1
|
Ye Z, Liu R, Wang H, Zuo A, Jin C, Wang N, Sun H, Feng L, Yang H. Neuroprotective potential for mitigating ischemia-reperfusion-induced damage. Neural Regen Res 2025; 20:2199-2217. [PMID: 39104164 PMCID: PMC11759025 DOI: 10.4103/nrr.nrr-d-23-01985] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 06/22/2024] [Indexed: 08/07/2024] Open
Abstract
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition; this phenomenon is known as cerebral ischemia-reperfusion injury. Current studies have elucidated the neuroprotective role of the sirtuin protein family (Sirtuins) in modulating cerebral ischemia-reperfusion injury. However, the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration. In this review, the origin and research progress of Sirtuins are summarized, suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury, including inflammation, oxidative stress, blood-brain barrier damage, apoptosis, pyroptosis, and autophagy. The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways, such as nuclear factor-kappa B signaling, oxidative stress mediated by adenosine monophosphate-activated protein kinase, and the forkhead box O. This review also summarizes the potential of endogenous substances, such as RNA and hormones, drugs, dietary supplements, and emerging therapies that regulate Sirtuins expression. This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors. While Sirtuins show promise as a potential target for the treatment of cerebral ischemia-reperfusion injury, most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans, potentially influencing the efficacy of Sirtuins-targeting drug therapies. Overall, this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zi Ye
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Runqing Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hangxing Wang
- Division of Infectious Diseases, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aizhen Zuo
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Cen Jin
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Nan Wang
- Division of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huiqi Sun
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, China
| | - Luqian Feng
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
2
|
Lu W, Wen J. The relationship among H 2S, neuroinflammation and MMP-9 in BBB injury following ischemic stroke. Int Immunopharmacol 2025; 146:113902. [PMID: 39724730 DOI: 10.1016/j.intimp.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Blood-brain barrier (BBB) is located at the interface between the central nervous system (CNS) and the circulatory system, which maintains the microenvironmental homeostasis of the CNS. BBB damage is a result of CNS diseases, including ischemic stroke, and is a cause of CNS deterioration. Cerebral ischemia unleashes a profound inflammatory response to remove the damaged tissue in the CNS and prepare the brain for repair. However, the excessive neuroinflammation following stroke onset is associated with BBB breakdown, resulting in neuronal injury and worse neurological outcomes. Additionally, matrix metalloproteinases (MMPs) are likewise responsible for the BBB injury and participate in the pathological processes of neuroinflammation following ischemic stroke. Hydrogen sulfide (H2S) is one of gaseous signaling and freely diffusing molecules. Low concentration of H2S yields the neuroprotection against BBB damage following stroke. This review discussed the current knowledge about the detrimental roles of neuroinflammation and MMPs in BBB injury following ischemic stroke. Specifically, we provided an updated overview of H2S in protecting against BBB injury following ischemic stroke via anti-neuroinflammation and inhibiting MMP-9.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Medical Branch, Hefei Technology College, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Motta F, Cerrato M, De Giorgio D, Salimbeni A, Merigo G, Magliocca A, Perego C, Zanier ER, Ristagno G, Fumagalli F. Translational approach to assess brain injury after cardiac arrest in preclinical models: a narrative review. Intensive Care Med Exp 2025; 13:3. [PMID: 39808393 PMCID: PMC11732829 DOI: 10.1186/s40635-024-00710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Affiliation(s)
- Francesca Motta
- Department of Acute Brain and Cardiovascular Injury Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marianna Cerrato
- Department of Acute Brain and Cardiovascular Injury Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daria De Giorgio
- Department of Acute Brain and Cardiovascular Injury Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alice Salimbeni
- Department of Acute Brain and Cardiovascular Injury Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia Merigo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Aurora Magliocca
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Carlo Perego
- Department of Acute Brain and Cardiovascular Injury Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa R Zanier
- Department of Acute Brain and Cardiovascular Injury Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Ristagno
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Fumagalli
- Department of Acute Brain and Cardiovascular Injury Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
4
|
Duan P, Li X, Bi Y, Feng W, Jin Z, Zhang X, He G, An D, Wen Z, Zhang B. GYY4137 ameliorates blood brain barrier damage by inhibiting autophagy mediated occludin degradation in cardiac arrest and resuscitation. Sci Rep 2025; 15:905. [PMID: 39762518 PMCID: PMC11704213 DOI: 10.1038/s41598-024-84948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiopulmonary resuscitation (CPR) after cardiac arrest (CA) is an important cause of neurological impairment and leads to considerable morbidity and mortality. The stability of the blood-brain barrier (BBB) is crucial for minimizing secondary neurological damage and improving long-term prognosis. However, the precise mechanisms and regulatory pathways that contribute to BBB dysfunction after CPR remain elusive. GYY4137 is an innovative hydrogen sulfide slow-release agent with excellent properties as a hydrogen sulfide substitute. The aim of this study was to investigate the protective effects of GYY4137 on CA/CPR and the underlying mechanisms of BBB protection. The effects of GYY4137 on systemic inflammation, BBB integrity, and autophagy were evaluated using a mouse CA/CPR model. The underlying mechanisms of occludin changes associated with GYY4137 were investigated using oxygen-glucose deprivation / reoxygenation (OGD/R) model. ELISA, neurological function and other tests showed that GYY4137 ameliorates systemic inflammation and neurological prognosis. Western blotting, transwell migration and tube formation assays showed that GYY4137 improves BBB function both in vivo and in vitro. The detection of autophagy flow and protein degradation pathways showed the inhibition of occludin reduction by GYY4137 was mainly achieved by suppressing autophagy mediated degradation. Taken together, GYY4137 may improve BBB dysfunction following CPR by increasing occludin content. This effect was achieved by inhibiting autophagic degradation rather than promoting synthesis. GYY4137 also mitigated systemic inflammation and improved neurological outcomes after CA/CPR. In summary, our study provides valuable insights into protecting the integrity of BBB and improving neurological outcomes after CPR.
Collapse
Affiliation(s)
- Pengyu Duan
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China
| | - Xiaoyan Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China
| | - Yonghong Bi
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China
| | - Weiyu Feng
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China
| | - Zhehao Jin
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China
| | - Xiaoqian Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China
| | - Guanghui He
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China
| | - Da An
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhibin Wen
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bing Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China.
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China.
| |
Collapse
|
5
|
Kelava L, Pakai E, Ogasawara K, Fekete K, Pozsgai G, Pinter E, Garami A. Effects of Hydrogen Sulfide at Normal Body Temperature and in the Cold on Isolated Tail and Carotid Arteries from Rats and TRPA1 Knockout and Wild-Type Mice. Biomedicines 2024; 12:2874. [PMID: 39767780 PMCID: PMC11673252 DOI: 10.3390/biomedicines12122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Hydrogen sulfide (H2S) is a gasotransmitter that modulates vascular tone, causing either vasodilation or vasoconstriction depending on the vascular bed, species, and experimental conditions. The cold-sensitive transient receptor potential ankyrin-1 (TRPA1) channel mediates H2S-induced effects; however, its contribution to the vasomotor responses of different arteries at different temperatures has remained unclear. Here, we aimed to fill this gap by comparing the effects of sodium sulfide (Na2S), which is a fast-releasing H2S donor, on the isolated carotid and tail skin arteries of rats and mice at cold and normal body temperature with wire myography. Under the same circumstances, we also aimed to compare the effects of the canonical endothelium-dependent and -independent vasodilators, acetylcholine and sodium nitroprusside, respectively. Methods: We isolated the carotid and tail arteries from 32 adult Wistar rats and 64 TRPA1 knockout and wild-type mice, and then we studied their vasomotor responses to increasing doses (10-6-10-3 M) of Na2S as well as to acetylcholine and sodium nitroprusside (10-5 M for both) at 37 °C and in cold (17 or 20 °C). Results: In rat vessels, Na2S caused constriction of the carotids and relaxation of the tail arteries, which were not influenced by temperature. In mouse carotids, Na2S caused vasorelaxation, which was more pronounced in the cold at a lower dose (10-4 M). At a higher dose (10-3 M), the dilation was markedly attenuated in the absence of the TRPA1 channel. In the mouse tail arteries, Na2S caused vasorelaxation at 37 °C and vasocontraction in the cold. The genetic blockade of TRPA1 channels did not influence the vasomotor responses of the mouse tail arteries. Sodium nitroprusside-induced vasorelaxation was not influenced by any of the investigated factors, while acetylcholine-induced dilation decreased in the cold in all vessel types. Conclusions: Our results reveal the function of TRPA1 in the H2S-induced dilation of carotid arteries in mice. We also highlight interspecies differences in the vasomotor responses between rats and mice, as well as the importance of the effect of temperature on vascular responses. The implementation of the identified variables in future research can advance our understanding of cardiovascular physiology, especially in conditions with hypothermia (either accidental or therapeutic).
Collapse
Affiliation(s)
- Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| | - Kazushi Ogasawara
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| | - Gabor Pozsgai
- Department of Pharmacology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary;
| | - Erika Pinter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| |
Collapse
|
6
|
Sun X, Xu S, Wang J, Li X, Sun H, Zhao W. Long-term hypothermia amplified neuroprotection by antagonizing intracranial pressure rebound after severe traumatic brain injury in rats. Neuroreport 2024; 35:1107-1116. [PMID: 39423323 DOI: 10.1097/wnr.0000000000002106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Long-term hypothermia has been reported to prevent intracranial pressure (ICP) rebound in clinical patients, but the duration for hypothermia and the corresponding ICP data are not available. This study investigated the optimal duration of long-term hypothermia in traumatic brain injury (TBI) rats, and observed the effect on ICP and neurological function. In this study, we established a rat severe TBI model with electronic Controlled Cortical Injury device, and implemented hypothermia (33 °C) for different durations. The motor function of the rats in each group was evaluated by beam walking test and inclined-grid climbing test, brain water content was calculated by the wet-dry weight method, Evan's blue staining was used to measure the blood-brain barrier (BBB) permeability, the change of hippocampal neurons was observed by Nissl staining, the expressions of BrdU, NeuN, and CD86 positive cells were detected by immunofluorescence staining, and the expressions of Bcl-2, Bax, iNOS, IL-10, and Arg-1 were detected by Western blot. We found that therapeutic hypothermia improved neurological recovery after TBI with declining ICP, reducing brain edema, decreasing BBB permeability, promoting neurogenesis, inhibiting apoptosis, and regulating inflammation. Moreover, 48 h hypothermia amplified the neuroprotective effect after injury on the basis of 4 or 24 h hypothermic treatment. Both 4 and 24 h hypothermia led to ICP rebound during or after rewarming, whereas 48 h hypothermia completely abolished ICP rebound. Our study suggests that long-term hypothermia amplifies neuroprotection after TBI by antagonizing ICP rebound.
Collapse
Affiliation(s)
- Xiaopeng Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou
| | - Shugang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou
| | - Jingjing Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University
| | - Xiaohong Li
- Department of Neurosurgery, Institute of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Hongtao Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin University
| | - Wanyong Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou
| |
Collapse
|
7
|
Wang X, Chen S, Wang X, Song Z, Wang Z, Niu X, Chen X, Chen X. Application of artificial hibernation technology in acute brain injury. Neural Regen Res 2024; 19:1940-1946. [PMID: 38227519 DOI: 10.4103/1673-5374.390968] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Controlling intracranial pressure, nerve cell regeneration, and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury. There is currently a lack of effective treatment methods. Hibernation has the characteristics of low temperature, low metabolism, and hibernation rhythm, as well as protective effects on the nervous, cardiovascular, and motor systems. Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body's metabolism, lowering the body's core temperature, and allowing the body to enter a state similar to hibernation. This review introduces artificial hibernation technology, including mild hypothermia treatment technology, central nervous system regulation technology, and artificial hibernation-inducer technology. Upon summarizing the relevant research on artificial hibernation technology in acute brain injury, the research results show that artificial hibernation technology has neuroprotective, anti-inflammatory, and oxidative stress-resistance effects, indicating that it has therapeutic significance in acute brain injury. Furthermore, artificial hibernation technology can alleviate the damage of ischemic stroke, traumatic brain injury, cerebral hemorrhage, cerebral infarction, and other diseases, providing new strategies for treating acute brain injury. However, artificial hibernation technology is currently in its infancy and has some complications, such as electrolyte imbalance and coagulation disorders, which limit its use. Further research is needed for its clinical application.
Collapse
Affiliation(s)
- Xiaoni Wang
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shulian Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Xiaoyu Wang
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Zhen Song
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ziqi Wang
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaofei Niu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaochu Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Xuyi Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| |
Collapse
|
8
|
Xi XR, Zhang ZQ, Li YL, Liu Z, Ma DY, Gao Z, Zhang S. Hypothermia promotes tunneling nanotube formation and the transfer of astrocytic mitochondria into oxygen-glucose deprivation/reoxygenation-injured neurons. Brain Res 2024; 1831:148826. [PMID: 38403036 DOI: 10.1016/j.brainres.2024.148826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Mitochondrial transfer occurs between cells, and it is important for damaged cells to receive healthy mitochondria to maintain their normal function and protect against cell death. Accumulating evidence suggests that the functional mitochondria of astrocytes are released and transferred to oxygen-glucose deprivation/reoxygenation (OGD/R)-injured neurons. Mild hypothermia (33 °C) is capable of promoting this process, which partially restores the function of damaged neurons. However, the pathways and mechanisms by which mild hypothermia facilitates mitochondrial transfer remain unclear. We are committed to studying the role of mild hypothermia in neuroprotection to provide reliable evidences and insights for the clinical application of mild hypothermia in brain protection. Tunneling nanotubes (TNTs) are considered to be one of the routes through which mitochondria are transferred between cells. In this study, an OGD/R-injured neuronal model was successfully established, and TNTs, mitochondria, neurons and astrocytes were double labeled using immunofluorescent probes. Our results showed that TNTs were present and involved in the transfer of mitochondria between cells in the mixed-culture system of neurons and astrocytes. When neurons were subjected to OGD/R exposure, TNT formation and mitochondrial transportation from astrocytes to injured neurons were facilitated. Further analysis revealed that mild hypothermia increased the quantity of astrocytic mitochondria transferred into damaged neurons through TNTs, raised the mitochondrial membrane potential (MMP), and decreased the neuronal damage and death during OGD/R. Altogether, our data indicate that TNTs play an important role in the endogenous neuroprotection of astrocytic mitochondrial transfer. Furthermore, mild hypothermia enhances astrocytic mitochondrial transfer into OGD/R-injured neurons via TNTs, thereby promoting neuroprotection and neuronal recovery.
Collapse
Affiliation(s)
- Xiao-Rui Xi
- Department of Anesthesiology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Zhi-Qiang Zhang
- Department of Anesthesiology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Yan-Li Li
- Department of Anesthesiology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Zheng Liu
- Department of Anesthesiology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Dong-Yang Ma
- Department of Anesthesiology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Zan Gao
- Department of Anesthesiology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Shan Zhang
- Department of Anesthesiology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China.
| |
Collapse
|
9
|
You Y, Park JS, Min JH, Jeong W, Ahn HJ, In YN, Jeon SY, Lee JK, Kang C. Blood-brain barrier permeability for the first 24 hours in hypoxic-ischemic brain injury following cardiac arrest. Resuscitation 2024; 198:110150. [PMID: 38401708 DOI: 10.1016/j.resuscitation.2024.110150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND This study aimed to explore the changes in blood-brain barrier (BBB) permeability and intracranial pressure (ICP) for the first 24 h after the return of spontaneous circulation (ROSC) and their association with injury severity of cardiac arrest. METHODS This prospective study analysed the BBB permeability assessed using the albumin quotient (Qa) and ICP every 2 h for the first 24 h after ROSC. The injury severity of cardiac arrest was assessed using Pittsburgh Cardiac Arrest Category (PCAC) scores. The primary outcome was the time course of changes in the BBB permeability and ICP for the first 24 h after ROSC and their association with injury severity (PCAC scores of 1-4). RESULTS Qa and ICP were measured 274 and 197 times, respectively, in 32 enrolled patients. Overall, the BBB permeability increased progressively over time after ROSC, and then it increased significantly at 18 h after ROSC compared with the baseline. In contrast, the ICP revealed non-significant changes for the first 24 h after ROSC. The Qa in the PCAC 2 group was < 0.01, indicating normal or mild BBB disruption at all time points, whereas the PCAC 3 and 4 groups showed a significant increase in BBB permeability at 14 and 22 h, and 12 and 14 h after ROSC, respectively. CONCLUSION BBB permeability increased progressively over time for the first 24 h after ROSC despite post-resuscitation care, whereas ICP did not change over time. BBB permeability has an individual pattern when stratified by injury severity.
Collapse
Affiliation(s)
- Yeonho You
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jung Soo Park
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jin Hong Min
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, Chungnam National University Sejong Hospital, 20, Bodeum 7-ro, Sejong, Republic of Korea
| | - Wonjoon Jeong
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Hong Joon Ahn
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Yong Nam In
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, Chungnam National University Sejong Hospital, 20, Bodeum 7-ro, Sejong, Republic of Korea
| | - So Young Jeon
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jae Kwang Lee
- Department of Emergency Medicine, Konyang University Hospital, College of Medicine, Daejeon 35365, Republic of Korea
| | - Changshin Kang
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Jin L, Chen F, Chen X, Zhang S, Liang Z, Zhao L, Tan H. pH/Temperature Dual-Responsive Protein-Polymer Conjugates for Potential Therapeutic Hypothermia in Ischemic Stroke. ACS APPLIED BIO MATERIALS 2023; 6:5105-5113. [PMID: 37903779 DOI: 10.1021/acsabm.3c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Thrombolytic therapy for ischemic stroke still has several limitations, such as a narrow therapeutic time window and adverse effects. Therapeutic hypothermia is a neuroprotective strategy for stroke. In this study, we developed pH/temperature dual-responsive protein-polymer conjugates (PEG-uPA-PEG-PPG-PEG) by modifying a urokinase-type plasminogen activator (uPA) with polyethylene glycol (PEG) and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG, a thermosensitive polymer) via pH-sensitive imine bonds and disulfide bonds, respectively. At 37 °C and pH 7.4 (normothermia and physiological pH), PEG-uPA-PEG-PPG-PEG exhibits antiprotease hydrolysis and masked bioactivity of uPA due to the protective effect of the polymer segments wrapped around the protein surface. However, at 33 °C and pH 6.0 (hypothermia and pH at the thrombotic site), uPA loses the protective effect and recovers its bioactivity due to PEG dissociation and PEG-PPG-PEG stretching. The masked bioactivity of uPA at normothermia and physiological pH could reduce the risk of acute hemorrhage complication, and the recovery of protein activity at acidic pH and 33 °C is of great significance for thrombolytic therapy at mild hypothermia. Thus, PEG-uPA-PEG-PPG-PEG provides promising potential for therapeutic hypothermia in ischemic stroke.
Collapse
Affiliation(s)
- Lingli Jin
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen 518026, China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Fengjiao Chen
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen 518026, China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xianwu Chen
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315211, China
| | - Shun Zhang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315000, China
| | - Zhenjiang Liang
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen 518026, China
| | - Lingling Zhao
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Hui Tan
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen 518026, China
| |
Collapse
|
11
|
Hang Z, Zhou L, Xing C, Wen Y, Du H. The blood-brain barrier, a key bridge to treat neurodegenerative diseases. Ageing Res Rev 2023; 91:102070. [PMID: 37704051 DOI: 10.1016/j.arr.2023.102070] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
As a highly selective and semi-permeable barrier that separates the circulating blood from the brain and central nervous system (CNS), the blood-brain barrier (BBB) plays a critical role in the onset and treatment of neurodegenerative diseases (NDs). To delay or reverse the NDs progression, the dysfunction of BBB should be improved to protect the brain from harmful substances. Simultaneously, a highly efficient drug delivery across the BBB is indispensable. Here, we summarized several methods to improve BBB dysfunction in NDs, including knocking out risk geneAPOE4, regulating circadian rhythms, restoring the gut microenvironment, and activating the Wnt/β-catenin signaling pathway. Then we discussed the advances in BBB penetration techniques, such as transient BBB opening, carrier-mediated drug delivery, and nasal administration, which facilitates drug delivery across the BBB. Furthermore, various in vivo and in vitro BBB models and research methods related to NDs are reviewed. Based on the current research progress, the treatment of NDs in the long term should prioritize the integrity of the BBB. However, a treatment approach that combines precise control of transient BBB permeability and non-invasive targeted BBB drug delivery holds profound significance in improving treatment effectiveness, safety, and clinical feasibility during drug therapy. This review involves the cross application of biology, materials science, imaging, engineering and other disciplines in the field of BBB, aiming to provide multi-dimensional research directions and clinical ideas for the treating NDs.
Collapse
Affiliation(s)
- Zhongci Hang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhou
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Cencan Xing
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
12
|
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, Gasanov M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int J Mol Sci 2023; 24:10742. [PMID: 37445920 DOI: 10.3390/ijms241310742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem of the modern healthcare system. The situation is complicated by the lack of clinically effective neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition, people who have undergone neurotrauma often develop mental disorders and neurodegenerative diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and sometimes controversial. In this large-scale review study, we examined the various biological effects of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment, encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuroprotectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many of them show a high neuroprotective effect in various animal models of neurotrauma and related disorders. Despite the fact that our review is very extensive and detailed, it is well structured right down to the conclusions, which will allow researchers to quickly find the proper information they are interested in.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Tushev
- Neurosurgical Department, Rostov State Medical University Clinic, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinic Therapy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| |
Collapse
|
13
|
Gao Y, Liu H, Zhou J, Guo M, Sun J, Duan M. THE PROTECTIVE EFFECT OF C23 IN A RAT MODEL OF CARDIAC ARREST AND RESUSCITATION. Shock 2023; 59:892-901. [PMID: 36930651 DOI: 10.1097/shk.0000000000002113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
ABSTRACT Background : Systemic inflammation acts as a contributor to neurologic deficits after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Extracellular cold-inducible RNA-binding, protein (CIRP) has been demonstrated to be responsible in part for the inflammation through binding to toll-like receptor 4 (TLR4) after cerebral ischemia. The short peptide C23 derived from CIRP has a high affinity for TLR4, we hypothesize that C23 reduces systemic inflammation after CA/CPR by blocking the binding of CIRP to TLR4. Methods : Adult male SD rats in experimental groups were subjected to 5 min of CA followed by resuscitation. C23 peptide (8 mg/kg) or normal saline was injected intraperitoneally at the beginning of the return of spontaneous circulation (ROSC). Results : The expressions of CIRP, TNF-α, IL-6, and IL-1β in serum and brain tissues were significantly increased at 24 h after ROSC ( P < 0.05). C23 treatment could markedly decrease the expressions of TNF-α, IL-6, and IL-1β in serum ( P < 0.05). Besides, it can decrease the expressions of TLR4, TNF-α, IL-6, and IL-1β in the cortex and hippocampus and inhibit the colocalization of CIRP and TLR4 ( P < 0.05). In addition, C23 treatment can reduce the apoptosis of hippocampus neurons ( P < 0.05). Finally, the rats in the C23 group have improved survival rate and neurological prognosis ( P < 0.05). Conclusions: These findings suggest that C23 can reduce systemic inflammation and it has the potential to be developed into a possible therapy for post-CA syndrome.
Collapse
Affiliation(s)
- Yu Gao
- Department of anesthesiology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu, China
| | - Haoxin Liu
- Department of anesthesiology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Jiejie Zhou
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, Jiangsu, China
| | - Min Guo
- Department of anesthesiology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Jie Sun
- Department of anesthesiology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu, China
| | | |
Collapse
|
14
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|