1
|
Mishra AK, Dixit S, Singh A, Shukla T, Rizvi SI. Molecular Determinants of A9 Dopaminergic Neurons. Neuromolecular Med 2025; 27:43. [PMID: 40397062 DOI: 10.1007/s12017-025-08861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
In the human brain, the nigrostriatal pathway regulates motor functions, and its selective deterioration leads to the onset of Parkinson's disease (PD), a neurodegenerative disorder characterized by motor dysfunction and significant disability. The A9 neurons, a subgroup of ventral mesencephalic dopaminergic (DA) neurons, form the nigrostriatal pathway that emerges from the nigral region and innervates into the striatum. These DA neurons exhibit extensive and arborized axonal terminals projecting into the dorsal striatum. This review examines the distinct molecular determinants underlying the development, projection pattern, survival, maintenance, and vulnerability of A9 neurons, distinguishing them from other ventral midbrain DA subgroups such as A8 and A10. Key transcription factors (e.g., Lmx1a/b, FoxA2, Pitx3), signaling cascade pathways (e.g., Sonic Hedgehog, Wnt/β-catenin), and molecular markers (e.g., Aldh1a1, GIRK2, ANT2) are discussed in detail. A comparative assessment of the electrophysiology, cytoarchitecture, energy demand, and antioxidant reserves of A9 DA neurons versus the neighboring ventral mesencephalic DA subgroups elucidates the role of intrinsic determinants in susceptibility and selective degeneration in PD. The unique susceptibility of A9 cells to redox imbalance, neuronal inflammation, and mitochondrial dysfunction is also explored. Furthermore, recent advancements in stem cell-based approaches for generating A9-like neurons and their application in cell transplantation therapies for PD are discussed. Current challenges, including integration and long-term survival of transplanted neurons, are highlighted alongside prospects of cell replacement therapy. By evaluating the molecular biology of A9 neurons, this review aims to understand PD pathology and develop strategies for novel therapeutic approaches.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Department of Zoology, Government Shaheed Gendsingh College, Charama, Uttar Bastar Kanker, Chhattisgarh, 494 337, India.
| | - Shreya Dixit
- Department of Neurology, University of California, Irvine, USA
| | - Akanksha Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Toyaj Shukla
- Government Rani Durgawati College, Wadrafnagar, Balrampur, Chhattisgarh, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
2
|
Liu M, Li M, Du H, Xu D, Wang J, Ren Q, Wang R, Gong H, Liu Y, Qi K, Tao J, Xia S, Wang H, Li X, Liu Q. The alteration of glutamate involved in the brain of Parkinson's disease patients using glutamate chemical exchange saturation transfer (GluCEST). Behav Brain Res 2025; 483:115484. [PMID: 39955039 DOI: 10.1016/j.bbr.2025.115484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Increased levels of glutamate, a novel regulator of neuroinflammation, is involved in the pathogenesis of Parkinson's disease (PD). Although glutamate chemical exchange saturation transfer (GluCEST) is widely used in central nervous system (CNS) disorders, it has been less commonly used in clinical practice for PD. Here, to explore the clinical significance of variations in glutamate levels in the striatum and thalamus in PD, we included forty-nine PD patients and forty-four healthy controls (HCs). Glutamate levels were analyzed by performing magnetization transfer ratio asymmetry (MTRasym) using GluCEST data. Four regions of interest (ROIs) were manually outlined on GluCEST images, and MTRasym values were calculated for each. FreeSurfer was used to calculate the volumes. We found that MTRasym values in the striatum and thalamus were elevated in PD. Variations in MTRasym values were correlated with motor scores. It has been found that the volume of the left pallidal nucleus were reduced in PD. The glutamate levels in the striatum and thalamus were significantly different from those in HCs and associated with disease progression. Collectively, glutamate metabolic abnormalities may be present in PD pathophysiology and associated with disease progression. GluCEST imaging may have potential to become an imaging technology for measuring glutamate alterations in the striatum and thalamus in PD.
Collapse
Affiliation(s)
- Miaomiao Liu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Minglong Li
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Hailing Du
- Department of Emergency, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou 256603, China
| | - Donghao Xu
- Department of Radiology, Shengli Oilfield Central Hospital, Dongying 247034, China
| | - Jing Wang
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou 256603, China
| | - Qingfa Ren
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou 256603, China
| | - Rui Wang
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou 256603, China
| | - He Gong
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Yuwei Liu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Kai Qi
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Jin Tao
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Shuyuan Xia
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou 256603, China
| | - Hongcai Wang
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou 256603, China.
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China.
| | - Quanyuan Liu
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou 256603, China.
| |
Collapse
|
3
|
Mishra AK, Tripathi MK, Kumar D, Gupta SP. Neurons Specialize in Presynaptic Autophagy: A Perspective to Ameliorate Neurodegeneration. Mol Neurobiol 2025; 62:2626-2640. [PMID: 39141193 DOI: 10.1007/s12035-024-04399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
The efficient and prolonged neurotransmission is reliant on the coordinated action of numerous synaptic proteins in the presynaptic compartment that remodels synaptic vesicles for neurotransmitter packaging and facilitates their exocytosis. Once a cycle of neurotransmission is completed, membranes and associated proteins are endocytosed into the cytoplasm for recycling or degradation. Both exocytosis and endocytosis are closely regulated in a timely and spatially constrained manner. Recent research demonstrated the impact of dysfunctional synaptic vesicle retrieval in causing retrograde degeneration of midbrain neurons and has highlighted the importance of such endocytic proteins, including auxilin, synaptojanin1 (SJ1), and endophilin A (EndoA) in neurodegenerative diseases. Additionally, the role of other associated proteins, including leucine-rich repeat kinase 2 (LRRK2), adaptor proteins, and retromer proteins, is being investigated for their roles in regulating synaptic vesicle recycling. Research suggests that the degradation of defective vesicles via presynaptic autophagy, followed by their recycling, not only revitalizes them in the active zone but also contributes to strengthening synaptic plasticity. The presynaptic autophagy rejuvenating terminals and maintaining neuroplasticity is unique in autophagosome formation. It involves several synaptic proteins to support autophagosome construction in tiny compartments and their retrograde trafficking toward the cell bodies. Despite having a comprehensive understanding of ATG proteins in autophagy, we still lack a framework to explain how autophagy is triggered and potentiated in compact presynaptic compartments. Here, we reviewed synaptic proteins' involvement in forming presynaptic autophagosomes and in retrograde trafficking of terminal cargos. The review also discusses the status of endocytic proteins and endocytosis-regulating proteins in neurodegenerative diseases and strategies to combat neurodegeneration.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Department of Zoology, Government Shaheed Gendsingh College, Charama, Uttar Bastar Kanker, 494 337, Chhattisgarh, India.
| | - Manish Kumar Tripathi
- School of Pharmacy, Faculty of Medicine, Institute for Drug Research, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Dipak Kumar
- Department of Zoology, Munger University, Munger, Bihar, India
| | - Satya Prakash Gupta
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| |
Collapse
|
4
|
Liu Q, Huang B, Guiberson NGL, Chen S, Zhu D, Ma G, Ma XM, Crittenden JR, Yu J, Graybiel AM, Dawson TM, Dawson VL, Xiong Y. CalDAG-GEFI acts as a guanine nucleotide exchange factor for LRRK2 to regulate LRRK2 function and neurodegeneration. SCIENCE ADVANCES 2024; 10:eadn5417. [PMID: 39576856 PMCID: PMC11584015 DOI: 10.1126/sciadv.adn5417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). LRRK2 protein contains two enzymatic domains: a GTPase (Roc-COR) and a kinase domain. Disease-causing mutations are found in both domains. Now, studies have focused largely on LRRK2 kinase activity, while attention to its GTPase function is limited. LRRK2 is a guanine nucleotide-binding protein, but the mechanism of direct regulation of its GTPase activity remains unclear and its physiological GEF is not known. Here, we identified CalDAG-GEFI (CDGI) as a physiological GEF for LRRK2. CDGI interacts with LRRK2 and increases its GDP to GTP exchange activity. CDGI modulates LRRK2 cellular functions and LRRK2-induced neurodegeneration in both LRRK2 Drosophila and mouse models. Together, this study identified the physiological GEF for LRRK2 and provides strong evidence that LRRK2 GTPase is regulated by GAPs and GEFs. The LRRK2 GTPase, GAP, or GEF activities have the potential to serve as therapeutic targets, which is distinct from the direct LRRK2 kinase inhibition.
Collapse
Affiliation(s)
- Qinfang Liu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Bingxu Huang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Noah Guy Lewis Guiberson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shifan Chen
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Dong Zhu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Gang Ma
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Jill R. Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jianzhong Yu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Ann M. Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yulan Xiong
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
5
|
He Q, Zhang X, Yang H, Wang D, Shu Y, Wang X. Early synaptic dysfunction of striatal parvalbumin interneurons in a mouse model of Parkinson's disease. iScience 2024; 27:111253. [PMID: 39563890 PMCID: PMC11575173 DOI: 10.1016/j.isci.2024.111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
In Parkinson's disease (PD), the loss of dopaminergic signaling remodels striatal circuits, causing abnormal network activity. The timing and impact on various striatal cell types during this reorganization are unclear. Here we demonstrate that dopamine depletion rapidly reduces parvalbumin (PV) expression. At the synaptic input level, PV interneurons shift toward inhibition in the excitation-inhibition balance early on, a week before a similar shift in spiny projection neurons (SPNs). At the cellular level, both PV interneurons and SPNs experience a significant decrease in their spiking and bursting rates, respectively, which corresponds to a reduction in gamma and beta (early beta) oscillations during the early stage of PD. Importantly, the pharmacogenetic activation of PV interneurons reverses gamma deficits and suppresses beta (late beta) oscillation in the striatum of parkinsonian mice. Collectively, our findings underscore the vulnerability of PV interneurons to dopamine depletion and their responsibility for the evolution of abnormal activities in parkinsonian striatum.
Collapse
Affiliation(s)
- Quansheng He
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Xiaowen Zhang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Hongyu Yang
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Dahui Wang
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Yousheng Shu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Xuan Wang
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| |
Collapse
|
6
|
Ge J, Li H, Liang X, Zhou B. SLC30A9: an evolutionarily conserved mitochondrial zinc transporter essential for mammalian early embryonic development. Cell Mol Life Sci 2024; 81:357. [PMID: 39158587 PMCID: PMC11335279 DOI: 10.1007/s00018-024-05377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/23/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
SLC30A9 (ZnT9) is a mitochondria-resident zinc transporter. Mutations in SLC30A9 have been reported in human patients with a novel cerebro-renal syndrome. Here, we show that ZnT9 is an evolutionarily highly conserved protein, with many regions extremely preserved among evolutionarily distant organisms. In Drosophila melanogaster (the fly), ZnT9 (ZnT49B) knockdown results in acutely impaired movement and drastic mitochondrial deformation. Severe Drosophila ZnT9 (dZnT9) reduction and ZnT9-null mutant flies are pupal lethal. The phenotype of dZnT9 knockdown can be partially rescued by mouse ZnT9 expression or zinc chelator TPEN, indicating the defect of dZnT9 loss is indeed a result of zinc dyshomeostasis. Interestingly, in the mouse, germline loss of Znt9 produces even more extreme phenotypes: the mutant embryos exhibit midgestational lethality with severe development abnormalities. Targeted mutagenesis of Znt9 in the mouse brain leads to serious dwarfism and physical incapacitation, followed by death shortly. Strikingly, the GH/IGF-1 signals are almost non-existent in these tissue-specific knockout mice, consistent with the medical finding in some human patients with severe mitochondrial deficiecny. ZnT9 mutations cause mitochondrial zinc dyshomeostasis, and we demonstrate mechanistically that mitochondrial zinc elevation quickly and potently inhibits the activities of respiration complexes. These results reveal the critical role of ZnT9 and mitochondrial zinc homeostasis in mammalian development. Based on our functional analyses, we finally discussed the possible nature of the so far identified human SLC30A9 mutations.
Collapse
Affiliation(s)
- Jing Ge
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huihui Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Liang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhou
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Yuan X, Yu Q, Liu Y, Chen J, Gao J, Liu Y, Song R, Zhang Y, Hou Z. Microstructural alterations in white matter and related neurobiology based on the new clinical subtypes of Parkinson's disease. Front Neurosci 2024; 18:1439443. [PMID: 39148522 PMCID: PMC11324559 DOI: 10.3389/fnins.2024.1439443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Background and objectives The advent of new clinical subtyping systems for Parkinson's disease (PD) has led to the classification of patients into distinct groups: mild motor predominant (PD-MMP), intermediate (PD-IM), and diffuse malignant (PD-DM). Our goal was to evaluate the efficacy of diffusion tensor imaging (DTI) in the early diagnosis, assessment of clinical progression, and prediction of prognosis of these PD subtypes. Additionally, we attempted to understand the pathological mechanisms behind white matter damage using single-photon emission computed tomography (SPECT) and cerebrospinal fluid (CSF) analyses. Methods We classified 135 de novo PD patients based on new clinical criteria and followed them up after 1 year, along with 45 healthy controls (HCs). We utilized tract-based spatial statistics to assess the microstructural changes of white matter at baseline and employed multiple linear regression to examine the associations between DTI metrics and clinical data at baseline and after follow-up. Results Compared to HCs, patients with the PD-DM subtype demonstrated reduced fractional anisotropy (FA), increased axial diffusivity (AD), and elevated radial diffusivity (RD) at baseline. The FA and RD values correlated with the severity of motor symptoms, with RD also linked to cognitive performance. Changes in FA over time were found to be in sync with changes in motor scores and global composite outcome measures. Furthermore, baseline AD values and their rate of change were related to alterations in semantic verbal fluency. We also discovered the relationship between FA values and the levels of α-synuclein and β-amyloid. Reduced dopamine transporter uptake in the left putamen correlated with RD values in superficial white matter, motor symptoms, and autonomic dysfunction at baseline as well as cognitive impairments after 1 year. Conclusions The PD-DM subtype is characterized by severe clinical symptoms and a faster progression when compared to the other subtypes. DTI, a well-established technique, facilitates the early identification of white matter damage, elucidates the pathophysiological mechanisms of disease progression, and predicts cognitively related outcomes. The results of SPECT and CSF analyses can be used to explain the specific pattern of white matter damage in patients with the PD-DM subtype.
Collapse
Affiliation(s)
- Xiaorong Yuan
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qiaowen Yu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Medical Imaging, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Yanyan Liu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinge Chen
- Department of Radiology, Shandong Mental Health Center, Jinan, Shandong, China
| | - Jie Gao
- Department of Medical Imaging, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Yujia Liu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruxi Song
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Yingzhi Zhang
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhongyu Hou
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Medical Imaging, Shandong Provincial Hospital, Jinan, Shandong, China
| |
Collapse
|
8
|
Tanaka M, Vécsei L. A Decade of Dedication: Pioneering Perspectives on Neurological Diseases and Mental Illnesses. Biomedicines 2024; 12:1083. [PMID: 38791045 PMCID: PMC11117868 DOI: 10.3390/biomedicines12051083] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Welcome to Biomedicines' 10th Anniversary Special Issue, a journey through the human mind's labyrinth and complex neurological pathways [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
9
|
Payne T, Burgess T, Bradley S, Roscoe S, Sassani M, Dunning MJ, Hernandez D, Scholz S, McNeill A, Taylor R, Su L, Wilkinson I, Jenkins T, Mortiboys H, Bandmann O. Multimodal assessment of mitochondrial function in Parkinson's disease. Brain 2024; 147:267-280. [PMID: 38059801 PMCID: PMC10766247 DOI: 10.1093/brain/awad364] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/02/2023] [Accepted: 09/27/2023] [Indexed: 12/08/2023] Open
Abstract
The heterogenous aetiology of Parkinson's disease is increasingly recognized; both mitochondrial and lysosomal dysfunction have been implicated. Powerful, clinically applicable tools are required to enable mechanistic stratification for future precision medicine approaches. The aim of this study was to characterize bioenergetic dysfunction in Parkinson's disease by applying a multimodal approach, combining standardized clinical assessment with midbrain and putaminal 31-phosphorus magnetic resonance spectroscopy (31P-MRS) and deep phenotyping of mitochondrial and lysosomal function in peripheral tissue in patients with recent-onset Parkinson's disease and control subjects. Sixty participants (35 patients with Parkinson's disease and 25 healthy controls) underwent 31P-MRS for quantification of energy-rich metabolites [ATP, inorganic phosphate (Pi) and phosphocreatine] in putamen and midbrain. In parallel, skin biopsies were obtained from all research participants to establish fibroblast cell lines for subsequent quantification of total intracellular ATP and mitochondrial membrane potential (MMP) as well as mitochondrial and lysosomal morphology, using high content live cell imaging. Lower MMP correlated with higher intracellular ATP (r = -0.55, P = 0.0016), higher mitochondrial counts (r = -0.72, P < 0.0001) and higher lysosomal counts (r = -0.62, P = 0.0002) in Parkinson's disease patient-derived fibroblasts only, consistent with impaired mitophagy and mitochondrial uncoupling. 31P-MRS-derived posterior putaminal Pi/ATP ratio variance was considerably greater in Parkinson's disease than in healthy controls (F-tests, P = 0.0036). Furthermore, elevated 31P-MRS-derived putaminal, but not midbrain Pi/ATP ratios (indicative of impaired oxidative phosphorylation) correlated with both greater mitochondrial (r = 0.37, P = 0.0319) and lysosomal counts (r = 0.48, P = 0.0044) as well as lower MMP in both short (r = -0.52, P = 0.0016) and long (r = -0.47, P = 0.0052) mitochondria in Parkinson's disease. Higher 31P-MRS midbrain phosphocreatine correlated with greater risk of rapid disease progression (r = 0.47, P = 0.0384). Our data suggest that impaired oxidative phosphorylation in the striatal dopaminergic nerve terminals exceeds mitochondrial dysfunction in the midbrain of patients with early Parkinson's disease. Our data further support the hypothesis of a prominent link between impaired mitophagy and impaired striatal energy homeostasis as a key event in early Parkinson's disease.
Collapse
Affiliation(s)
- Thomas Payne
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Toby Burgess
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Stephen Bradley
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Sarah Roscoe
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Matilde Sassani
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Mark J Dunning
- The Bioinformatics Core, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Dena Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD 20814, USA
| | - Sonja Scholz
- Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Alisdair McNeill
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Rosie Taylor
- Statistical Services Unit, The University of Sheffield, Shefield S3 7RH, UK
| | - Li Su
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SP, UK
| | - Iain Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield S10 2JF, UK
| | - Thomas Jenkins
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Department of Neurology, Royal Perth Hospital, Perth WA6000, Australia
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
10
|
Hyeon B, Lee H, Kim N, Heo WD. Optogenetic dissection of RET signaling reveals robust activation of ERK and enhanced filopodia-like protrusions of regenerating axons. Mol Brain 2023; 16:56. [PMID: 37403137 DOI: 10.1186/s13041-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
RET (REarranged during Transfection) is a receptor tyrosine kinase that transduces various external stimuli into biological functions, such as survival and differentiation, in neurons. In the current study, we developed an optogenetic tool for modulating RET signaling, termed optoRET, combining the cytosolic region of human RET with a blue-light-inducible homo-oligomerizing protein. By varying the duration of photoactivation, we were able to dynamically modulate RET signaling. Activation of optoRET recruited Grb2 (growth factor receptor-bound protein 2) and stimulated AKT and ERK (extracellular signal-regulated kinase) in cultured neurons, evoking robust and efficient ERK activation. By locally activating the distal part of the neuron, we were able to retrogradely transduce the AKT and ERK signal to the soma and trigger formation of filopodia-like F-actin structures at stimulated regions through Cdc42 (cell division control 42) activation. Importantly, we successfully modulated RET signaling in dopaminergic neurons of the substantia nigra in the mouse brain. Collectively, optoRET has the potential to be developed as a future therapeutic intervention, modulating RET downstream signaling with light.
Collapse
Affiliation(s)
- Bobae Hyeon
- Department of Life Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Republic of Korea
| | - Heeyoung Lee
- Department of Life Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Republic of Korea
| | - Nury Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Won Do Heo
- Department of Life Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Republic of Korea.
- Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for the BioCentury, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
11
|
Ravenhill SM, Evans AH, Crewther SG. Escalating Bi-Directional Feedback Loops between Proinflammatory Microglia and Mitochondria in Ageing and Post-Diagnosis of Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12051117. [PMID: 37237983 DOI: 10.3390/antiox12051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive age-related neurodegenerative disease affecting up to 3% of the global population over 65 years of age. Currently, the underlying physiological aetiology of PD is unknown. However, the diagnosed disorder shares many common non-motor symptoms associated with ageing-related neurodegenerative disease progression, such as neuroinflammation, microglial activation, neuronal mitochondrial impairment, and chronic autonomic nervous system dysfunction. Clinical PD has been linked to many interrelated biological and molecular processes, such as escalating proinflammatory immune responses, mitochondrial impairment, lower adenosine triphosphate (ATP) availability, increasing release of neurotoxic reactive oxygen species (ROS), impaired blood brain barrier integrity, chronic activation of microglia, and damage to dopaminergic neurons consistently associated with motor and cognitive decline. Prodromal PD has also been associated with orthostatic hypotension and many other age-related impairments, such as sleep disruption, impaired gut microbiome, and constipation. Thus, this review aimed to present evidence linking mitochondrial dysfunction, including elevated oxidative stress, ROS, and impaired cellular energy production, with the overactivation and escalation of a microglial-mediated proinflammatory immune response as naturally occurring and damaging interlinked bidirectional and self-perpetuating cycles that share common pathological processes in ageing and PD. We propose that both chronic inflammation, microglial activation, and neuronal mitochondrial impairment should be considered as concurrently influencing each other along a continuum rather than as separate and isolated linear metabolic events that affect specific aspects of neural processing and brain function.
Collapse
Affiliation(s)
| | - Andrew Howard Evans
- Department of Medicine, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Epworth Hospital, Richmond 3121, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne 3050, Australia
| | | |
Collapse
|
12
|
Chou Y, Nawabi H, Li J. Research hotspots and trends for axon regeneration (2000-2021): a bibliometric study and systematic review. Inflamm Regen 2022; 42:60. [PMID: 36476643 PMCID: PMC9727899 DOI: 10.1186/s41232-022-00244-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Axons play an essential role in the connection of the nervous system with the rest of the body. Axon lesions often lead to permanent impairment of motor and cognitive functions and the interaction with the outside world. Studies focusing on axon regeneration have become a research field with considerable interest. The purpose of this study is to obtain an overall perspective of the research field of axonal regeneration and to assist the researchers and the funding agencies to better know the areas of greatest research opportunities. METHODS We conducted a bibliometric analysis and Latent Dirichlet Allocation (LDA) analysis of the global literature on axon regeneration based on the Web of Science (WoS) over the recent 22 years, to address the research hotspots, publication trends, and understudied areas. RESULTS A total of 21,018 articles were included, which in the recent two decades has increased by 125%. Among the top 12 hotspots, the annual productions rapidly increased in some topics, including axonal regeneration signaling pathway, axon guidance cues, neural circuits and functional recovery, nerve conduits, and cells transplant. Comparatively, the number of studies on axon regeneration inhibitors decreased. As for the topics focusing on nerve graft and transplantation, the annual number of papers tended to be relatively stable. Nevertheless, the underlying mechanisms of axon regrowth have not been completely uncovered. A lack of notable research on the epigenetic programs and noncoding RNAs regulation was observed. The significance of cell-type-specific data has been highlighted but with limited research working on that. Functional recovery from neuropathies also needs further studies. CONCLUSION The last two decades witnessed tremendous progress in the field of axon regeneration. There are still a lot of challenges to be tackled in translating these technologies into clinical practice.
Collapse
Affiliation(s)
- Yuyu Chou
- grid.413106.10000 0000 9889 6335Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China ,grid.462307.40000 0004 0429 3736Grenoble Institut Neurosciences, Inserm, U1216, Grenoble Alpes University, Grenoble, France
| | - Homaira Nawabi
- grid.462307.40000 0004 0429 3736Grenoble Institut Neurosciences, Inserm, U1216, Grenoble Alpes University, Grenoble, France
| | - Jingze Li
- grid.216417.70000 0001 0379 7164Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha, 410083 People’s Republic of China ,grid.450307.50000 0001 0944 2786Laboratory 3SR, Grenoble Alpes University, CNRS UMR 5521, 38400 Grenoble, France
| |
Collapse
|
13
|
Wang L, Zhang W, Liu F, Mao C, Liu CF, Cheng W, Feng J. Association of Cerebrospinal Fluid Neurofilament Heavy Protein Levels With Clinical Progression in Patients With Parkinson Disease. JAMA Netw Open 2022; 5:e2223821. [PMID: 35881392 PMCID: PMC9327574 DOI: 10.1001/jamanetworkopen.2022.23821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Neurofilament light in biofluids has been associated with progression of Parkinson disease (PD), but the association between neurofilament heavy (NfH) and progression of PD has not been investigated. OBJECTIVE To evaluate the associations of cerebrospinal fluid (CSF) NfH (cNfH) levels and motor and cognitive progression in PD. DESIGN, SETTING, AND PARTICIPANTS This cohort study used data from the Parkinson Progression Marker Initiative ranging from June 2010 to November 2018. Participants were recruited from 24 participating sites worldwide (United States, Europe, and Australia). Data were analyzed from October 20 to December 18, 2021. EXPOSURES Concentrations of NfH in CSF. MAIN OUTCOMES AND MEASURES The primary outcomes were Movement Disorder Society-sponsored revisions of the Unified Parkinson Disease Rating Scale (MDS-UPDRS) Part III; scores range from 0 to 132, with higher scores indicating worse motor function, and Montreal Cognitive Assessment (MoCA); scores range from 0 to 30, with higher scores indicating better cognitive function. The associations of cNfH levels and longitudinal change in MDS-UPDRS-Part-III and MoCA were examined using linear mixed-effects models with PD duration as the time scale. Partial correlation analysis was conducted to examine the associations of cNfH levels and α-synuclein, amyloid-β 1-42 (Aβ42), phosphorylated tau at threonine 181 position (P-tau), and total tau (T-tau) levels in CSF. RESULTS A total of 404 patients with PD (mean [SD] age, 61.7 [9.7] years; 263 were men [65.1%]; within 2 years of diagnosis; Hoehn and Yahr <3) were included. Higher baseline cNfH levels were associated with greater increases in MDS-UPDRS Part-III (β = 0.39; 95% CI, 0.12-0.66; P = .003) and faster decreases in MoCA (β = -0.18; CI, -0.24 to -0.11; P < .001). Levels of cNfH were correlated with CSF levels of α-synuclein (Spearman r = 0.25; 95% CI, 0.15-0.34; P < .001), Aβ42 (Spearman r = 0.18; 95% CI, 0.08-0.27; P < .001), P-tau (Spearman r = 0.25; 95% CI, 0.15-0.35; P < .001), and T-tau (Spearman r = 0.31; 95% CI, 0.21-0.40; P < .001) at baseline. CONCLUSIONS AND RELEVANCE Higher baseline cNfH levels were associated with faster motor and cognitive progression. This finding suggests that cNfH may be of some value for stratifying patients with PD who have different progression rates.
Collapse
Affiliation(s)
- Linbo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Fengtao Liu
- Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Chengjie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
14
|
Zhou H, Zhang J, Shi H, Li P, Sui X, Wang Y, Wang L. Downregulation of CDK5 signaling in the dorsal striatum alters striatal microcircuits implicating the association of pathologies with circadian behavior in mice. Mol Brain 2022; 15:53. [PMID: 35701839 PMCID: PMC9195255 DOI: 10.1186/s13041-022-00939-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Dysfunction of striatal dopaminergic circuits has been implicated in motor impairment and Parkinson’s disease (PD)-related circadian perturbations that may represent an early prodromal marker of PD. Cyclin-dependent kinase 5 (CDK5) negatively regulates dopamine signaling in the striatum, suggesting a critical role of CDK5 in circadian and sleep disorders. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to produce mice with a dorsal striatum (DS)-specific knockdown (KD) of the Cdk5 gene (referred to as DS-CDK5-KD mice) and investigate its role in vivo. DS-CDK5-KD mice exhibited deficits in locomotor activity and disturbances in activity/rest behavior. Additionally, Golgi staining of neurons in the DS revealed that CDK5 deletion reduced dendrite length and the number of functional synapses, which was confirmed by significant downregulation of MAP2, PSD-95, and synapsin I. Correlated with this, DS-CDK5-KD mice displayed reduced phosphorylation of Tau at Thr181. Furthermore, whole-cell patch-clamp recordings of green fluorescent protein-tagged neurons in the striatum of DS-CDK5-KD mice revealed a decreased frequency of spontaneous inhibitory postsynaptic currents and altered excitatory/inhibitory synaptic balance. Notably, anterograde labeling showed that CDK5 KD in the DS disrupted long-range projections to the secondary motor cortex, dorsal and ventral thalamic nuclei, and basolateral amygdala, which are involved in the regulation of motor and circadian rhythms in the brain. These findings support a critical role of CDK5 in the DS in maintaining the striatal neural circuitry underlying motor functions and activity/rest associated with circadian rhythms that are perturbed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Hu Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jingxin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Huaxiang Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pengfei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Liyun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
15
|
Environmentally Toxic Solid Nanoparticles in Noradrenergic and Dopaminergic Nuclei and Cerebellum of Metropolitan Mexico City Children and Young Adults with Neural Quadruple Misfolded Protein Pathologies and High Exposures to Nano Particulate Matter. TOXICS 2022; 10:toxics10040164. [PMID: 35448425 PMCID: PMC9028025 DOI: 10.3390/toxics10040164] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Quadruple aberrant hyperphosphorylated tau, beta-amyloid, α-synuclein and TDP-43 neuropathology and metal solid nanoparticles (NPs) are documented in the brains of children and young adults exposed to Metropolitan Mexico City (MMC) pollution. We investigated environmental NPs reaching noradrenergic and dopaminergic nuclei and the cerebellum and their associated ultrastructural alterations. Here, we identify NPs in the locus coeruleus (LC), substantia nigrae (SN) and cerebellum by transmission electron microscopy (TEM) and energy-dispersive X-ray spectrometry (EDX) in 197 samples from 179 MMC residents, aged 25.9 ± 9.2 years and seven older adults aged 63 ± 14.5 years. Fe, Ti, Hg, W, Al and Zn spherical and acicular NPs were identified in the SN, LC and cerebellar neural and vascular mitochondria, endoplasmic reticulum, Golgi, neuromelanin, heterochromatin and nuclear pore complexes (NPCs) along with early and progressive neurovascular damage and cerebellar endothelial erythrophagocytosis. Strikingly, FeNPs 4 ± 1 nm and Hg NPs 8 ± 2 nm were seen predominantly in the LC and SN. Nanoparticles could serve as a common denominator for misfolded proteins and could play a role in altering and obstructing NPCs. The NPs/carbon monoxide correlation is potentially useful for evaluating early neurodegeneration risk in urbanites. Early life NP exposures pose high risk to brains for development of lethal neurologic outcomes. NP emissions sources ought to be clearly recognized, regulated, and monitored; future generations are at stake.
Collapse
|