1
|
Hou Y, Qian H, Yao R, Yu Z, Wang J, Dai J, Cui W, Li J, Zhao X. Untargeted Metabolomics Revealed that Quercetin Inhibited Ferroptosis by Improving Metabolic Disorder in the Hippocampus of Perimenopausal Depression Model Rats. Mol Neurobiol 2025; 62:2872-2888. [PMID: 39179684 DOI: 10.1007/s12035-024-04445-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Perimenopausal depression is often accompanied by metabolic disorders, which have long-term harmful effects on women's physical and mental health. Quercetin, a kind of phytoestrogen, has anti-inflammatory, antioxidant, and nerve-protective effects, and can regulate various metabolic disorders. This study aims to investigate the effect of quercetin on hippocampal metabolic disorder in perimenopausal depression rat models based on untargeted metabolomics technology. The rat model of perimenopausal depression was established by ovariectomy combined with chronic unpredictable mild stress (OVX-CUMS). Rats with no difference in sucrose preference were randomly divided into four groups (n = 12): sham group, OVX-CUMS group (model group), model plus quercetin group, and model plus 17β-estradiol group. At the end of the experiment, hippocampal tissues were collected for untargeted metabolomics analysis, morphological analysis, and detection of related indicators. Metabolomics identified 23 differential metabolites in the model group, and the pathway analysis discovered hippocampus metabolic abnormalities including the metabolism of arachidonic acid metabolism, glycerophospholipid metabolism, and ubiquinone biosynthesis, accompanied by an increase in oxidative stress, inflammation, and lipid peroxidation indicators. At the same time, the morphological characteristics of ferroptosis occurred in the hippocampus in the model group. These abnormal changes were reversed by treatment with quercetin or 17β-estradiol. Quercetin can improve perimenopausal depression by regulating hippocampal metabolic disorders and reducing hippocampal ferroptosis in rats. These findings provide a new strategy for the use of quercetin in the prevention and treatment of perimenopausal depression.
Collapse
Affiliation(s)
- Yali Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, 150081, China
| | - Heng Qian
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, 150081, China
| | - Ranqi Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, 150081, China
| | - Ziran Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, 150081, China
| | - Jing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, 150081, China
| | - Jiaohua Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, 150081, China
| | - Wenqi Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, 150081, China
| | - Jian Li
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, 150081, China
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
2
|
Deng MF, Yan YZ, Zhu SS, Zhou K, Tan SJ, Zeng P. A Serum Pharmacochemistry and Network Pharmacology-based Approach to Study the Anti-depressant Effect of Chaihu-Shugan San. Comb Chem High Throughput Screen 2025; 28:533-550. [PMID: 38551057 DOI: 10.2174/0113862073285198240322072301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/15/2024] [Accepted: 02/14/2024] [Indexed: 04/11/2025]
Abstract
AIMS The aim of this study is to explore the anti-depressant mechanism of Chaihu- Shugan San based on serum medicinal chemistry and network pharmacology methods. BACKGROUND Depression lacks effective treatments, with current anti-depressants ineffective in 40% of patients. Chaihu-Shugan San (CHSGS) is a well-known traditional Chinese medicine compound to treat depression. However, the chemical components and the underlying mechanisms targeting the liver and brain in the anti-depressant effects of CHSGS need to be elucidated. METHODS The chemical components of CHSGS in most current network pharmacology studies are screened from TCMSP and TCMID databases. In this study, we investigated the mechanism and material basis of soothing the liver and relieving depression in the treatment of depression by CHSGS based on serum pharmacochemistry. The anti-depressant mechanism of CHSGS was further verified by proteomics and high-throughput data. RESULTS Through serum medicinal chemistry, we obtained 9 bioactive substances of CHSGS. These ingredients have good human oral bioavailability and are non-toxic. Based on liver ChIPseq data, CHSGS acts on 8 targets specifically localized in the liver, such as FGA, FGB, and FGG. The main contributors to CHSGS soothing the liver qi targets are hesperetin, nobiletin, ferulic acid, naringin and albiflorin. In addition, network pharmacology analysis identified 9 blood components of CHSGS that corresponded to 63 anti-depressant targets in the brain. Among them, nobiletin has the largest number of anti-depressant targets, followed by glycyrrhizic acid, ferulic acid, albiflorin and hesperetin. We also validated the anti-depressant mechanism of CHSGS based on hippocampal proteomics. CHSGS exerts anti-depressant effects on synaptic structure and neuronal function by targeting multiple synapse related proteins. CONCLUSION This study not only provides a theoretical basis for further expanding the clinical application of CHSGS, but also provides a series of potential lead compounds for the development of depression drugs.
Collapse
Affiliation(s)
- Man-Fei Deng
- Department of Physiology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yi-Zhi Yan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shan-Shan Zhu
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ke Zhou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Si-Jie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
3
|
Qiu J, Yu C, Kuang Y, Hu Y, Zhu T, Qin K, Zhang W. Association between psychiatric symptoms with multiple peripheral blood sample test: a 10-year retrospective study. Front Psychiatry 2024; 15:1481006. [PMID: 39717378 PMCID: PMC11663843 DOI: 10.3389/fpsyt.2024.1481006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Background Psychiatric illness is thought to be a brain somatic crosstalk disorder. However, the existing phenomenology-based Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) diagnostic framework overlooks various dimensions other than symptoms. In this study, we investigated the associations between peripheral blood test indexes with various symptom levels of major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) to explore the availability of peripheral blood test indexes. Methods We extracted cases diagnosed with MDD, BD, and SCZ at West China Hospital from 2009 to 2021, translated their main complaints into Research Domain Criteria (RDoC) symptom severity scores using nature language processing (NLP), and collected their detailed psychiatric symptoms and peripheral blood test results. Then, generalized linear models were performed between seven types of peripheral blood test values with their transformed RDoC scores and detailed symptom information adjusted for age, gender, smoking, and alcohol history. Results Several inflammatory-related indexes were strongly associated with the negative valence system (NVS) domain (basophil percentage adjusted β = 0.275, lymphocyte percentage adjusted β = 0.271, monocyte percentage adjusted β = 0.223, neutrophil percentage adjusted β = -0.310, neutrophil count adjusted β = -0.301, glucose adjusted β = -0.287, leukocyte count adjusted β = -0.244, NLR adjusted β = -0.229, and total protein adjusted β = -0.170), the positive valence system (PVS) domain (monocyte percentage adjusted β = 0.228, basophil count adjusted β = 0.176, and glutamyl transpeptidase adjusted β = 0.171), and a wide range of mood, reward, and psychomotor symptoms. In addition, glucose, urea, urate, cystatin C, and albumin showed considerable associations with multiple symptoms. In addition, based on the direction of associations and the similarity of symptoms in terms of RDoC thinking, it is suggested that "positive" mood symptoms like mania and irritability and "negative" mood symptoms like depression and anxiety might be on a continuum considering their opposite relationships with similar blood indexes. Limitations The cross-sectional design, limited symptoms record, and high proportion of missing values in some other peripheral blood indexes limited our findings. Conclusion The proportion of high inflammatory indexes in SCZ was relatively high, but in terms of mean values, SCZ, BD, and MDD did not differ significantly. Inflammatory response showed a strong correlation with NVS, PVS, and a range of psychiatric symptoms especially mood symptoms, psychomotor symptoms, and cognitive abilities.
Collapse
Affiliation(s)
- Jianqing Qiu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yalan Kuang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Hu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Medical Big Data Center, Sichuan University, Chengdu, China
| | - Ke Qin
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Medical Big Data Center, Sichuan University, Chengdu, China
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Lu C, Zhao L, Tian L, Lin C, Wu L. Antidepressant advantage of Chaihushugan san in female mice: A novel signaling mechanism in hippocampus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118627. [PMID: 39053711 DOI: 10.1016/j.jep.2024.118627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCY Chaihushugan san (CSS), a classic formula for soothing the liver and relieving depression, has been identified to produce rapid antidepressant-like effects in female mice. However, the gender predominance and underlying mechanisms of CSS's antidepressant remain unclear. AIM OF THE STUDY In this study, we focused on unraveling the gender predominance of CSS in antidepressant and the specific neuronal mechanisms that mediate this predominance. METHODS AND MATERIALS Tail suspension test (TST), forced swimming test (FST) and sucrose preference test (SPT) were used to evaluate depressive phenotypes or antidepressant-like effects of CSS in female and male chronic unpredictable mild stress (CUMS) mice model. RNA-sequencing was used to screen specific target for CSS antidepressant gender dominance. RT-PCR and elisa were used to detect the expressions of specific molecule, hormones, and inflammatory factors in the hippocampus. hippocampal viral overactivation and pharmacological blockade were used to detect the correlation between CSS antidepressant gender dominance and related targets. RESULTS In the present study, both female and male mice displayed depressive phenotypes including significant increasing immobility time in TST and reducing sucrose preference ratio in SPT after exposing CUMS for 3 weeks. However, acute administration of CSS (2, 4 g/kg) improved the depressive phenotypes only in female mice or not male mice at 2 h later. Moreover, the expressions of TC2N were increased only in female mice after exposing CUMS for 3 weeks, which were also reversed by CSS after a single administration 2 h later, but no alterations in male mice. The hippocampal expressions of estrogen receptor β (Erβ), pro-inflammatory factors (IL-1β and TNF-α) and anti-inflammatory factors (IL-10, TGF-β and IL-1Rα) were all abnormal in female CUMS mice model, which were all normalized by CSS. Furthermore, overactivation of hippocampal TC2N by AAV-TC2N+/+ blocked the antidepressant-like effects of CSS and the up-regulation of hippocampal Erβ in female mice. However, inhibition of Erβ blunted the antidepressant-like effects of CSS and CSS's suppression of pro-inflammatory factors (IL-1β and TNF-α), which had no any effect on hippocampal TC2N and anti-inflammatory factors (IL-10 and TGF-β). CONCLUSIONS The study revealed that CSS had antidepressant superiority in female mice depending on inhibiting hippocampal TC2N and then activating Erβ, further inhibiting the release of pro-inflammatory factors to produce antidepressant effects, which provided a basis for the guidance of CSS in clinical application, new ideas and targets for the development of drugs for depression with gender differences.
Collapse
Affiliation(s)
- Chao Lu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China
| | - Lingang Zhao
- Nanjing Liuhe District Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 211599, China
| | - Liyuan Tian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China
| | - Chenguang Lin
- Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Lei Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China.
| |
Collapse
|
5
|
Huang R, Gong M, Tan X, Shen J, Wu Y, Cai X, Wang S, Min L, Gong L, Liang W. Effects of Chaihu Shugan San on Brain Functional Network Connectivity in the Hippocampus of a Perimenopausal Depression Rat Model. Mol Neurobiol 2024; 61:1655-1672. [PMID: 37751044 DOI: 10.1007/s12035-023-03615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
In this study, we used Chaihu Shugan San (CSS), a traditional Chinese herbal formula, as a probe to investigate the involvement of brain functional network connectivity and hippocampus energy metabolism in perimenopausal depression. A network pharmacology approach was performed to discover the underlying mechanisms of CSS in improving perimenopausal depression, which were verified in perimenopausal depression rat models. Network pharmacology analysis indicated that complex mechanisms of energy metabolism, neurotransmitter metabolism, inflammation, and hormone metabolic processes were closely associated with the anti-depressive effects of CSS. Thus, the serum concentrations of estradiol (E2), glutamate (Glu), and 5-hydroxytryptamine (5-HT) were detected by ELISA. The brain functional network connectivity between the hippocampus and adjacent brain regions was evaluated using resting-state functional magnetic resonance imaging (fMRI). A targeted metabolomic analysis of the hippocampal tricarboxylic acid cycle was also performed to measure the changes in hippocampal energy metabolism using liquid chromatography-tandem mass spectrometry (LC-MS/MS). CSS treatment significantly improved the behavioral performance, decreased the serum Glu levels, and increased the serum 5-HT levels of PMS + CUMS rats. The brain functional connectivity between the hippocampus and other brain regions was significantly changed by PMS + CUMS processes but improved by CSS treatment. Moreover, among the metabolites in the hippocampal tricarboxylic acid cycle, the concentrations of citrate and the upregulation of isocitrate and downregulation of guanosine triphosphate (GTP) in PMS + CUMS rats could be significantly improved by CSS treatment. A brain functional network connectivity mechanism may be involved in perimenopausal depression, wherein the hippocampal tricarboxylic acid cycle plays a vital role.
Collapse
Affiliation(s)
- Ruiting Huang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, People's Republic of China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, People's Republic of China
| | - Min Gong
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Xue Tan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Jianying Shen
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - You Wu
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Xiaoshi Cai
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Suying Wang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Li Min
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Lin Gong
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Wenna Liang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
6
|
Tang Y, Wang H, Nie K, Gao Y, Su H, Wang Z, Lu F, Huang W, Dong H. Traditional herbal formula Jiao-tai-wan improves chronic restrain stress-induced depression-like behaviors in mice. Biomed Pharmacother 2022; 153:113284. [PMID: 35717786 DOI: 10.1016/j.biopha.2022.113284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Jiao-tai-wan (JTW) has been often used to treat insomnia and diabetes mellitus. Recent studies found its antidepressant activity, but the related mechanism is not clear. This study is to evaluate the therapeutic effects of JTW on chronic restraint stress (CRS)-induced depression mice and explore the potential mechanisms. METHODS CRS was used to set up a depression model. Mice in different groups were treated with 0.9 % saline, JTW and fluoxetine. After the last day of CRS, the behavioral tests were conducted. The levels of neurotransmitters, inflammatory cytokines and HPA axis index were detected and the protein expressions of NLRP3 inflammasome complex were determined. H&E, NISSL, TUNEL and immunofluorescence staining were used to observe histopathological changes and the activation of microglia and astrocytes. The potential mechanisms were explored via network pharmacology and verified by Western blot. RESULTS The assessment of liver and kidney function showed that JTW was non-toxic. Behavioral tests proved that JTW can effectively ameliorate depression-like symptoms in CRS mice, which may be related to the inhibition of NLRP3 inflammasome activation. JTW can also improve the inflammatory state and HPA axis hyperactivity in mice, and has a protective effect on CRS-induced hippocampal neurons damage. The network pharmacology analysis and the results of Western blot suggested that the antidepressant effects of JTW may be related to the MAPK signaling pathway. CONCLUSION Our findings indicated that JTW may exert antidepressant effects in CRS-induced mice by inhibiting NLRP3 inflammasome activation and improving inflammatory state, and MAPK signaling pathway may also be involved.
Collapse
Affiliation(s)
- Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|