1
|
Sobral AF, Costa I, Teixeira V, Silva R, Barbosa DJ. Molecular Motors in Blood-Brain Barrier Maintenance by Astrocytes. Brain Sci 2025; 15:279. [PMID: 40149801 PMCID: PMC11940747 DOI: 10.3390/brainsci15030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
The blood-brain barrier (BBB) comprises distinct cell types, including endothelial cells, pericytes, and astrocytes, and is essential for central nervous system (CNS) homeostasis by selectively regulating molecular transport and maintaining integrity. In particular, astrocytes are essential for BBB function, as they maintain BBB integrity through their end-feet, which form a physical and biochemical interface that enhances endothelial cell function and barrier selectivity. Moreover, they secrete growth factors like vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β), which regulate tight junction (TJ) proteins (e.g., claudins and occludins) crucial for limiting paracellular permeability. Molecular motors like kinesins, dynein, and myosins are essential for these astrocyte functions. By facilitating vesicular trafficking and protein transport, they are essential for various functions, including trafficking of junctional proteins to support BBB integrity, the proper mitochondria localization within astrocyte processes for efficient energy supply, the polarized distribution of aquaporin (AQP)-4 at astrocyte end-feet for regulating water homeostasis across the BBB, and the modulation of neuroinflammatory responses. Moreover, myosin motors modulate actomyosin dynamics to regulate astrocyte process outgrowth, adhesion, migration, and morphology, facilitating their functional roles. Thus, motor protein dysregulation in astrocytes can compromise BBB function and integrity, increasing the risk of neurodegeneration. This review explores the complex interplay between astrocytes and molecular motors in regulating BBB homeostasis, which represents an attractive but poorly explored area of research.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Inês Costa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.C.); (R.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Vanessa Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.C.); (R.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
2
|
Weiss BE, Gant JC, Lin RL, Gollihue JL, Kraner SD, Rucker EB, Katsumata Y, Jiang Y, Nelson PT, Wilcock DM, Sompol P, Thibault O, Norris CM. Disrupted Calcium Dynamics in Reactive Astrocytes Occur with Endfeet-Arteriole Decoupling in an Amyloid Mouse Model of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634584. [PMID: 39896447 PMCID: PMC11785167 DOI: 10.1101/2025.01.24.634584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
While cerebrovascular dysfunction and reactive astrocytosis are extensively characterized hallmarks of Alzheimer's disease (AD) and related dementias, the dynamic relationship between reactive astrocytes and cerebral vessels remains poorly understood. Here, we used jGCaMP8f and two photon microscopy to investigate Ca2+ signaling in multiple astrocyte subcompartments, concurrent with changes in cerebral arteriole activity, in fully awake eight-month-old male and female 5xFAD mice, a model for AD-like pathology, and wild-type (WT) littermates. In the absence of movement, spontaneous Ca2+ transients in barrel cortex occurred more frequently in astrocyte somata, processes, and perivascular regions of 5xFAD mice. However, evoked arteriole dilations (in response to air puff stimulation of contralateral whiskers) and concurrent Ca2+ transients across astrocyte compartments were reduced in 5xFAD mice relative to WTs. Synchronous activity within multi-cell astrocyte networks was also impaired in the 5xFAD group. Using a custom application to assess functional coupling between astrocyte endfeet and immediately adjacent arteriole segments, we detected deficits in Ca2+ response probability in 5xFAD mice. Moreover, endfeet Ca2+ transients following arteriole dilations exhibited a slower onset, reduced amplitude, and lacked relative proportionality to vasomotive activity compared to WTs. The results reveal nuanced alterations in 5xFAD reactive astrocytes highlighted by impaired signaling fidelity between astrocyte endfeet and cerebral arterioles. The results have important implications for the mechanistic underpinnings of brain hypometabolism and the disruption of neurophysiological communication found in AD and other neurodegenerative conditions.
Collapse
|
3
|
Wang C, Cheng F, Han Z, Yan B, Liao P, Yin Z, Ge X, Li D, Zhong R, Liu Q, Chen F, Lei P. Human-induced pluripotent stem cell-derived neural stem cell exosomes improve blood-brain barrier function after intracerebral hemorrhage by activating astrocytes via PI3K/AKT/MCP-1 axis. Neural Regen Res 2025; 20:518-532. [PMID: 38819064 PMCID: PMC11317932 DOI: 10.4103/nrr.nrr-d-23-01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00029/figure1/v/2024-05-28T214302Z/r/image-tiff Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis. Human-induced pluripotent stem cell-derived neural stem cell exosomes (hiPSC-NSC-Exos) have shown potential for brain injury repair in central nervous system diseases. In this study, we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism. Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits, enhanced blood-brain barrier integrity, and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage. Additionally, hiPSC-NSC-Exos decreased immune cell infiltration, activated astrocytes, and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, and tumor necrosis factor-α post-intracerebral hemorrhage, thereby improving the inflammatory microenvironment. RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion, thereby improving blood-brain barrier integrity. Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects. In summary, our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity, in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.
Collapse
Affiliation(s)
- Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fangyuan Cheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Pan Liao
- School of Medicine, Nankai University, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Rongrong Zhong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Tianjin Neurological Institute, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Zhu Y, Verkhratsky A, Chen H, Yi C. Understanding glucose metabolism and insulin action at the blood-brain barrier: Implications for brain health and neurodegenerative diseases. Acta Physiol (Oxf) 2025; 241:e14283. [PMID: 39822067 PMCID: PMC11737474 DOI: 10.1111/apha.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins. An exception to this are brain regions, such as the hypothalamus and circumventricular organs, which are irrigated by fenestrated capillaries, allowing rapid and direct response to various blood components. We overview the metabolic functions of the BBB, with an emphasis on the impact of altered glucose metabolism and insulin signaling on BBB in the pathogenesis of neurodegenerative diseases. Notably, endothelial cells constituting the BBB exhibit distinct metabolic characteristics, primarily generating ATP through aerobic glycolysis. This occurs despite their direct exposure to the abundant oxygen in the bloodstream, which typically supports oxidative phosphorylation. The effects of insulin on astrocytes, which form the glial limitans component of the BBB, show a marked sexual dimorphism. BBB nutrient sensing in the hypothalamus, along with insulin signaling, regulates systemic metabolism. Insulin modifies BBB permeability by regulating the expression of tight junction proteins, angiogenesis, and vascular remodeling, as well as modulating blood flow in the brain. The disruptions in glucose and insulin signaling are particularly evident in neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, where BBB breakdown accelerates cognitive decline. This review highlights the critical role of normal glucose metabolism and insulin signaling in maintaining BBB functionality and investigates how disruptions in these pathways contribute to the onset and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiyi Zhu
- Research CenterThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenChina
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Department of NeurosciencesUniversity of the Basque Country, CIBERNEDLeioaBizkaiaSpain
- IKERBASQUE Basque Foundation for ScienceBilbaoSpain
- Department of Forensic Analytical Toxicology, School of Forensic MedicineChina Medical UniversityShenyangChina
| | - Hui Chen
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Chenju Yi
- Research CenterThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseGuangzhouChina
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational ResearchShenzhenChina
| |
Collapse
|
5
|
Kim S, Jung UJ, Kim SR. The Crucial Role of the Blood-Brain Barrier in Neurodegenerative Diseases: Mechanisms of Disruption and Therapeutic Implications. J Clin Med 2025; 14:386. [PMID: 39860392 PMCID: PMC11765772 DOI: 10.3390/jcm14020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The blood-brain barrier (BBB) is a crucial structure that maintains brain homeostasis by regulating the entry of molecules and cells from the bloodstream into the central nervous system (CNS). Neurodegenerative diseases such as Alzheimer's and Parkinson's disease, as well as ischemic stroke, compromise the integrity of the BBB. This leads to increased permeability and the infiltration of harmful substances, thereby accelerating neurodegeneration. In this review, we explore the mechanisms underlying BBB disruption, including oxidative stress, neuroinflammation, vascular dysfunction, and the loss of tight junction integrity, in patients with neurodegenerative diseases. We discuss how BBB breakdown contributes to neuroinflammation, neurotoxicity, and the abnormal accumulation of pathological proteins, all of which exacerbate neuronal damage and facilitate disease progression. Furthermore, we discuss potential therapeutic strategies aimed at preserving or restoring BBB function, such as anti-inflammatory treatments, antioxidant therapies, and approaches to enhance tight junction integrity. Given the central role of the BBB in neurodegeneration, maintaining its integrity represents a promising therapeutic approach to slow or prevent the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
6
|
Chen Y, Li Y, Li W, Li Y, Zhang D, Huang Y, Cai J, Wangkahart E, Jian J, Wang B. Designing and evaluating a novel blood-brain barrier in vitro model of teleost for reproducing alterations in brain infecting. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110039. [PMID: 39577787 DOI: 10.1016/j.fsi.2024.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
A new blood-brain barrier (BBB) in vitro model of tilapia (Oreochromis niloticus) was successfully established by co-culture with brain microvascular endothelial cell line TVEC-01 and brain astrocyte cell line TA-02 of tilapia. Experiments with the expression levels of BBB-related genes, TEER value detection and 4-h water-leaking test have shown that the BBB in vitro model has an excellent barrier effect. In bacterial penetration experiments, the pathogenic strain of Streptococcus agalactiae was able to pass through the BBB in vitro model and initiate a series of immune responses, among which TA-02 contributed to the expression of pro-inflammatory cytokines and TVEC-01 contributed to the expression of anti-inflammatory cytokines, providing an excellent research tool and theoretical basis for further study of meningitis. Moreover, the qRT-PCR and transmission electron microscopy revealed that the pathogenic strain of S. agalactiae effectively penetrated the BBB in vitro model of tilapia during early-stage infection without destroying tight junction integrity. This suggested that, in the initial phases of infection, the pathogenic strain of S. agalactiae may breach the BBB via a transcellular pathway rather than a paracellular pathway. Summarily, a novel BBB in vitro model of tilapia was successfully designed and evaluated for reproducing alterations in brain infecting.
Collapse
Affiliation(s)
- Yanghui Chen
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yi Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Wenze Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yuan Li
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Defeng Zhang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
| | - Yu Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Jia Cai
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Faculty of Technology, Mahasarakham University, Kantarawichai, Mahasarakham, Thailand
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Bei Wang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China.
| |
Collapse
|
7
|
Li K, Wang K, Xu SX, Xie XH, Tang Y, Zhang L, Liu Z. In vivo evidence of increased vascular endothelial growth factor in patients with major depressive disorder. J Affect Disord 2025; 368:151-159. [PMID: 39278472 DOI: 10.1016/j.jad.2024.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is a candidate mediator of blood-brain barrier (BBB) disruption in depression. However, previous studies have mainly focused on peripheral blood VEGF levels, and the results are heterogeneous. Here we use astrocyte-derived extracellular vesicles (ADEVs) isolated from plasma to explore the in vivo changes of VEGF levels in patients with major depressive disorder (MDD). METHODS Thirty-five unmedicated patients with MDD and 35 healthy controls (HCs) were enrolled, and plasma ADEVs were isolated from each participant. VEGF levels in ADEVs and glial fibrillary acidic protein (GFAP) in plasma were measured. Additionally, Alix and CD81, two established extracellular vesicle markers, were quantified in ADEVs. RESULTS At baseline, MDD patients exhibited significantly increased levels of VEGF in ADEVs and GFAP in plasma. Following four weeks of selective serotonin reuptake inhibitor treatment, these target protein levels did not significantly change. ROC curve analysis revealed an AUC of 0.711 for VEGF in ADEVs. In exploratory analysis, VEGF levels in ADEVs were positively correlated with Alix and CD81. LIMITATIONS Multiple factors regulate BBB permeability. This study focused solely on VEGF and the sample size for longitudinal analysis was relatively small. CONCLUSION Our study is the first to confirm increased ADEV-derived VEGF levels in patients with MDD, thereby providing preliminary evidence supporting the hypothesis that the BBB is disrupted in depression.
Collapse
Affiliation(s)
- Kun Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Clinical Laboratory, Affiliated Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Kun Wang
- Department of Psychiatry, Affied Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Tang
- Department of Psychiatry, Affied Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Lihong Zhang
- Clinical Laboratory, Affiliated Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Sasannia S, Leigh R, Bastani PB, Shin HG, van Zijl P, Knutsson L, Nyquist P. Blood-brain barrier breakdown in brain ischemia: Insights from MRI perfusion imaging. Neurotherapeutics 2025; 22:e00516. [PMID: 39709246 PMCID: PMC11840350 DOI: 10.1016/j.neurot.2024.e00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Brain ischemia is a major cause of neurological dysfunction and mortality worldwide. It occurs not only acutely, such as in acute ischemic stroke (AIS), but also in chronic conditions like cerebral small vessel disease (cSVD). Any other conditions resulting in brain hypoperfusion can also lead to ischemia. Ischemic events can cause blood-brain barrier (BBB) disruption and, ultimately, white matter alterations, contributing to neurological deficits and long-term functional impairments. Hence, understanding the mechanisms of BBB breakdown and white matter injury across various ischemic conditions is critical for developing effective interventions and improving patient outcomes. This review discusses the proposed mechanisms of ischemia-related BBB breakdown. Moreover, magnetic resonance imaging (MRI) based perfusion-weighted imaging (PWI) techniques sensitive to BBB permeability changes are described, including dynamic contrast-enhanced (DCE-MRI) and dynamic susceptibility contrast MRI (DSC-MRI), two perfusion-weighted imaging (PWI). These PWI techniques provide valuable insights that improve our understanding of the complex early pathophysiology of brain ischemia, which can lead to better assessment and management. Finally, in this review, we explore the implications of the mentioned neuroimaging findings, which emphasize the potential of neuroimaging biomarkers to guide personalized treatment and inform novel neuroprotective strategies. This review highlights the importance of investigating BBB changes in brain ischemia and the critical role of advanced neuroimaging in improving patient care and advancing stroke research.
Collapse
Affiliation(s)
- Sarvin Sasannia
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States.
| | - Richard Leigh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Pouya B Bastani
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Hyeong-Geol Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Peter van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Linda Knutsson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States; Department of Medical Radiation Physics, Lund University, Lund, Sweden.
| | - Paul Nyquist
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Neurocritical Care Division, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, MD, United States; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
9
|
Semyanov A, Verkhratsky A. Neuroglia in aging. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:49-67. [PMID: 40122631 DOI: 10.1016/b978-0-443-19104-6.00002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Aging is associated with morphologic and functional decline of the brain active milieu and, in particular, of the neuroglia, which compromises homeostatic support and neuroprotection. Astrocytes in aging undergo complex and region specific changes, manifested by morphologic atrophy and widespread functional asthenia. Aging leads to mitochondrial malfunction and reduced protein/lipid ratio in human astrocytes. Oligodendrocyte lineage cells are the most affected cells by the aging process, which limits myelinating capacity, thus leading to a substantial reduction in the white matter and deficient brain connectome. Finally, microglia undergo a morphologic functional dystrophy in the aged human brain which curtails brain defenses and increases brain vulnerability to neuropathology and especially to age-dependent neurodegenerative disorders. Lifestyle modifications, such as enriched environment, physical exercise, and healthy dieting, boost neuroglial support, thus improving cognitive longevity.
Collapse
Affiliation(s)
- Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, Jiaxing, Zhejiang, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
10
|
Blair HJ, Morales L, Cryan JF, Aburto MR. Neuroglia and the microbiota-gut-brain axis. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:171-196. [PMID: 40122624 DOI: 10.1016/b978-0-443-19104-6.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Glial cells are key players in the regulation of nervous system functioning in both the central and enteric nervous systems. Glial cells are dynamic and respond to environmental cues to modulate their activity. Increasing evidence suggests that these signals include those originating from the gut microbiota, the community of microorganisms, including bacteria, viruses, archaea, and protozoa, that inhabit the gut. The gut microbiota and the brain communicate in a bidirectional manner across multiple signaling pathways and interfaces that together comprise the microbiota-gut-brain axis. Here, we detail the role of glial cells, including astrocytes, microglia, and oligodendrocytes in the central nervous system, and glial cells in the enteric nervous system along this gut-brain axis. We review what is known regarding the modulation of glia by microbial signals, in particular by microbial metabolites which signal to the brain through systemic circulation and via the vagus nerve. In addition, we highlight what is yet to be discovered regarding the role of other gut microbiota signaling pathways in glial cell modulation and the challenges of research in this area.
Collapse
Affiliation(s)
- Hugo J Blair
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lorena Morales
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - María R Aburto
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
11
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
12
|
Nakayama-Kitamura K, Shigemoto-Mogami Y, Piantino M, Naka Y, Yamada A, Kitano S, Furihata T, Matsusaki M, Sato K. Collagen I Microfiber Promotes Brain Capillary Network Formation in Three-Dimensional Blood-Brain Barrier Microphysiological Systems. Biomedicines 2024; 12:2500. [PMID: 39595066 PMCID: PMC11591679 DOI: 10.3390/biomedicines12112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) strictly regulates the penetration of substances into the brain, which, although important for maintaining brain homeostasis, may delay drug development because of the difficulties in predicting pharmacokinetics/pharmacodynamics (PKPD), toxicokinetics/toxicodynamics (TKTD), toxicity, safety, and efficacy in the central nervous system (CNS). Moreover, BBB functional proteins show species differences; therefore, humanized in vitro BBB models are urgently needed to improve the predictability of preclinical studies. Recently, international trends in the 3Rs in animal experiments and the approval of the FDA Modernization Act 2.0 have accelerated the application of microphysiological systems (MPSs) in preclinical studies, and in vitro BBB models have become synonymous with BBB-MPSs. Recently, we developed an industrialized humanized BBB-MPS, BBB-NET. In our previous report, we reproduced transferrin receptor (TfR)-mediated transcytosis with high efficiency and robustness, using hydrogels including fibrin and collagen I microfibers (CMFs). METHODS We investigated how adding CMFs to the fibrin gel benefits BBB-NETs. RESULTS We showed that CMFs accelerate capillary network formation and maturation by promoting astrocyte (AC) survival, and clarified that integrin β1 is involved in the mechanism of CMFs. CONCLUSIONS Our data suggest that the quality control (QC) of CMFs is important for ensuring the stable production of BBB-NETs.
Collapse
Affiliation(s)
- Kimiko Nakayama-Kitamura
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki City 210-9501, Kanagawa, Japan; (K.N.-K.); (Y.S.-M.)
| | - Yukari Shigemoto-Mogami
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki City 210-9501, Kanagawa, Japan; (K.N.-K.); (Y.S.-M.)
| | - Marie Piantino
- Joint Research Laboratory for Social Implementation of Cultured Meat, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (M.P.); (M.M.)
| | - Yasuhiro Naka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan;
| | - Asuka Yamada
- TOPPAN Holdings Inc., TOPPAN Technical Research Institute, 4-2 Takanodaiminami, Sugitomachi, Saitama 345-8508, Saitama, Japan; (A.Y.); (S.K.)
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Shiro Kitano
- TOPPAN Holdings Inc., TOPPAN Technical Research Institute, 4-2 Takanodaiminami, Sugitomachi, Saitama 345-8508, Saitama, Japan; (A.Y.); (S.K.)
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Tomomi Furihata
- Laboratory of Advanced Drug Developmen Sciences, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan;
| | - Michiya Matsusaki
- Joint Research Laboratory for Social Implementation of Cultured Meat, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (M.P.); (M.M.)
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan;
| | - Kaoru Sato
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki City 210-9501, Kanagawa, Japan; (K.N.-K.); (Y.S.-M.)
| |
Collapse
|
13
|
Wang S, Wu L, Xie Y, Ge S, Wu Y, Chen L, Yi L, Yang J, Duan F, Huang L. Erjingpill bionic cerebrospinal fluid alleviates LPS-induced inflammatory response in BV2 cells by inhibiting glycolysis via mTOR. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118412. [PMID: 38824976 DOI: 10.1016/j.jep.2024.118412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erjingpill, a well-known prescription documented in the classic Chinese medical text "Shengji Zonglu," has been proven to have effective alleviating effects on neuroinflammation in Alzheimer's disease (AD). Although the alterations in microglial cell glycolysis are known to play a crucial role in the development of neuroinflammation, it remains unclear whether the anti-neuroinflammatory effects of Erjingpill are associated with its impact on microglial cell glycolysis. AIM OF THE STUDY This study aims to determine whether Erjingpill exerts anti-neuroinflammatory effects by influencing microglial cell glycolysis. MATERIALS AND METHODS Firstly, Erjingpill decoction was prepared into an Erjingpill bionic cerebrospinal fluid (EBCF) through a process of in vitro intestinal absorption, hepatocyte incubation, and blood-brain barrier (BBB) transcytosis. Subsequently, UPLC/Q-TOF-MS/MS technology was used to analyze the compounds in Erjingpill and EBCF. Next, an in vitro neuroinflammation model was established by LPS-induced BV2 cells. The impact of EBCF on BV2 cell proliferation activity was evaluated using the CCK-8 assay, while the NO release was assessed using the Griess assay. Additionally, mRNA levels of pro-inflammatory factors (IL-1β, IL-6, TNF-α, and COX-2), anti-inflammatory factors (IL-10, IL-4, Arg-1, and TGF-β), M1 microglial markers (iNOS, CD86), M2 microglial markers (CD36, CD206), and glycolytic enzymes (HK2, GLUT1, PKM, and LDHA) were measured using qPCR. Furthermore, protein expression of microglial activation marker Iba-1, M1 marker iNOS, and M2 marker CD206 were identified through immunofluorescence, while concentrations of pro-inflammatory cytokines IL-1β and TNF-α were measured using ELISA. Enzymatic activity of glycolytic enzymes (HK, PK, and LDH) was assessed using assay kits, and the protein levels of pro-inflammatory factors (IL-1β, iNOS, and COX-2), anti-inflammatory factors (IL-10 and Arg-1), and key glycolytic proteins GLUT1 and PI3K/AKT/mTOR were detected by Western blot. RESULTS Through the analysis of Erjingpill and EBCF, 144 compounds were identified in Erjingpill and 40 compounds were identified in EBCF. The results demonstrated that EBCF effectively inhibited the elevation of inflammatory factors and glycolysis levels in LPS-induced BV2 cells, promoted polarization of M1 microglial cells towards the M2 phenotype, and suppressed the PI3K/AKT/mTOR inflammatory pathway. Moreover, EBCF alleviated LPS-induced BV2 cell inflammatory response by modulating mTOR to inhibit glycolysis. CONCLUSIONS EBCF exhibits significant anti-neuroinflammatory effects, likely attributed to its modulation of mTOR to inhibit microglial cell glycolysis. This study furnishes experimental evidence supporting the clinical utilization of Erjingpill for preventing and treating AD.
Collapse
Affiliation(s)
- Shuaikang Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Li Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Yongyan Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Shuchao Ge
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Yi Wu
- Jiangxi Provincial Institute of Food and Drug Inspection and Testing, Nanchang, Jiangxi, 330004, China.
| | - Liping Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Longgen Yi
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Jie Yang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Feipeng Duan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China; Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| |
Collapse
|
14
|
Al-Huthaifi AM, Radman BA, Al-Alawi AA, Mahmood F, Liu TB. Mechanisms and Virulence Factors of Cryptococcus neoformans Dissemination to the Central Nervous System. J Fungi (Basel) 2024; 10:586. [PMID: 39194911 DOI: 10.3390/jof10080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cryptococcosis is a prevalent fungal infection of the central nervous system (CNS) caused by Cryptococcus neoformans, a yeast with a polysaccharide capsule in the basidiomycete group. Normally, C. neoformans infects the respiratory tract and then breaches the blood-brain barrier (BBB), leading to meningitis or meningoencephalitis, which leads to hundreds of thousands of deaths each year. Although the mechanism by which C. neoformans infiltrates the BBB to invade the brain has yet to be fully understood, research has revealed that C. neoformans can cross the BBB using transcellular penetration, paracellular traversal, and infected phagocytes (the "Trojan horse" mechanism). The secretion of multiple virulence factors by C. neoformans is crucial in facilitating the spread of infection after breaching the BBB and causing brain infections. Extensive research has shown that various virulence factors play a significant role in the dissemination of infection beyond the lungs. This review explores the mechanisms of C. neoformans entering the CNS and explains how it bypasses the BBB. Additionally, it aims to understand the interplay between the regulatory mechanisms and virulence factors of C. neoformans.
Collapse
Affiliation(s)
| | - Bakeel A Radman
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | | | - Fawad Mahmood
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- Medical Research Institute, Southwest University, Chongqing 400715, China
- Jinfeng Laboratory, Chongqing 401329, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Li Z, Jiang YY, Long C, Peng X, Tao J, Pu Y, Yue R. Bridging metabolic syndrome and cognitive dysfunction: role of astrocytes. Front Endocrinol (Lausanne) 2024; 15:1393253. [PMID: 38800473 PMCID: PMC11116704 DOI: 10.3389/fendo.2024.1393253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Metabolic syndrome (MetS) and cognitive dysfunction pose significant challenges to global health and the economy. Systemic inflammation, endocrine disruption, and autoregulatory impairment drive neurodegeneration and microcirculatory damage in MetS. Due to their unique anatomy and function, astrocytes sense and integrate multiple metabolic signals, including peripheral endocrine hormones and nutrients. Astrocytes and synapses engage in a complex dialogue of energetic and immunological interactions. Astrocytes act as a bridge between MetS and cognitive dysfunction, undergoing diverse activation in response to metabolic dysfunction. This article summarizes the alterations in astrocyte phenotypic characteristics across multiple pathological factors in MetS. It also discusses the clinical value of astrocytes as a critical pathologic diagnostic marker and potential therapeutic target for MetS-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Zihan Li
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya-yi Jiang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyi Long
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Peng
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajing Tao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueheng Pu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Zhou S, Liu C, Wang J, Ye J, Lian Q, Gan L, Deng S, Xu T, Guo Y, Li W, Zhang Z, Yang GY, Tang Y. CCL5 mediated astrocyte-T cell interaction disrupts blood-brain barrier in mice after hemorrhagic stroke. J Cereb Blood Flow Metab 2024; 44:367-383. [PMID: 37974301 PMCID: PMC10870968 DOI: 10.1177/0271678x231214838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
The crosstalk between reactive astrocytes and infiltrated immune cells plays a critical role in maintaining blood-brain barrier (BBB) integrity. However, how astrocytes interact with immune cells and the effect of their interaction on BBB integrity after hemorrhagic stroke are still unclear. By performing RNA sequencing in astrocytes that were activated by interleukin-1α (IL-1α), tumor necrosis factor α (TNFα), and complement component 1q (C1q) treatment, we found CCL5 was among the top upregulated genes. Immunostaining and western blot results demonstrated that CCL5 was increased in mice brain after hemorrhagic stroke. Flow cytometry showed that knockout of astrocytic CCL5 reduced the infiltration of CD8+ but not CD4+ T and myeloid cells into the brain (p < 0.05). In addition, knockout CCL5 in astrocytes increased tight junction-related proteins ZO-1 and Occludin expression; reduced Evans blue leakage, perforin and granzyme B expression; improved neurobehavioral outcomes in hemorrhagic stroke mice (p < 0.05), while transplantation of CD8+ T cells reversed these protective effects. Moreover, co-culture of CD8+ T cells with bEnd.3 cells induced the apoptosis of bEnd.3 cells, which was rescued by inhibiting perforin. In conclusion, our study suggests that CCL5 mediated crosstalk between astrocytes and CD8+ T cells represents an important therapeutic target for protecting BBB in stroke.
Collapse
Affiliation(s)
- Shiyi Zhou
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Liu
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ye
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qianyuan Lian
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Gan
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyu Deng
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tongtong Xu
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyan Guo
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wanlu Li
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Shanghai Sixth People’s Hospital and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Zhou Y, Huang Y, Yang C, Zang X, Deng H, Liu J, Zhao E, Tian T, Pan L, Xue X. The pathways and the mechanisms by which Cryptococcus enters the brain. Mycology 2024; 15:345-359. [PMID: 39247889 PMCID: PMC11376299 DOI: 10.1080/21501203.2023.2295409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 09/10/2024] Open
Abstract
Generally, Cryptococcus initially infects the respiratory tract, but can spread, eventually crossing the blood-brain barrier (BBB) and causing meningitis or meningoencephalitis. Specifically, Cryptococcus invades the vascular endothelial cells of the BBB, from which it enters the brain. The main mechanisms through which Cryptococcus crosses the BBB are transcellular traversal, the paracellular pathway, and via Trojan horse. In this paper, the mechanisms by which Cryptococcus crosses the BBB were explained in detail. In addition to pathways of entry to the brain, this paper presents a discussion on some rare cryptococcal infections and provides some insights for future research directions.
Collapse
Affiliation(s)
- Yangyu Zhou
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yemei Huang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Department of Respiratory and Critical Care, Weifang Medical College, Weifang, China
| | - Xuelei Zang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hengyu Deng
- Department of Laboratory Medicine, Chinese PLA General Hospital, the First Medical Centre, Beijing, China
| | - Jing Liu
- Department of Laboratory Medicine, Chinese PLA General Hospital, the First Medical Centre, Beijing, China
| | - Enqi Zhao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Tingyue Tian
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Pan
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Laboratory Medicine, Chinese PLA General Hospital, the First Medical Centre, Beijing, China
| |
Collapse
|
18
|
Pociūtė A, Kriaučiūnaitė K, Kaušylė A, Zablockienė B, Alčauskas T, Jelinskaitė A, Rudėnaitė A, Jančorienė L, Ročka S, Verkhratsky A, Pivoriūnas A. Plasma of COVID-19 Patients Does Not Alter Electrical Resistance of Human Endothelial Blood-Brain Barrier In Vitro. FUNCTION 2024; 5:zqae002. [PMID: 38486975 PMCID: PMC10935481 DOI: 10.1093/function/zqae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 03/17/2024] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 instigated the most serious global health crisis. Clinical presentation of COVID-19 frequently includes severe neurological and neuropsychiatric symptoms. However, it is presently unknown whether and to which extent pathological impairment of blood-brain barrier (BBB) contributes to the development of neuropathology during COVID-19 progression. In the present study, we used human induced pluripotent stem cells-derived brain endothelial cells (iBECs) to study the effects of blood plasma derived from COVID-19 patients on the BBB integrity in vitro. We also performed a comprehensive analysis of the cytokine and chemokine profiles in the plasma of COVID-19 patients, healthy and recovered individuals. We found significantly increased levels of interferon γ-induced protein 10 kDa, hepatocyte growth factor, and interleukin-18 in the plasma of COVID-19 patients. However, blood plasma from COVID-19 patients did not affect transendothelial electrical resistance in iBEC monolayers. Our results demonstrate that COVID-19-associated blood plasma inflammatory factors do not affect BBB paracellular pathway directly and suggest that pathological remodeling (if any) of BBB during COVID-19 may occur through indirect or yet unknown mechanisms.
Collapse
Affiliation(s)
- Agnė Pociūtė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Karolina Kriaučiūnaitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Aida Kaušylė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Birutė Zablockienė
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
- Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, LT-08406 Vilnius, Lithuania
| | - Tadas Alčauskas
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Augustė Jelinskaitė
- Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, LT-08406 Vilnius, Lithuania
| | - Akvilė Rudėnaitė
- Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, LT-08406 Vilnius, Lithuania
| | - Ligita Jančorienė
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
- Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, LT-08406 Vilnius, Lithuania
| | - Saulius Ročka
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
- Center of Neurosurgery, Vilnius University Hospital Santaros Klinikos, LT-08661 Vilnius, Lithuania
| | - Alexei Verkhratsky
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110052, China
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| |
Collapse
|
19
|
Wang R, Bai J. Pharmacological interventions targeting the microcirculation following traumatic spinal cord injury. Neural Regen Res 2024; 19:35-42. [PMID: 37488841 PMCID: PMC10479866 DOI: 10.4103/1673-5374.375304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/08/2023] [Accepted: 04/07/2023] [Indexed: 07/26/2023] Open
Abstract
Traumatic spinal cord injury is a devastating disorder characterized by sensory, motor, and autonomic dysfunction that severely compromises an individual's ability to perform activities of daily living. These adverse outcomes are closely related to the complex mechanism of spinal cord injury, the limited regenerative capacity of central neurons, and the inhibitory environment formed by traumatic injury. Disruption to the microcirculation is an important pathophysiological mechanism of spinal cord injury. A number of therapeutic agents have been shown to improve the injury environment, mitigate secondary damage, and/or promote regeneration and repair. Among them, the spinal cord microcirculation has become an important target for the treatment of spinal cord injury. Drug interventions targeting the microcirculation can improve the microenvironment and promote recovery following spinal cord injury. These drugs target the structure and function of the spinal cord microcirculation and are essential for maintaining the normal function of spinal neurons, axons, and glial cells. This review discusses the pathophysiological role of spinal cord microcirculation in spinal cord injury, including its structure and histopathological changes. Further, it summarizes the progress of drug therapies targeting the spinal cord microcirculation after spinal cord injury.
Collapse
Affiliation(s)
- Rongrong Wang
- Department of Spine and Spinal Cord Surgery, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Jinzhu Bai
- Department of Spine and Spinal Cord Surgery, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Garaschuk O, Verkhratsky A. Calcium Signalling in Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:123-133. [PMID: 39207689 DOI: 10.1007/978-3-031-55529-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Intracellular Ca2+ signalling represents the substrate of microglial excitability. Spatially and temporally organised changes in the free cytoplasmic Ca2+ concentration ([Ca2+]i) are generated in response to physiological and pathological stimuli. Parameters of these intracellular Ca2+ signals are defined by Ca2+ signalling toolkits that may change with age or context therefore increasing adaptive capabilities of microglia. Main Ca2+ signalling pathways in microglial cells are associated with dynamic endoplasmic reticulum Ca2+ stores and with plasmalemmal Ca2+ entry mediated by several sets of Ca2+-permeable channels including transient receptor potential (TRP) channels, ORAI channels and P2X4/7 purinoceptors. Microglial Ca2+ dynamics is also linked to TREM2 signalling cascade, contributing to neuroprotection in neurodegenerative diseases. Microglial Ca2+ signals act as reliable and precise sensors of brain dyshomeostasis and pathological insults.
Collapse
Affiliation(s)
- Olga Garaschuk
- Institute of Physiology, Department Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
21
|
Manu DR, Slevin M, Barcutean L, Forro T, Boghitoiu T, Balasa R. Astrocyte Involvement in Blood-Brain Barrier Function: A Critical Update Highlighting Novel, Complex, Neurovascular Interactions. Int J Mol Sci 2023; 24:17146. [PMID: 38138976 PMCID: PMC10743219 DOI: 10.3390/ijms242417146] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Neurological disorders have been linked to a defective blood-brain barrier (BBB), with dysfunctions triggered by stage-specific disease mechanisms, some of these being generated through interactions in the neurovascular unit (NVU). Advanced knowledge of molecular and signaling mechanisms in the NVU and the emergence of improved experimental models allow BBB permeability prediction and the development of new brain-targeted therapies. As NVU constituents, astrocytes are the most numerous glial cells, characterized by a heterogeneity that occurs as a result of developmental and context-based gene expression profiles and the differential expression of non-coding ribonucleic acids (RNAs). Due to their heterogeneity and dynamic responses to different signals, astrocytes may have a beneficial or detrimental role in the BBB's barrier function, with deep effects on the pathophysiology of (and on the progression of) central nervous system diseases. The implication of astrocytic-derived extracellular vesicles in pathological mechanisms, due to their ability to pass the BBB, must also be considered. The molecular mechanisms of astrocytes' interaction with endothelial cells at the BBB level are considered promising therapeutic targets in different neurological conditions. Nevertheless, a personalized and well-founded approach must be addressed, due to the temporal and spatial heterogeneity of reactive astrogliosis states during disease.
Collapse
Affiliation(s)
- Doina Ramona Manu
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (D.R.M.); (M.S.)
| | - Mark Slevin
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (D.R.M.); (M.S.)
- Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK
| | - Laura Barcutean
- Neurology 1 Clinic, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Timea Forro
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Tudor Boghitoiu
- Psychiatry II Clinic, County Clinical Hospital, 540072 Targu Mures, Romania;
| | - Rodica Balasa
- Neurology 1 Clinic, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
22
|
Martinez-Lozada Z, Todd FW, Schober AL, Krizman E, Robinson MB, Murai KK. Cooperative and competitive regulation of the astrocytic transcriptome by neurons and endothelial cells: Impact on astrocyte maturation. J Neurochem 2023; 167:52-75. [PMID: 37525469 PMCID: PMC10543513 DOI: 10.1111/jnc.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 08/02/2023]
Abstract
Astrocytes have essential roles in central nervous system (CNS) health and disease. During development, immature astrocytes show complex interactions with neurons, endothelial cells, and other glial cell types. Our work and that of others have shown that these interactions are important for astrocytic maturation. However, whether and how these cells work together to control this process remains poorly understood. Here, we test the hypothesis that cooperative interactions of astrocytes with neurons and endothelial cells promote astrocytic maturation. Astrocytes were cultured alone, with neurons, endothelial cells, or a combination of both. This was followed by astrocyte sorting, RNA sequencing, and bioinformatic analysis to detect transcriptional changes. Across culture configurations, 7302 genes were differentially expressed by 4 or more fold and organized into 8 groups that demonstrate cooperative and antagonist effects of neurons and endothelia on astrocytes. We also discovered that neurons and endothelial cells caused splicing of 200 and 781 mRNAs, respectively. Changes in gene expression were validated using quantitative PCR, western blot (WB), and immunofluorescence analysis. We found that the transcriptomic data from the three-culture configurations correlated with protein expression of three representative targets (FAM107A, GAT3, and GLT1) in vivo. Alternative splicing results also correlated with cortical tissue isoform representation of a target (Fibronectin 1) at different developmental stages. By comparing our results to published transcriptomes of immature and mature astrocytes, we found that neurons or endothelia shift the astrocytic transcriptome toward a mature state and that the presence of both cell types has a greater effect on maturation than either cell alone. These results increase our understanding of cellular interactions/pathways that contribute to astrocytic maturation. They also provide insight into how alterations to neurons and/or endothelial cells may alter astrocytes with implications for astrocytic changes in CNS disorders and diseases.
Collapse
Affiliation(s)
- Zila Martinez-Lozada
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA, 19104-4318
| | - Farmer W. Todd
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada H3G 1A4
| | - Alexandra L. Schober
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada H3G 1A4
| | - Elizabeth Krizman
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA, 19104-4318
| | - Michael B. Robinson
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA, 19104-4318
| | - Keith K. Murai
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada H3G 1A4
| |
Collapse
|
23
|
Wang T, Sun Y, Dettmer U. Astrocytes in Parkinson's Disease: From Role to Possible Intervention. Cells 2023; 12:2336. [PMID: 37830550 PMCID: PMC10572093 DOI: 10.3390/cells12192336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons. While neuronal dysfunction is central to PD, astrocytes also play important roles, both positive and negative, and such roles have not yet been fully explored. This literature review serves to highlight these roles and how the properties of astrocytes can be used to increase neuron survivability. Astrocytes normally have protective functions, such as releasing neurotrophic factors, metabolizing glutamate, transferring healthy mitochondria to neurons, or maintaining the blood-brain barrier. However, in PD, astrocytes can become dysfunctional and contribute to neurotoxicity, e.g., via impaired glutamate metabolism or the release of inflammatory cytokines. Therefore, astrocytes represent a double-edged sword. Restoring healthy astrocyte function and increasing the beneficial effects of astrocytes represents a promising therapeutic approach. Strategies such as promoting neurotrophin release, preventing harmful astrocyte reactivity, or utilizing regional astrocyte diversity may help restore neuroprotection.
Collapse
Affiliation(s)
- Tianyou Wang
- Collège Jean-de-Brébeuf, 3200 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1C1, Canada
| | - Yingqi Sun
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK;
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
24
|
Tregub PP, Ibrahimli I, Averchuk AS, Salmina AB, Litvitskiy PF, Manasova ZS, Popova IA. The Role of microRNAs in Epigenetic Regulation of Signaling Pathways in Neurological Pathologies. Int J Mol Sci 2023; 24:12899. [PMID: 37629078 PMCID: PMC10454825 DOI: 10.3390/ijms241612899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
In recent times, there has been a significant increase in researchers' interest in the functions of microRNAs and the role of these molecules in the pathogenesis of many multifactorial diseases. This is related to the diagnostic and prognostic potential of microRNA expression levels as well as the prospects of using it in personalized targeted therapy. This review of the literature analyzes existing scientific data on the involvement of microRNAs in the molecular and cellular mechanisms underlying the development of pathologies such as Alzheimer's disease, cerebral ischemia and reperfusion injury, and dysfunction of the blood-brain barrier.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
- Research Center of Neurology, 125367 Moscow, Russia
| | - Irada Ibrahimli
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Alla B. Salmina
- Research Center of Neurology, 125367 Moscow, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
25
|
Zhong L, Wang J, Wang P, Liu X, Liu P, Cheng X, Cao L, Wu H, Chen J, Zhou L. Neural stem cell-derived exosomes and regeneration: cell-free therapeutic strategies for traumatic brain injury. Stem Cell Res Ther 2023; 14:198. [PMID: 37553595 PMCID: PMC10408078 DOI: 10.1186/s13287-023-03409-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
Regenerative repair of the brain after traumatic brain injury (TBI) remains an extensive clinical challenge, inspiring intensified interest in therapeutic approaches to explore superior repair strategies. Exosome therapy is another research hotspot following stem cell alternative therapy. Prior research verified that exosomes produced by neural stem cells can participate in the physiological and pathological changes associated with TBI and have potential neuroregulatory and repair functions. In comparison with their parental stem cells, exosomes have superior stability and immune tolerance and lower tumorigenic risk. In addition, they can readily penetrate the blood‒brain barrier, which makes their treatment efficiency superior to that of transplanted stem cells. Exosomes secreted by neural stem cells present a promising strategy for the development of novel regenerative therapies. Their tissue regeneration and immunomodulatory potential have made them encouraging candidates for TBI repair. The present review addresses the challenges, applications and potential mechanisms of neural stem cell exosomes in regenerating damaged brains.
Collapse
Affiliation(s)
- Lin Zhong
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Jingjing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
| | - Peng Wang
- Department of Health Management, Tianjin Hospital, Tianjin, 300211, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peng Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Lujia Cao
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Hongwei Wu
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| | - Jing Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
26
|
Li Z, Jiang Y, Long C, Peng Q, Yue R. The gut microbiota-astrocyte axis: Implications for type 2 diabetic cognitive dysfunction. CNS Neurosci Ther 2023; 29 Suppl 1:59-73. [PMID: 36601656 PMCID: PMC10314112 DOI: 10.1111/cns.14077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Diabetic cognitive dysfunction (DCD) is one of the most insidious complications of type 2 diabetes mellitus, which can seriously affect the ability to self-monitoring of blood glucose and the quality of life in the elderly. Previous pathological studies of cognitive dysfunction have focused on neuronal dysfunction, characterized by extracellular beta-amyloid deposition and intracellular tau hyperphosphorylation. In recent years, astrocytes have been recognized as a potential therapeutic target for cognitive dysfunction and important participants in the central control of metabolism. The disorder of gut microbiota and their metabolites have been linked to a series of metabolic diseases such as diabetes mellitus. The imbalance of intestinal flora has the effect of promoting the occurrence and deterioration of several diabetes-related complications. Gut microbes and their metabolites can drive astrocyte activation. AIMS We reviewed the pathological progress of DCD related to the "gut microbiota-astrocyte" axis in terms of peripheral and central inflammation, intestinal and blood-brain barrier (BBB) dysfunction, systemic and brain energy metabolism disorders to deepen the pathological research progress of DCD and explore the potential therapeutic targets. CONCLUSION "Gut microbiota-astrocyte" axis, unique bidirectional crosstalk in the brain-gut axis, mediates the intermediate pathological process of neurocognitive dysfunction secondary to metabolic disorders in diabetes mellitus.
Collapse
Affiliation(s)
- Zi‐Han Li
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ya‐Yi Jiang
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Cai‐Yi Long
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Qian Peng
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ren‐Song Yue
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
27
|
Chen LP, Jiang HQ, Luo L, Qiu J, Xing XJ, Hou RY, Wu YJ. The role of intercellular junction proteins in the penetration resistance of Drosophila larvae to avermectin. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109557. [PMID: 36717043 DOI: 10.1016/j.cbpc.2023.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023]
Abstract
Insecticide resistance has become an increasingly serious challenge for agriculture in the world. To reveal the mechanisms of insecticide resistance, majority of studies have been carried out on the insensitivity of insecticide targets and the metabolism of insecticides. However, the mechanism of the insecticide penetration resistance in insects remains unclear. This study aimed to reveal the mechanism underlying the penetration resistance of Drosophila larvae to insecticide avermectin (AVM). Levels of intercellular junction proteins (IJPs) in the larvae were determined by Western blotting analysis and immunofluorescence assay. The result showed that the expression of IJPs septate junction and adherens junction proteins increased in the AVM-resistant insects compared with those in the AVM-susceptible ones, and the upregulation of the IJPs was mediated by the activation of protein kinase C (PKC) pathway. That AVM induced the activation of PKC was found not only in the Drosophila larvae but also in Drosophila S2 cells. These findings revealed that AVM could activate PKC pathway in Drosophila larvae, which mediated the upregulation of the IJPs and then led to the resistance to AVM, suggesting that the chemicals that can disrupt PKC activation may potentially be used to circumvent the resistance to AVM in insects.
Collapse
Affiliation(s)
- Li-Ping Chen
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Han-Qing Jiang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Liang Luo
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jun Qiu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xue-Jie Xing
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Rui-Yan Hou
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
28
|
Steardo L, Steardo L, Scuderi C. Astrocytes and the Psychiatric Sequelae of COVID-19: What We Learned from the Pandemic. Neurochem Res 2023; 48:1015-1025. [PMID: 35922744 PMCID: PMC9362636 DOI: 10.1007/s11064-022-03709-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Abstract
COVID-19, initially regarded as specific lung disease, exhibits an extremely broad spectrum of symptoms. Extrapulmonary manifestations of the disease also include important neuropsychiatric symptoms with atypical characteristics. Are these disturbances linked to stress accompanying every systemic infection, or are due to specific neurobiological changes associated with COVID-19? Evidence accumulated so far indicates that the pathophysiology of COVID-19 is characterized by systemic inflammation, hypoxia resulting from respiratory failure, and neuroinflammation (either due to viral neurotropism or in response to cytokine storm), all affecting the brain. It is reasonable to hypothesize that all these events may initiate or worsen psychiatric and cognitive disorders. Damage to the brain triggers a specific type of reactive response mounted by neuroglia cells, in particular by astrocytes which are the homeostatic cell par excellence. Astrocytes undergo complex morphological, biochemical, and functional remodeling aimed at mobilizing the regenerative potential of the central nervous system. If the brain is not directly damaged, resolution of systemic pathology usually results in restoration of the physiological homeostatic status of neuroglial cells. The completeness and dynamics of this process in pathological conditions remain largely unknown. In a subset of patients, glial cells could fail to recover after infection thus promoting the onset and progression of COVID-19-related neuropsychiatric diseases. There is evidence from post-mortem examinations of the brains of COVID-19 patients of alterations in both astrocytes and microglia. In conclusion, COVID-19 activates a huge reactive response of glial cells, that physiologically act as the main controller of the inflammatory, protective and regenerative events. However, in some patients the restoration of glial physiological state does not occur, thus compromising glial function and ultimately resulting in homeostatic failure underlying a set of specific neuropsychiatric symptoms related to COVID-19.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
- Università Giustino Fortunato, Benevento, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy.
| |
Collapse
|
29
|
Kriaučiūnaitė K, Pociūtė A, Kaušylė A, Verkhratsky A, Pivoriūnas A. Basic Fibroblast Growth Factor Opens and Closes the Endothelial Blood-Brain Barrier in a Concentration-Dependent Manner. Neurochem Res 2023; 48:1211-1221. [PMID: 35859077 DOI: 10.1007/s11064-022-03678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Multiple paracrine factors are implicated in the regulation of barrier properties of human brain endothelial cells (BECs) in different physiologic and pathologic settings. We have recently demonstrated that autocrine secretion of basic fibroblast growth factor (bFGF) by BECs is necessary for the establishment of endothelial barrier (as demonstrated by high trans-endothelial electric resistance, TEER), whereas exogenous bFGF inhibits TEER in a concentration-dependent manner. In the present study we analysed the contribution of MAPK/ERK and STAT3 signalling pathways to the inhibitory effects of exogenous bFGF. Treatment with bFGF (8 ng/ml) for 3 days increased phosphorylation of ERK1/2 and STAT3. Treatment with FGF receptor 1 (FGFR1) inhibitor PD173074 (15 μM) suppressed both basal and bFGF-induced activation of ERK1/2 and STAT3. Suppression of STAT signalling with Janus kinase inhibitor JAKi (15 nM) alone or in the presence of bFGF did not change TEER in BEC monolayers. Exposure to JAKi affected neither proliferation, nor expression and distribution of tight junction (TJ) proteins claudin-5, occludin and zonula occludens-1 (ZO-1). In contrast, treatment with MEK 1/2 inhibitor U0126 (10 μM) partially neutralised inhibitory effect of bFGF thus increasing TEER, whereas U0126 alone did not affect resistance of endothelial barrier. Our findings demonstrate that MAPK/ERK signalling pathway does not affect autocrine bFGF signalling-dependent BECs barrier function but is largely responsible for the disruptive effects of the exogenous bFGF. We speculate that bFGF may (depending on concentration and possibly origin) dynamically regulate permeability of the endothelial blood-brain barrier.
Collapse
Affiliation(s)
- Karolina Kriaučiūnaitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania
| | - Agnė Pociūtė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania
| | - Aida Kaušylė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania
| | - Alexei Verkhratsky
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- IKERBASQUE, Basque Foundation for Science, Achucarro Centre for Neuroscience, 48011, Bilbao, Spain.
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania.
| |
Collapse
|
30
|
Verkhratsky A, Pivoriūnas A. Astroglia support, regulate and reinforce brain barriers. Neurobiol Dis 2023; 179:106054. [PMID: 36842485 DOI: 10.1016/j.nbd.2023.106054] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023] Open
Abstract
Nervous system is segregated from the body by the complex system of barriers. The CNS is protected by (i) the blood-brain and blood-spinal cord barrier between the intracerebral and intraspinal blood vessels and the brain parenchyma; (ii) the arachnoid blood-cerebrospinal fluid barrier; (iii) the blood-cerebrospinal barrier of circumventricular organs made by tanycytes and (iv) the choroid plexus blood-CSF barrier formed by choroid ependymocytes. In the peripheral nervous system the nerve-blood barrier is secured by tight junctions between specialised glial cells known as perineural cells. In the CNS astroglia contribute to all barriers through the glia limitans, which represent the parenchymal portion of the barrier system. Astroglia through secretion of various paracrine factors regulate the permeability of endothelial vascular barrier; in pathology damage or asthenia of astrocytes may compromise brain barriers integrity.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
31
|
Astrocytes in the pathophysiology of neuroinfection. Essays Biochem 2023; 67:131-145. [PMID: 36562155 DOI: 10.1042/ebc20220082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Key homeostasis providing cells in the central nervous system (CNS) are astrocytes, which belong to the class of cells known as atroglia, a highly heterogeneous type of neuroglia and a prominent element of the brain defence. Diseases evolve due to altered homeostatic state, associated with pathology-induced astroglia remodelling represented by reactive astrocytes, astroglial atrophy and astrodegeneration. These features are hallmarks of most infectious insults, mediated by bacteria, protozoa and viruses; they are also prominent in the systemic infection. The COVID-19 pandemic revived the focus into neurotropic viruses such as SARS-CoV2 (Coronaviridae) but also the Flaviviridae viruses including tick-borne encephalitis (TBEV) and Zika virus (ZIKV) causing the epidemic in South America prior to COVID-19. Astrocytes provide a key response to neurotropic infections in the CNS. Astrocytes form a parenchymal part of the blood-brain barrier, the site of virus entry into the CNS. Astrocytes exhibit aerobic glycolysis, a form of metabolism characteristic of highly morphologically plastic cells, like cancer cells, hence a suitable milieu for multiplication of infectious agent, including viral particles. However, why the protection afforded by astrocytes fails in some circumstances is an open question to be studied in the future.
Collapse
|
32
|
Lochhead JJ, Williams EI, Reddell ES, Dorn E, Ronaldson PT, Davis TP. High Resolution Multiplex Confocal Imaging of the Neurovascular Unit in Health and Experimental Ischemic Stroke. Cells 2023; 12:645. [PMID: 36831312 PMCID: PMC9954836 DOI: 10.3390/cells12040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The neurovascular unit (NVU) is an anatomical group of cells that establishes the blood-brain barrier (BBB) and coordinates cerebral blood flow in association with neuronal function. In cerebral gray matter, cellular constituents of the NVU include endothelial cells and associated pericytes, astrocytes, neurons, and microglia. Dysfunction of the NVU is a common feature of diseases that affect the CNS, such as ischemic stroke. High-level evaluation of these NVU changes requires the use of imaging modalities that can enable the visualization of various cell types under disease conditions. In this study, we applied our confocal microscopy strategy using commercially available labeling reagents to, for the first time, simultaneously investigate associations between endothelial cells, the vascular basal lamina, pericytes, microglia, astrocytes and/or astrocyte end-feet, and neurites in both healthy and ischemic brain tissue. This allowed us to demonstrate ischemia-induced astrocyte activation, neurite loss, and microglial migration toward blood vessels in a single confocal image. Furthermore, our labeling cocktail enabled a precise quantification of changes in neurites and astrocyte reactivity, thereby showing the relationship between different NVU cellular constituents in healthy and diseased brain tissue. The application of our imaging approach for the simultaneous visualization of multiple NVU cell types provides an enhanced understanding of NVU function and pathology, a state-of-the-art advancement that will facilitate the development of more effective treatment strategies for diseases of the CNS that exhibit neurovascular dysfunction, such as ischemic stroke.
Collapse
Affiliation(s)
- Jeffrey J. Lochhead
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Erica I. Williams
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Elizabeth S. Reddell
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Emma Dorn
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Patrick T. Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Thomas P. Davis
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
33
|
Verkhratsky A, Semyanov A. Astrocytes in Ageing. Subcell Biochem 2023; 103:253-277. [PMID: 37120471 DOI: 10.1007/978-3-031-26576-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Ageing is associated with a morphological and functional decline of astrocytes with a prevalence of morphological atrophy and loss of function. In particular, ageing is manifested by the shrinkage of astrocytic processes: branches and leaflets, which decreases synaptic coverage. Astrocytic dystrophy affects multiple functions astrocytes play in the brain active milieu. In particular, and in combination with an age-dependent decline in the expression of glutamate transporters, astrocytic atrophy translates into deficient glutamate clearance and K+ buffering. Decreased astrocyte presence may contribute to age-dependent remodelling of brain extracellular space, hence affecting extrasynaptic signalling. Old astrocytes lose endfeet polarisation of AQP4 water channels, thus limiting the operation of the glymphatic system. In ageing, astrocytes down-regulate their antioxidant capacity leading to decreased neuroprotection. All these changes may contribute to an age-dependent cognitive decline.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Physiology, Jiaxing University College of Medicine, Jiaxing, Zhejiang Pro, China
| |
Collapse
|
34
|
Xu J, Li P, Lu F, Chen Y, Guo Q, Yang Y. Domino reaction of neurovascular unit in neuropathic pain after spinal cord injury. Exp Neurol 2023; 359:114273. [PMID: 36375510 DOI: 10.1016/j.expneurol.2022.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
The mechanism of neuropathic pain after spinal cord injury is complex, and the communication between neurons, glia, and blood vessels in neurovascular units significantly affects the occurrence and development of neuropathic pain. After spinal cord injury, a domino chain reaction occurs in the neuron-glia-vessel, which affects the permeability of the blood-spinal cord barrier and jointly promotes the development of neuroinflammation. This article discusses the signal transduction between neuro-glial-endothelial networks from a multidimensional point of view and reviews its role in neuropathic pain after spinal cord injury.
Collapse
Affiliation(s)
- Jingmei Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87th Xiangya Road, Kaifu District, Changsha, Hunan, China
| | - Ping Li
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Obstetrics, Xiangya Hospital, Central South University, 87th Xiangya Road, Kaifu District, Changsha, Hunan, China
| | - Feng Lu
- Department of Anesthesiology, First Affiliated Hospital of Gannan medical university, Ganzhou 341000, China
| | - Yulu Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87th Xiangya Road, Kaifu District, Changsha, Hunan, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87th Xiangya Road, Kaifu District, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yong Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87th Xiangya Road, Kaifu District, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
35
|
Role of Microglia and Astrocytes in Alzheimer’s Disease: From Neuroinflammation to Ca2+ Homeostasis Dysregulation. Cells 2022; 11:cells11172728. [PMID: 36078138 PMCID: PMC9454513 DOI: 10.3390/cells11172728] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia worldwide, with a complex, poorly understood pathogenesis. Cerebral atrophy, amyloid-β (Aβ) plaques, and neurofibrillary tangles represent the main pathological hallmarks of the AD brain. Recently, neuroinflammation has been recognized as a prominent feature of the AD brain and substantial evidence suggests that the inflammatory response modulates disease progression. Additionally, dysregulation of calcium (Ca2+) homeostasis represents another early factor involved in the AD pathogenesis, as intracellular Ca2+ concentration is essential to ensure proper cellular and neuronal functions. Although growing evidence supports the involvement of Ca2+ in the mechanisms of neurodegeneration-related inflammatory processes, scant data are available on its contribution in microglia and astrocytes functioning, both in health and throughout the AD continuum. Nevertheless, AD-related aberrant Ca2+ signalling in astrocytes and microglia is crucially involved in the mechanisms underpinning neuroinflammatory processes that, in turn, impact neuronal Ca2+ homeostasis and brain function. In this light, we attempted to provide an overview of the current understanding of the interactions between the glia cells-mediated inflammatory responses and the molecular mechanisms involved in Ca2+ homeostasis dysregulation in AD.
Collapse
|
36
|
LncRNA-Profile-Based Screening of Extracellular Vesicles Released from Brain Endothelial Cells after Oxygen–Glucose Deprivation. Brain Sci 2022; 12:brainsci12081027. [PMID: 36009090 PMCID: PMC9405926 DOI: 10.3390/brainsci12081027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Brain microvascular endothelial cells (BMECs) linked by tight junctions play important roles in cerebral ischemia. Intercellular signaling via extracellular vesicles (EVs) is an underappreciated mode of cell–cell crosstalk. This study aims to explore the potential function of long noncoding RNAs (lncRNAs) in BMECs’ secreted EVs. We subjected primary human and rat BMECs to oxygen and glucose deprivation (OGD). EVs were enriched for RNA sequencing. A comparison of the sequencing results revealed 146 upregulated lncRNAs and 331 downregulated lncRNAs in human cells and 1215 upregulated lncRNAs and 1200 downregulated lncRNAs in rat cells. Next, we analyzed the genes that were coexpressed with the differentially expressed (DE) lncRNAs on chromosomes and performed Gene Ontology (GO) and signaling pathway enrichment analyses. The results showed that the lncRNAs may play roles in apoptosis, the TNF signaling pathway, and leukocyte transendothelial migration. Next, three conserved lncRNAs between humans and rats were analyzed and confirmed using PCR. The binding proteins of these three lncRNAs in human astrocytes were identified via RNA pulldown and mass spectrometry. These proteins could regulate mRNA stability and translation. Additionally, the lentivirus was used to upregulate them in human microglial HMC3 cells. The results showed NR_002323.2 induced microglial M1 activation. Therefore, these results suggest that BMECs’ EVs carry the lncRNAs, which may regulate gliocyte function after cerebral ischemia.
Collapse
|
37
|
Wang X, Wang WM, Han H, Zhang Y, Liu JL, Yu JY, Liu HM, Liu XT, Shan H, Wu SC. Tanshinone IIA protected against lipopolysaccharide-induced brain injury through the protective effect of the blood-brain barrier and the suppression of oxidant stress and inflammatory response. Food Funct 2022; 13:8304-8312. [PMID: 35839080 DOI: 10.1039/d2fo00710j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Brain microvascular endothelial cells are essential components of the blood-brain barrier (BBB) that acts as a selective physical barrier and plays protective roles in maintaining brain homeostasis. Tanshinone IIA (Tan IIA), isolated from Salvia miltiorrhiza Bunge, exhibited healthy effects such as antioxidant effects, anti-inflammatory effects, and cardiovascular protective effects. Here, we tried to investigate the positive effect and the potential mechanism of Tan IIA on the lipopolysaccharide (LPS)-induced brain injury in mice and brain microvascular endothelial cells in vitro. In vivo, Tan IIA inhibited the brain injury, and the enhancement of blood-brain barrier permeability in the LPS-induced brain injury in mice. Moreover, Tan IIA suppressed inflammatory response and oxidant response in LPS-treated mice evidenced by low levels of serum TNF-α and IL-1β, high superoxide dismutase (SOD) activity and low malondialdehyde (MDA) in the brain. In vitro, Tan IIA suppressed the generation of reactive oxygen species (ROS) and MDA, and promoted SOD activity in LPS-stimulated brain microvascular endothelial cells. Moreover, Tan IIA promoted the expression of Claudin5, ZO-1, Nrf2, HO-1 and NQO1 in LPS-stimulated brain microvascular endothelial cells. In conclusion, Tan IIA protected against the LPS-induced brain injury via the suppression of oxidant stress and inflammatory response and protective effect of the BBB through activating Nrf2 signaling pathways and rescue of the tight junction proteins in microvascular endothelial cells, supporting the application of Tan IIA and Salvia miltiorrhiza Bunge as food supplements for the treatment of brain disease.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong 266109, China.
| | - Wei-Mei Wang
- College of Veterinary Medicine, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong 266109, China.
| | - Hao Han
- College of Veterinary Medicine, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong 266109, China.
| | - Yu Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong 266109, China.
| | - Jin-Ling Liu
- School of Foreign Languages, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Jia-Ying Yu
- College of Veterinary Medicine, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong 266109, China.
| | - Hui-Min Liu
- College of Veterinary Medicine, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong 266109, China.
| | - Xing-Tong Liu
- College of Veterinary Medicine, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong 266109, China.
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong 266109, China.
| | - Shuai-Cheng Wu
- College of Veterinary Medicine, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, Shandong 266109, China.
| |
Collapse
|
38
|
He T, Yang GY, Zhang Z. Crosstalk of Astrocytes and Other Cells during Ischemic Stroke. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060910. [PMID: 35743941 PMCID: PMC9228674 DOI: 10.3390/life12060910] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Astrocytes structurally compose tripartite synapses, blood–brain barrier, and the neurovascular unit and perform multiple functions through cell-to-cell signaling of neurons, glial cells, and vasculature. The crosstalk of astrocytes and other cells is complicated and incompletely understood. Here we review the role of astrocytes in response to ischemic stroke, both beneficial and detrimental, from a cell–cell interaction perspective. Reactive astrocytes provide neuroprotection through antioxidation and antiexcitatory effects and metabolic support; they also contribute to neurorestoration involving neurogenesis, synaptogenesis, angiogenesis, and oligodendrogenesis by crosstalk with stem cells and cell lineage. In the meantime, reactive astrocytes also play a vital role in neuroinflammation and brain edema. Glial scar formation in the chronic phase hinders functional recovery. We further discuss astrocyte enriched microRNAs and exosomes in the regulation of ischemic stroke. In addition, the latest notion of reactive astrocyte subsets and astrocytic activity revealed by optogenetics is mentioned. This review discusses the current understanding of the intimate molecular conversation between astrocytes and other cells and outlines its potential implications after ischemic stroke. “Neurocentric” strategies may not be sufficient for neurological protection and recovery; future therapeutic strategies could target reactive astrocytes.
Collapse
Affiliation(s)
- Tingting He
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China;
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| |
Collapse
|
39
|
Dunton AD, Göpel T, Ho DH, Burggren W. Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. Int J Mol Sci 2021; 22:ijms222212111. [PMID: 34829989 PMCID: PMC8618301 DOI: 10.3390/ijms222212111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
The need to protect neural tissue from toxins or other substances is as old as neural tissue itself. Early recognition of this need has led to more than a century of investigation of the blood-brain barrier (BBB). Many aspects of this important neuroprotective barrier have now been well established, including its cellular architecture and barrier and transport functions. Unsurprisingly, most research has had a human orientation, using mammalian and other animal models to develop translational research findings. However, cell layers forming a barrier between vascular spaces and neural tissues are found broadly throughout the invertebrates as well as in all vertebrates. Unfortunately, previous scenarios for the evolution of the BBB typically adopt a classic, now discredited 'scala naturae' approach, which inaccurately describes a putative evolutionary progression of the mammalian BBB from simple invertebrates to mammals. In fact, BBB-like structures have evolved independently numerous times, complicating simplistic views of the evolution of the BBB as a linear process. Here, we review BBBs in their various forms in both invertebrates and vertebrates, with an emphasis on the function, evolution, and conditional relevance of popular animal models such as the fruit fly and the zebrafish to mammalian BBB research.
Collapse
Affiliation(s)
- Alicia D. Dunton
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
- Correspondence:
| | - Torben Göpel
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| | - Dao H. Ho
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859, USA;
| | - Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| |
Collapse
|