistosomiasis, Toxoplasmosis, Cryptosporidiosis, Clonorchiasis, and Echinococcosis are the leading cause of death worldwide. Thus, identifying and characterizing parasite-specific miRNAs and their host targets, as well as host-related miRNAs, are important for a deeper understanding of the pathophysiology of parasite-specific diseases at the molecular level. In this review, we have demonstrated the impact of human microRNAs during host-parasite interaction as well as their potential to be used for diagnosis and prognosis purposes.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Luis M. Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Francisco I. Serrano-Cano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Karla A. Solorio-Diaz
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
40
|
Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current Status of microRNA-Based Therapeutic Approaches in Neurodegenerative Disorders. Cells 2020; 9:cells9071698. [PMID: 32679881 PMCID: PMC7407981 DOI: 10.3390/cells9071698] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a key gene regulator and play essential roles in several biological and pathological mechanisms in the human system. In recent years, plenty of miRNAs have been identified to be involved in the development of neurodegenerative disorders (NDDs), thus making them an attractive option for therapeutic approaches. Hence, in this review, we provide an overview of the current research of miRNA-based therapeutics for a selected set of NDDs, either for their high prevalence or lethality, such as Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, Friedreich's Ataxia, Spinal Muscular Atrophy, and Frontotemporal Dementia. We also discuss the relevant delivery techniques, pertinent outcomes, their limitations, and their potential to become a new generation of human therapeutic drugs in the near future.
Collapse
|
41
|
Malaguarnera M, Khan H, Cauli O. Resveratrol in Autism Spectrum Disorders: Behavioral and Molecular Effects. Antioxidants (Basel) 2020; 9:E188. [PMID: 32106489 PMCID: PMC7139867 DOI: 10.3390/antiox9030188] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (RSV) is a polyphenolic stillbenoid with significant anti-oxidative and anti-inflammatory properties recently tested in animal models of several neurological diseases. Altered immune alteration and oxidative stress have also been found in patients with autism spectrum disorders (ASD), and these alterations could add to the pathophysiology associated with ASD. We reviewed the current evidence about the effects of RSV administration in animal models and in patients with ASD. RSV administration improves the core-symptoms (social impairment and stereotyped activity) in animal models and it also displays beneficial effects in other behavioral abnormalities such as hyperactivity, anxiety and cognitive function. The molecular mechanisms by which RSV restores or improves behavioral abnormalities in animal models encompass both normalization of central and peripheral immune alteration and oxidative stress markers and new molecular mechanisms such as expression of cortical gamma-amino butyric acid neurons, certain type of miRNAs that regulate spine growth. One randomized, placebo-controlled clinical trial (RCT) suggested that RSV add-on risperidone therapy improves comorbid hyperactivity/non-compliance, whereas no effects where seen in core symptoms of ASD No RCTs about the effect of RSV as monotherapy have been performed and the results from preclinical studies encourage its feasibility. Further clinical trials should also identify those ASD patients with immune alterations and/or with increased oxidative stress markers that would likely benefit from RSV administration.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Research Center “The Great Senescence”, University of Catania, 95100 Catania, Italy;
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Marden 23200, Pakistan;
| | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
- Frailty and Cognitive Impairment Group (FROG), University of Valencia, 46010 Valencia, Spain
| |
Collapse
|