1
|
Poondla N, Babaeizad A, Sheykhhasan M, Barry CJ, Manoochehri H, Tanzadehpanah H, Mahaki H, Al-Musawi S. Exosome-based therapies and biomarkers in stroke: Current advances and future directions. Exp Neurol 2025; 391:115286. [PMID: 40328416 DOI: 10.1016/j.expneurol.2025.115286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Stroke is a challenging neurological condition caused by interrupted blood flow to the brain and presents substantial global health concerns due to its prevalence and limited treatment options. Exosomes, tiny vesicles released by cells, are gaining attention for their potential in targeted drug delivery and as diagnostic and therapeutic biomarkers for stroke. This article outlines recent advances in exosome-based drug delivery systems and examines their application in managing stroke. Stroke presents with diverse symptoms depending on the brain region affected, and current treatments primarily aim to restore blood flow and manage risk factors. Exosomes exhibit a unique structure and composition and contain bioactive molecules. Their ability to cross the blood-brain barrier and target specific cells makes them promising candidates for precise drug delivery in stroke therapy. Exosomes contribute extensively to stroke pathophysiology and present considerable therapeutic promise by promoting neuroprotection and assisting in brain repair mechanisms. They can be engineered to carry various therapeutic substances, such as small molecules, enabling highly specific targeted delivery. Furthermore, the molecular compositions of exosomes reflect the pathological changes observed in stroke, indicating their potential use as biomarkers for early diagnosis, monitoring of disease progression, and creating individualized treatment strategies. Despite promising developments, challenges remain in optimizing exosome production, purification, and cargo loading. Further investigations into their biological mechanisms and clinical validation are crucial for translating their potential into tangible benefits for patients. This article highlights recent advances and future prospects in exosome research, underscoring their application as novel diagnostic and therapeutic tools in stroke management.
Collapse
Affiliation(s)
- Naresh Poondla
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Global Health Research, Saveetha Medical College& Hospital, Chennai 602105, India
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | | | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
2
|
Dhuppar S, Poller WC, Murugaiyan G. MicroRNAs in the biology and hallmarks of neurodegenerative diseases. Trends Mol Med 2025:S1471-4914(25)00057-7. [PMID: 40199696 DOI: 10.1016/j.molmed.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/24/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025]
Abstract
A combination of intracellular and extracellular abnormalities of the nervous system, coupled with inflammation and intestinal dysbiosis, form the hallmarks of neurodegenerative diseases (NDDs). While it is difficult to identify the precise order in which these hallmarks manifest in NDDs because of their mutualistic nature, they cumulatively result in nervous or neuronal damage that characterizes neurodegeneration. In this review we discuss the roles of microRNAs (miRNAs) in the maintenance of nervous system homeostasis and their implication for NDDs. We further highlight recent advances in, and limitations of, miRNA therapeutics in NDDs and their future potential.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Wolfram C Poller
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Yang HB, Lu DC, Shu M, Li J, Ma Z. The roles and therapeutic potential of exosomal non-coding RNAs in microglia-mediated intercellular communication. Int Immunopharmacol 2025; 148:114049. [PMID: 39823800 DOI: 10.1016/j.intimp.2025.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Exosomes, which are small extracellular vesicles (sEVs), serve as versatile regulators of intercellular communication in the progression of various diseases, including neurological disorders. Among the diverse array of cargo they carry, non-coding RNAs (ncRNAs) play key regulatory roles in various pathophysiological processes. Exosomal ncRNAs derived from distinct cells modulate their reciprocal crosstalk locally or remotely, thereby mediating neurological diseases. Nevertheless, the emerging role of exosomal ncRNAsin microglia-mediated phenotypes remains largely unexplored. This review aims to summarise the biological functions of exosomal ncRNAs and the molecular mechanisms that underlie their impact on microglia-mediated intercellular communication, modulating neuroinflammation and synaptic functions within the landscape of neurological disorders. Furthermore, this review comprehensively described the potential applications of exosomal ncRNAs as diagnostic and prognostic biomarkers, as well as innovative therapeutic targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Hu-Bo Yang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ding-Ci Lu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Min Shu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Juan Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.
| |
Collapse
|
4
|
Lu D, Sun H, Fan H, Li N, Li Y, Yin X, Fan Y, Sun H, Wang S, Xin T. Regulation of nerve cells and therapeutic potential in central nervous system injury using microglia-derived exosomes. Neuroscience 2024; 563:84-92. [PMID: 39521323 DOI: 10.1016/j.neuroscience.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The intercellular communication within the central nervous system (CNS) is of great importance for in maintaining brain function, homeostasis, and CNS regulation. When the equilibrium of CNS is disrupted or injured, microglia are immediately activated and respond to CNS injury. Microglia-derived exosomes are capable of participating in intercellular communication within the CNS by transporting various bioactive substances, including nucleic acids, proteins, lipids, amino acids, and metabolites. Nevertheless, microglia activation is a double-edged sword. Activated microglia can coordinate the neural repair process and, conversely, can amplify tissue injury and impede CNS repair. This work reviewed the roles of exosomes derived from microglia stimulated by different environments (mainly lipopolysaccharide, interleukin-4, and other specific preconditioning) in CNS injury and their possible therapeutic potentials. This work focuses on the regulation of exosomes derived from microglia stimulated by different environments on nerve cells. Meanwhile, we summarized the molecular mechanisms by which the relevant exosomes exert regulatory effects. Exosomes, derived from microglia stimulated by different environments, regulate other nerve cells during the repair of CNS injury, having beneficial or detrimental effects on CNS repair. A comprehensive understanding of the molecular mechanisms underlying their role can provide a robust foundation for the clinical treatment of CNS injury.
Collapse
Affiliation(s)
- Dongxiao Lu
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Haohan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Hao Fan
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China; Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250021, China
| | - Nianlu Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Yuming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Xianyong Yin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Yang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Hao Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China; Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250021, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
5
|
Xie H, Wu F, Mao J, Wang Y, Zhu J, Zhou X, Hong K, Li B, Qiu X, Wen C. The role of microglia in neurological diseases with involvement of extracellular vesicles. Neurobiol Dis 2024; 202:106700. [PMID: 39401551 DOI: 10.1016/j.nbd.2024.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024] Open
Abstract
As a subset of mononuclear phagocytes in the central nervous system, microglia play a crucial role in immune defense and homeostasis maintenance. Microglia can regulate their states in response to specific signals of health and pathology. Microglia-mediated neuroinflammation is a pathological hallmark of neurodegenerative diseases, neurological damage and neurological tumors, underscoring its key immunoregulatory role in these conditions. Intriguingly, a substantial body of research has indicated that extracellular vesicles can mediate intercellular communication by transporting cargoes from parental cells, a property that is also reflected in microenvironmental signaling networks involving microglia. Based on the microglial characteristics, we briefly outline the biological features of extracellular vesicles and focus on summarizing the integrative role played by microglia in the maintenance of nervous system homeostasis and progression of different neurological diseases. Extracellular vesicles may engage in the homeostasis maintenance and pathological process as a medium of intercellular communication. Here, we aim to provide new insights for further exploration of neurological disease pathogenesis, which may provide theoretical foundations for cell-free therapies.
Collapse
Affiliation(s)
- Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
6
|
Xu H, Li H, Zhang P, Gao Y, Ma H, Gao T, Liu H, Hua W, Zhang L, Zhang X, Yang P, Liu J. The functions of exosomes targeting astrocytes and astrocyte-derived exosomes targeting other cell types. Neural Regen Res 2024; 19:1947-1953. [PMID: 38227520 PMCID: PMC11040311 DOI: 10.4103/1673-5374.390961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 01/17/2024] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system; they participate in crucial biological processes, maintain brain structure, and regulate nervous system function. Exosomes are cell-derived extracellular vesicles containing various bioactive molecules including proteins, peptides, nucleotides, and lipids secreted from their cellular sources. Increasing evidence shows that exosomes participate in a communication network in the nervous system, in which astrocyte-derived exosomes play important roles. In this review, we have summarized the effects of exosomes targeting astrocytes and the astrocyte-derived exosomes targeting other cell types in the central nervous system. We also discuss the potential research directions of the exosome-based communication network in the nervous system. The exosome-based intercellular communication focused on astrocytes is of great significance to the biological and/or pathological processes in different conditions in the brain. New strategies may be developed for the diagnosis and treatment of neurological disorders by focusing on astrocytes as the central cells and utilizing exosomes as communication mediators.
Collapse
Affiliation(s)
- Hongye Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - He Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Emergency, Naval Hospital of Eastern Theater, Zhoushan, Zhejiang Province, China
| | - Ping Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuan Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongyu Ma
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tianxiang Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hanchen Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weilong Hua
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxi Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Su J, Wei Q, Ma K, Wang Y, Hu W, Meng H, Li Q, Zhang Y, Zhang W, Li H, Fu X, Zhang C. P-MSC-derived extracellular vesicles facilitate diabetic wound healing via miR-145-5p/ CDKN1A-mediated functional improvements of high glucose-induced senescent fibroblasts. BURNS & TRAUMA 2023; 11:tkad010. [PMID: 37860579 PMCID: PMC10583213 DOI: 10.1093/burnst/tkad010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/01/2023] [Accepted: 02/14/2023] [Indexed: 10/21/2023]
Abstract
Background Persistent hyperglycaemia in diabetes causes functional abnormalities of human dermal fibroblasts (HDFs), partially leading to delayed skin wound healing. Extracellular vesicles (EVs) containing multiple pro-healing microRNAs (miRNAs) have been shown to exert therapeutic effects on diabetic wound healing. The present study aimed to observe the effects of EVs derived from placental mesenchymal stem cells (P-MSC-EVs) on diabetic wound healing and high glucose (HG)-induced senescent fibroblasts and to explore the underlying mechanisms. Methods P-MSC-EVs were isolated by differential ultracentrifugation and locally injected into the full-thickness skin wounds of diabetic mice, to observe the beneficial effects on wound healing in vivo by measuring wound closure rates and histological analysis. Next, a series of assays were conducted to evaluate the effects of low (2.28 x 1010 particles/ml) and high (4.56 x 1010 particles/ml) concentrations of P-MSC-EVs on the senescence, proliferation, migration, and apoptosis of HG-induced senescent HDFs in vitro. Then, miRNA microarrays and real-time quantitative PCR (RT-qPCR) were carried out to detect the differentially expressed miRNAs in HDFs after EVs treatment. Specific RNA inhibitors, miRNA mimics, and small interfering RNA (siRNA) were used to evaluate the role of a candidate miRNA and its target genes in P-MSC-EV-induced improvements in the function of HG-induced senescent HDFs. Results Local injection of P-MSC-EVs into diabetic wounds accelerated wound closure and reduced scar widths, with better-organized collagen deposition and decreased p16INK4a expression. In vitro, P-MSC-EVs enhanced the antisenescence, proliferation, migration, and antiapoptotic abilities of HG-induced senescent fibroblasts in a dose-dependent manner. MiR-145-5p was found to be highly enriched in P-MSC-EVs. MiR-145-5p inhibitors effectively attenuated the P-MSC-EV-induced functional improvements of senescent fibroblasts. MiR-145-5p mimics simulated the effects of P-MSC-EVs on functional improvements of fibroblasts by suppressing the expression of cyclin-dependent kinase inhibitor 1A and activating the extracellular signal regulated kinase (Erk)/protein kinase B (Akt) signaling pathway. Furthermore, local application of miR-145-5p agomir mimicked the effects of P-MSC-EVs on wound healing. Conclusions These results suggest that P-MSC-EVs accelerate diabetic wound healing by improving the function of senescent fibroblasts through the transfer of miR-145-5p, which targets cyclin-dependent kinase inhibitor 1A to activate the Erk/Akt signaling pathway. P-MSC-EVs are promising therapeutic candidates for diabetic wound treatment.
Collapse
Affiliation(s)
- Jianlong Su
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- School of Medicine, NanKai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yaxi Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Hao Meng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Qiankun Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yuehou Zhang
- Burn and Plastic Surgery, Zhongda Hospital Affiliated Southeast University, Dingjiaqiao 87, Gulou District, Nanjing 210009, China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Haihong Li
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, 6019 Xililiuxian Road, Nanshan District, Shenzhen 518055, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- School of Medicine, NanKai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing 100048, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing 100048, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 51 Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
8
|
Fan Y, Huang H, Shao J, Huang W. MicroRNA-mediated regulation of reactive astrocytes in central nervous system diseases. Front Mol Neurosci 2023; 15:1061343. [PMID: 36710937 PMCID: PMC9877358 DOI: 10.3389/fnmol.2022.1061343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Astrocytes (AST) are abundant glial cells in the human brain, accounting for approximately 20-50% percent of mammalian central nervous system (CNS) cells. They display essential functions necessary to sustain the physiological processes of the CNS, including maintaining neuronal structure, forming the blood-brain barrier, coordinating neuronal metabolism, maintaining the extracellular environment, regulating cerebral blood flow, stabilizing intercellular communication, participating in neurotransmitter synthesis, and defending against oxidative stress et al. During the pathological development of brain tumors, stroke, spinal cord injury (SCI), neurodegenerative diseases, and other neurological disorders, astrocytes undergo a series of highly heterogeneous changes, which are called reactive astrocytes, and mediate the corresponding pathophysiological process. However, the pathophysiological mechanisms of reactive astrocytes and their therapeutic relevance remain unclear. The microRNAs (miRNAs) are essential for cell differentiation, proliferation, and survival, which play a crucial role in the pathophysiological development of CNS diseases. In this review, we summarize the regulatory mechanism of miRNAs on reactive astrocytes in CNS diseases, which might provide a theoretical basis for the diagnosis and treatment of CNS diseases.
Collapse
|
9
|
Bhusal A, Afridi R, Lee WH, Suk K. Bidirectional Communication Between Microglia and Astrocytes in Neuroinflammation. Curr Neuropharmacol 2023; 21:2020-2029. [PMID: 36453496 PMCID: PMC10556371 DOI: 10.2174/1570159x21666221129121715] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Neuroinflammation is a common feature of diverse nervous system pathologies. In many instances, it begins at an early stage of the disease, paving the way for further exacerbations. The main drivers of neuroinflammation are brain-resident glial cells, such as microglia and astrocytes. Microglia are the primary responders to any insult to the brain parenchyma, translating the signals into diverse molecules. These molecules derived from microglia can regulate the stimuli-dependent reactivity of astrocytes. Once activated, astrocytes in turn, can control microglia phenotypes. Recent evidence indicates that the crosstalk between these glial cells plays an important role in delaying or accelerating neuroinflammation and overall disease progression. To date, various molecules have been recognized as key mediators of the bidirectional communication between microglia and astrocytes. The current review aims to discuss the novel molecules identified recently, which play a critical role in interglial crosstalk, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Biomedical Sciences, School of Medicine, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Biomedical Sciences, School of Medicine, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Biomedical Sciences, School of Medicine, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
10
|
Shen Y, Cai J. The Importance of Using Exosome-Loaded miRNA for the Treatment of Spinal Cord Injury. Mol Neurobiol 2023; 60:447-459. [PMID: 36279099 PMCID: PMC9849169 DOI: 10.1007/s12035-022-03088-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/10/2022] [Indexed: 01/22/2023]
Abstract
Spinal cord injury (SCI) is a major traumatic disease of the central nervous system characterized by high rates of disability and mortality. Many studies have shown that SCI can be divided into the two stages of primary and secondary injury. Primary injury leads to pathophysiological changes, while consequential injury is even more fatal, including a series of harmful reactions that expand the scope and degree of SCI. Because the pathological process of SCI is highly complex, there is still no clear and effective clinical treatment strategy. Exosomes, membrane-bound extracellular vesicles (EVs) with a diameter of 30-200 nm, have emerged as an ideal vector to deliver therapeutic molecules. At the same time, increasing numbers of studies have shown that miRNAs play a momentous role in the process of SCI. In recent studies, researchers have adopted exosomes as carriers of miRNAs with potential therapeutic effects in SCI. In this review, we summarize relevant articles describing exosomes as miRNA carriers for SCI, after which we discuss further implications and perspectives of this novel treatment modality.
Collapse
Affiliation(s)
- Yunpeng Shen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Junying Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| |
Collapse
|
11
|
Implications of microglial heterogeneity in spinal cord injury progression and therapy. Exp Neurol 2023; 359:114239. [PMID: 36216123 DOI: 10.1016/j.expneurol.2022.114239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Microglia are widely distributed in the central nervous system (CNS), where they aid in the maintenance of neuronal function and perform key auxiliary roles in phagocytosis, neural repair, immunological control, and nutrition delivery. Microglia in the undamaged spinal cord is in a stable state and serve as immune monitors. In the event of spinal cord injury (SCI), severe changes in the microenvironment and glial scar formation lead to axonal regeneration failure. Microglia participates in a series of pathophysiological processes and behave both positive and negative consequences during this period. A deep understanding of the characteristics and functions of microglia can better identify therapeutic targets for SCI. Technological innovations such as single-cell RNA sequencing (Sc-RNAseq) have led to new advances in the study of microglia heterogeneity throughout the lifespan. Here,We review the updated studies searching for heterogeneity of microglia from the developmental and pathological state, survey the activity and function of microglia in SCI and explore the recent therapeutic strategies targeting microglia in the CNS injury.
Collapse
|
12
|
Chen Y, Zhu J, Ji J, Liu Z, Ren G. The role of microglial exosomes in brain injury. Front Cell Neurosci 2022; 16:1003809. [DOI: 10.3389/fncel.2022.1003809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Microglia are involved in immune responses to central nervous system (CNS) injury. Meanwhile, exosomes derived from microglia are important mediators of information and material exchange in brain, which play an important role in neuroprotective or damaging effects. Microglial exosomes contain a variety of molecular cargos, including microRNAs, soluble proteins, and lipids, which have regulatory effects on other types of cells and microenvironment in brain. In this review, we summarized microglial exosome characteristics, release patterns, pro-proliferative and pro-apoptotic effects on neurons and other glial cells, immunomodulatory effects, and regulation of the extracellular microenvironment. Understanding the relationship between microglia exosomes and brain injury can provide new targets for clinical treatment.
Collapse
|
13
|
Ebrahimy N, Gasterich N, Behrens V, Amini J, Fragoulis A, Beyer C, Zhao W, Sanadgol N, Zendedel A. Neuroprotective effect of the Nrf2/ARE/miRNA145-5p signaling pathway in the early phase of spinal cord injury. Life Sci 2022; 304:120726. [PMID: 35750202 DOI: 10.1016/j.lfs.2022.120726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
AIMS Spinal cord injury (SCI) is a debilitating neurological condition often associated with chronic neuroinflammation and redox imbalance. Oxidative stress is one of the main hallmark of secondary injury of SCI which is tightly regulated by nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) signaling. In this study, we aimed at investigating the interplay between inflammation-related miRNAs and the Nrf2 pathway in animal model of SCI. MATERIALS AND METHODS The expression of selected four validated miRNA-target pairs (miRNA223-3p, miRNA155-5p, miRNA145-5p, and miRNA124-3p) was examined at different time points (6 h, 12 h, 1 day, 3 day and 7 day) after SCI. Further, using GFAP-specific kelch-like ECH-associated protein 1 deletion (Keap1-/-) and whole-body Nrf2-/- knockout mice, we investigated the potential interplay between each miRNA and the Keap1/Nrf2 signaling system. KEY FINDINGS The expression of all miRNAs except miRNA155-5p significantly increased 24 h after SCI and decreased after 7 days. Interestingly, Keap1-/- mice only showed significant increase in the miRNA145-5p after 24 h SCI compared to the WT group. In addition, Keap1-/- mice showed significant decrease in CXCL10/12 (CXCL12 increased in Nrf2-/- mice), and TNF-α, and an increase in Mn-SOD and NQO-1 (Mn-SOD and NQO-1 decreased in Nrf2-/- mice) compared to WT mice. SIGNIFICANCE Our results suggest that astrocytic hyperactivation of Nrf2 exert neuroprotective effects at least in part through the upregulation of miRNA145-5p, a negative regulator of astrocyte proliferation, and induction of ARE in early phase of SCI. Further studies are needed to investigate the potential interplay between Nrf2 and miRNA145-5p in neuroinflammatory condition.
Collapse
Affiliation(s)
- Nahal Ebrahimy
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | | | - Victoria Behrens
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Javad Amini
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Weiyi Zhao
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Nima Sanadgol
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany.
| |
Collapse
|