1
|
Zhou X, Zhang L, Gao W, Li H, Guo Q, Dai J, Gao F, Wang L. Esketamine alleviates cognitive impairment signs induced by modified electroconvulsive therapy in a depression rat model via the KLF4/p38 MAPK pathway. J Affect Disord 2025; 376:302-312. [PMID: 39938694 DOI: 10.1016/j.jad.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/05/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Depression is a common and serious psychiatric disorder with significant impacts on individuals. Modified electroconvulsive therapy (MECT) is an established treatment for severe and treatment-resistant depression, but its cognitive side effects, particularly memory impairments, limit its use. Esketamine (ESK), an FDA-approved antidepressant, has shown neuroprotective effects. However, its role in mitigating MECT-induced cognitive deficits remains unexplored. This study investigates whether ESK could alleviate MECT-induced signs of cognitive impairments in a rat model of depression and explores the underlying mechanisms. METHODS Male Sprague-Dawley rats were exposed to chronic unpredictable mild stress (CUMS) model to induce depressive-like behaviors. Rats were then subjected to MECT, ESK treatment, or both. Depression-like behaviors and cognitive functions were evaluated using various tests. Molecular and cellular assays were performed to assess hippocampal neuronal apoptosis, inflammation, and synaptic plasticity, with a focus on the Krüppel-like factor 4 (KLF4) and p38 MAPK signaling pathways. RESULTS MECT treatment significantly alleviated depressive-like symptoms but exacerbated cognitive impairments, hippocampal neuronal apoptosis, and neuroinflammation. ESK co-treatment improved depressive behaviors while reversing MECT-induced cognitive deficits, reducing hippocampal apoptosis, and decreasing inflammatory cytokine levels. Furthermore, ESK enhanced synaptic plasticity and upregulated KLF4 expression, which in turn inhibited the activation of the p38 MAPK pathway. Functionally, knockdown of KLF4 diminished the neuroprotective effects of ESK, confirming its critical role in mediating cognitive protection. CONCLUSIONS Esketamine mitigates METC-induced cognitive impairment in the animal model, by upregulating KLF4, which inhibits the p38 MAPK pathway, offering a potential therapeutic strategy for improving cognitive outcomes in patients undergoing ECT.
Collapse
Affiliation(s)
- Xiaohui Zhou
- Department of Anesthesiology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, Hebei 050000, China
| | - Li Zhang
- Department of Anesthesiology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, Hebei 050000, China
| | - Weiwei Gao
- Department of Anesthesiology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, Hebei 050000, China
| | - Huili Li
- Department of Anesthesiology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, Hebei 050000, China
| | - Qiongmei Guo
- Department of Anesthesiology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, Hebei 050000, China
| | - Jiajia Dai
- Department of Anesthesiology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, Hebei 050000, China
| | - Fei Gao
- Department of Anesthesiology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, Hebei 050000, China
| | - Li Wang
- Department of Anesthesiology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
2
|
Nishiguchi T, Yamanishi K, Gorantla N, Shimura A, Seki T, Ishii T, Aoyama B, Malicoat JR, Phuong NJ, Dye NJ, Yamanashi T, Iwata M, Shinozaki G. Lipopolysaccharide-Induced Delirium-Like Behavior and Microglial Activation in Mice Correlate With Bispectral Electroencephalography. J Gerontol A Biol Sci Med Sci 2024; 79:glae261. [PMID: 39492697 PMCID: PMC11584909 DOI: 10.1093/gerona/glae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Indexed: 11/05/2024] Open
Abstract
Delirium is a multifactorial medical condition characterized by impairment across various mental functions and is one of the greatest risk factors for prolonged hospitalization, morbidity, and mortality. Research focused on delirium has proven to be challenging due to a lack of objective measures for diagnosing patients, and few laboratory models have been validated. Our recent studies report the efficacy of bispectral electroencephalography (BSEEG) in diagnosing delirium in patients and predicting patient outcomes. We applied BSEEG to validate a lipopolysaccharide-induced mouse model of delirium. Moreover, we investigated the relationship between BSEEG score, delirium-like behaviors, and microglia activation in hippocampal dentate gyrus and cortex regions in young and aged mice. There was a significant correlation between BSEEG score and impairment of attention in young mice. Additionally, there was a significant correlation between BSEEG score and microglial activation in hippocampal dentate gyrus and cortex regions in young and aged mice. We have successfully validated the BSEEG method by showing its associations with a level of behavioral change and microglial activation in an lipopolysaccharide-induced mouse model of delirium. In addition, the BSEEG method was able to sensitively capture an lipopolysaccharide-induced delirium-like condition that behavioral tests could not capture because of a hypoactive state.
Collapse
Affiliation(s)
- Tsuyoshi Nishiguchi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Kyosuke Yamanishi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Nipun Gorantla
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Akiyoshi Shimura
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Psychiatry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tomoteru Seki
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Psychiatry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Takaya Ishii
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- iPS Cell-Based Drug Discovery Group, Regenerative and Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Osaka, Osaka, Japan
| | - Bun Aoyama
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Division of Anesthesiology, National Hospital Organization Kochi Hospital, Kochi, Kochi, Japan
| | - Johnny R Malicoat
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nathan James Phuong
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Nicole Jade Dye
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Takehiko Yamanashi
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Masaaki Iwata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Gen Shinozaki
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
3
|
Wang L, Wang J, Han L, Chen T. Palmatine Attenuated Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting M1 Phenotype Macrophage Polarization via NAMPT/TLR2/CCR1 Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38619332 DOI: 10.1021/acs.jafc.3c05597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The present work was conducted to research the potential mechanism of palmatine (PAL) on lipopolysaccharide (LPS)-caused acute lung injury (ALI). Network pharmacology and bioinformatic analyses were carried out. Mice were intragastrically treated with PAL and intratracheally stimulated with LPS. LPS-induced RAW264.7 cells were employed for the in vitro model. The MPO activity, W/D ratio, neutrophils, total cell number in BALF, and histopathological alteration were examined. The levels of TNF-α, IL-1β, IL-6, IL-18, IL-4, and IL-10 in serum, BALF, and supernatant were examined by ELISA. The mRNA expressions of iNOS, CD68, Arg1, Ym1, and CD206 and protein expressions of NAMPT, TLR2, CCR1, and NLRP3 inflammasome were detected by PCR, WB, and immunofluorescence. The NAMPT inhibitor FK866, TLR2 inhibitor C29, CCR1 inhibitor BX471, NAMPT-overexpression (OE) plasmid, and TLR2-OE plasmid were used for mechanism research. As a result, PAL relieved the symptoms of ALI. PAL inhibited M1 phenotype indices and promoted M2 phenotype indices in both LPS-induced mice and RAW264.7 cells. PAL also inhibited the expressions of NAMPT, TLR2, CCR1, and NLRP3 inflammasome. The treatments with FK866, NAMPT-OE plasmid, C29, TLR2-OE plasmid, and BX471 proved that PAL exerted its effect via NAMPT/TLR2/CCR1. Molecular docking suggested that PAL might combine with NAMPT. In conclusion, PAL ameliorated LPS-induced ALI by inhibiting M1 phenotype macrophage polarization via NAMPT/TLR2/CCR1 signaling.
Collapse
Affiliation(s)
- Lei Wang
- Jiangsu Health Vocational College, Nanjing 211800, China
| | - Jinchun Wang
- Jiangsu Health Vocational College, Nanjing 211800, China
| | - Lei Han
- Jiangsu Health Vocational College, Nanjing 211800, China
| | - Tong Chen
- China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Zhang Y, Wang D, Liu J, Bai Y, Fan B, Lu C, Wang F. Structural Characterization and Antidepressant-like Effects of Polygonum sibiricum Polysaccharides on Regulating Microglial Polarization in Chronic Unpredictable Mild Stress-Induced Zebrafish. Int J Mol Sci 2024; 25:2005. [PMID: 38396684 PMCID: PMC10888389 DOI: 10.3390/ijms25042005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Polysaccharides are one of the main active ingredients of Polygonum sibiricum (PS), which is a food and medicine homolog used throughout Chinese history. The antidepressant-like effects of PSP and its underlying mechanisms remain elusive, especially the regulation of microglial polarization. The current study determined the chemical composition and structural characteristics of PSP. Then, the chronic unpredictable mild stress (CUMS) procedure was carried out on the zebrafish for 5 weeks, and PSP was immersed for 9 days (1 h/d). The body weight of zebrafish was monitored, and behavioral tests, including the novel tank test and light and dark tank test, were performed to evaluate the antidepressant-like effects of PSP. Then, the function of the hypothalamic-pituitary-interrenal (HPI) axis, the levels of peripheral inflammation, neuronal and blood-brain barrier damage in the mesencephalon and telencephalon, and the mRNA expression of M1/M2 phenotype genes in the brain were examined. PSP samples had the typical structural characteristics of polysaccharides, consisting of glucose, mannose, and galactose, with an average Mw of 20.48 kDa, which presented porous and agglomerated morphologies. Compared with untreated zebrafish, the depression-like behaviors of CUMS-induced zebrafish were significantly attenuated. PSP significantly decreased the levels of cortisol and pro-inflammatory cytokines and increased the levels of the anti-inflammatory cytokines in the body of CUMS-induced depressive zebrafish. Furthermore, PSP remarkably reversed the neuronal and blood-brain barrier damage in the mesencephalon and telencephalon and the mRNA expression of M1/M2 phenotype genes in the brain. These findings indicated that the antidepressant-like effects of PSP were related to altering the HPI axis hyperactivation, suppressing peripheral inflammation, inhibiting neuroinflammation induced by microglia hyperactivation, and modulating microglial M1/M2 polarization. The current study provides the foundations for future examinations of PSP in the functional foods of emotional regulation.
Collapse
Affiliation(s)
- Yingyu Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
| | - Danyang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
| | - Jiameng Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
| | - Yajuan Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
5
|
Lin L, Yan J, Sun J, Zhang J, Liao B. Screening and evaluation of metabolites binding PRAS40 from Erxian decoction used to treat spinal cord injury. Front Pharmacol 2024; 15:1339956. [PMID: 38318139 PMCID: PMC10839085 DOI: 10.3389/fphar.2024.1339956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Objective: The PRAS40 is an essential inhibitory subunit of the mTORC1 complex, which regulates autophagy. It has been suggested that Erxian Decoction (EXD) could treat spinal cord injury (SCI) via the autophagy pathway. However, the mechanism of whether EXD acts through PRAS40 remains unclear. Methods: With the help of immobilized PRAS40, isothermal titration calorimetry (ITC) and molecular docking, the bioactive metabolites in the EXD were screened. To establish in vitro SCI models, PC12 cells were exposed to hydrogen peroxide (H2O2) and then treated with the identified EXD substances. Furthermore, Western blot assay was carried out to identify potential molecular mechanisms involved. For assessing the effect of metabolites in vivo, the SCI model rats were first pretreated with or without the metabolite and then subjected to the immunohistochemistry (IHC) staining, Basso, Beattie & Bresnahan (BBB) locomotor rating scale, and H&E staining. Results: The immobilized PRAS40 isolated indole, 4-nitrophenol, terephthalic acid, palmatine, sinapinaldehyde, and 3-chloroaniline as the potential ligands binding to PRAS40. Furthermore, the association constants of palmatine and indole as 2.84 × 106 M-1 and 3.82 × 105 M-1 were elucidated via ITC due to the drug-like properties of these two metabolites. Molecular docking results also further demonstrated the mechanism of palmatine binding to PRAS40. Western blot analysis of PC12 cells demonstrated that palmatine inhibited the expression of p-mTOR by binding to PRAS40, activating the autophagic flux by markedly increasing LC3. The injection of palmatine (10μM and 20 μM) indicated notably increased BBB scores in the SCI rat model. Additionally, a dose-dependent increase in LC3 was observed by IHC staining. Conclusion: This research proved that EXD comprises PRAS40 antagonists, and the identified metabolite, palmatine, could potentially treat SCI by activating the autophagic flux.
Collapse
Affiliation(s)
- Li Lin
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Jingchuan Yan
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Jin Sun
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Jianfeng Zhang
- Department of Pharmacy, Eighth Hospital of Xi’an City, Xi’an, Shaanxi, China
| | - Bo Liao
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Shi J, Wang X, Kang C, Liu J, Ma C, Yang L, Hu J, Zhao N. TREM2 regulates BV2 microglia activation and influences corticosterone-induced neuroinflammation in depressive disorders. Brain Res 2024; 1822:148664. [PMID: 37923002 DOI: 10.1016/j.brainres.2023.148664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Depressive disorders is a serious mental illness, and its underlying pathological mechanisms remain unclear. The overactivation of microglia and neuroinflammation are thought to play an essential role in the occurrence and development of depressive disorders. TREM2, an immune protein mainly expressed in microglia, is an important part of nerve cells involved in inflammatory response. Corticosterone (CORT) is often referred to as a stress hormone and plays a role in the immune system and stress response. Therefore, this study investigated the role of TREM2 in CORT-induced BV2 cell damage and preliminarily analyzed the effects of TREM2 on JAK2/STAT3 signaling pathway and microglia polarization. The cell model of CORT-induced depression in vitro was established, and the effect of CORT on the activity of BV2 microglia was detected by CCK8. Plasmid transfection was used to overexpress and interfere with TREM2 in BV2 cells cultured by CORT. Western blotting, PCR, and ELISA analyzed the expression of related proteins and inflammatory factors. The results showed that CORT could affect BV2 cell proliferation and TREM2 levels. In the presence of CORT, overexpression of TREM2 decreased the levels of TNF-α, IL-1β, and IL-6 and increased the levels of IL-10. Interference with TREM2 increased the levels of TNF-α, IL-1β, and IL-6 and decreased the levels of IL-10. TREM2 can affect the release of inflammatory factors through the JAK2/STAT3 signaling pathway and regulate the M1/M2 phenotypic transformation of microglia. TREM2 plays a role in regulating CORT-induced inflammatory responses, revealing the influence of TREM2 on the neuroinflammatory pathogenesis of depressive disorders and suggesting that TREM2 may be a new target for the prevention and treatment of depressive disorders.
Collapse
Affiliation(s)
- Jingjing Shi
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Xiaohong Wang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Chuanyi Kang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Jiacheng Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Caina Ma
- Harbin First Specialized Hospital, Heilongjiang Province, China
| | - Liying Yang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Jian Hu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China.
| | - Na Zhao
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China.
| |
Collapse
|
7
|
Wang Y, Pei H, Chen W, Du R, Li J, He Z. Palmatine Protects PC12 Cells and Mice from Aβ25-35-Induced Oxidative Stress and Neuroinflammation via the Nrf2/HO-1 Pathway. Molecules 2023; 28:7955. [PMID: 38138445 PMCID: PMC10745955 DOI: 10.3390/molecules28247955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease is a common degenerative disease which has a great impact on people's daily lives, but there is still a certain market gap in the drug research about it. Palmatine, one of the main components of Huangteng, the rattan stem of Fibraurea recisa Pierre (Menispermaceae), has potential in the treatment of Alzheimer's disease. The aim of this study was to evaluate the neuroprotective effect of palmatine on amyloid beta protein 25-35-induced rat pheochromocytoma cells and AD mice and to investigate its mechanism of action. CCK8 assays, ELISA, the Morris water maze assay, fluorescent probes, calcein/PI staining, immunofluorescent staining and Western blot analysis were used. The experimental results show that palmatine can increase the survival rate of Aβ25-35-induced PC12 cells and mouse hippocampal neurons, reduce apoptosis, reduce the content of TNF-α, IL-1β, IL-6, GSH, SOD, MDA and ROS, improve the learning and memory ability of AD mice, inhibit the expression of Keap-1 and Bax, and promote the expression of Nrf2, HO-1 and Bcl-2. We conclude that palmatine can ameliorate oxidative stress and neuroinflammation produced by Aβ25-35-induced PC12 cells and mice by modulating the Nrf2/HO-1 pathway. In conclusion, our results suggest that palmatine may have a potential therapeutic effect on AD and could be further investigated as a promising therapeutic agent for AD. It provides a theoretical basis for the development of related drugs.
Collapse
Affiliation(s)
- Yu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|