1
|
Zhao X, Xu Y, Viel JH, Kuipers OP. Semisynthetic Macrocyclic Lipo-lanthipeptides Display Antimicrobial Activity Against Bacterial Pathogens. ACS Synth Biol 2021; 10:1980-1991. [PMID: 34347446 PMCID: PMC8383303 DOI: 10.1021/acssynbio.1c00161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A large number of antimicrobial peptides depend on intramolecular disulfide bonds for their biological activity. However, the relative instability of disulfide bonds has limited the potential of some of these peptides to be developed into therapeutics. Conversely, peptides containing intramolecular (methyl)lanthionine-based bonds, lanthipeptides, are highly stable under a broader range of biological and physical conditions. Here, the class-II lanthipeptide synthetase CinM, from the cinnamycin gene cluster, was employed to create methyllanthionine stabilized analogues of disulfide-bond-containing antimicrobial peptides. The resulting analogues were subsequently modified in vitro by adding lipid tails of variable lengths through chemical addition. Finally, the created compounds were characterized by MIC tests against several relevant pathogens, killing assays, membrane permeability assays, and hemolysis assays. It was found that CinM could successfully install methyllanthionine bonds at the intended positions of the analogues and that the lipidated macrocyclic core peptides have bactericidal activity against tested Gram-positive and Gram-negative pathogenic bacteria. Additionally, fluorescence microscopy assays revealed that the lipidated compounds disrupt the bacterial membrane and lyse bacterial cells, hinting toward a potential mode of action. Notably, the semisynthesized macrocyclic lipo-lanthipeptides show low hemolytic activity. These results show that the methods developed here extend the toolbox for novel antimicrobial development and might enable the further development of novel compounds with killing activity against relevant pathogenic bacteria.
Collapse
Affiliation(s)
- Xinghong Zhao
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Yanli Xu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jakob H. Viel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
2
|
Zhao X, Kuipers OP. Nisin- and Ripcin-Derived Hybrid Lanthipeptides Display Selective Antimicrobial Activity against Staphylococcus aureus. ACS Synth Biol 2021; 10:1703-1714. [PMID: 34156232 PMCID: PMC8291769 DOI: 10.1021/acssynbio.1c00080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Lanthipeptides are (methyl)lanthionine ring-containing ribosomally synthesized and post-translationally modified peptides (RiPPs). Many lanthipeptides show strong antimicrobial activity against bacterial pathogens, including antibiotic-resistant bacterial pathogens. The group of disulfide-bond-containing antimicrobial peptides (AMPs) is well-known in nature and forms a rich source of templates for the production of novel peptides with corresponding (methyl)lanthionine analogues instead of disulfides. Here, we show that novel macrocyclic lanthipeptides (termed thanacin and ripcin) can be synthesized using the known antimicrobials thanatin and rip-thanatin as templates. Notably, the synthesized nisin(1-20)-ripcin hybrid lanthipeptides (ripcin B-G) showed selective antimicrobial activity against S. aureus, including an antibiotic-resistant MRSA strain. Interestingly, ripcin B-G, which are hybrid peptides of nisin(1-20) and ripcin that are each inactive against Gram-negative pathogens, showed substantial antimicrobial activity against the tested Gram-negative pathogens. Moreover, ripcin B-G was highly resistant against the nisin resistance protein (NSR; a peptidase that removes the C-terminal 6 amino acids of nisin and strongly reduces its antimicrobial activity), opposed to nisin itself. This study provides an example of converting disulfide-bond-based AMPs into (methyl)lanthionine-based macrocyclic hybrid lanthipeptides and can yield antimicrobial peptides with selective antimicrobial activity against S. aureus.
Collapse
Affiliation(s)
- Xinghong Zhao
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Oscar P. Kuipers
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
3
|
Zhao X, Cebrián R, Fu Y, Rink R, Bosma T, Moll GN, Kuipers OP. High-Throughput Screening for Substrate Specificity-Adapted Mutants of the Nisin Dehydratase NisB. ACS Synth Biol 2020; 9:1468-1478. [PMID: 32374981 PMCID: PMC7309312 DOI: 10.1021/acssynbio.0c00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Microbial
lanthipeptides are formed by a two-step enzymatic introduction
of (methyl)lanthionine rings. A dehydratase catalyzes the dehydration
of serine and threonine residues, yielding dehydroalanine and dehydrobutyrine,
respectively. Cyclase-catalyzed coupling of the formed dehydroresidues
to cysteines forms (methyl)lanthionine rings in a peptide. Lanthipeptide
biosynthetic systems allow discovery of target-specific, lanthionine-stabilized
therapeutic peptides. However, the substrate specificity of existing
modification enzymes impose limitations on installing lanthionines
in non-natural substrates. The goal of the present study was to obtain
a lanthipeptide dehydratase with the capacity to dehydrate substrates
that are unsuitable for the nisin dehydratase NisB. We report high-throughput
screening for tailored specificity of intracellular, genetically encoded
NisB dehydratases. The principle is based on the screening of bacterially
displayed lanthionine-constrained streptavidin ligands, which have
a much higher affinity for streptavidin than linear ligands. The designed
NisC-cyclizable high-affinity ligands can be formed via mutant NisB-catalyzed
dehydration but less effectively via wild-type NisB activity. In Lactococcus lactis, a cell surface display precursor was
designed comprising DSHPQFC. The Asp residue preceding the serine
in this sequence disfavors its dehydration by wild-type NisB. The
cell surface display vector was coexpressed with a mutant NisB library
and NisTC. Subsequently, mutant NisB-containing bacteria that display
cyclized strep ligands on the cell surface were selected via panning
rounds with streptavidin-coupled magnetic beads. In this way, a NisB
variant with a tailored capacity of dehydration was obtained, which
was further evaluated with respect to its capacity to dehydrate nisin
mutants. These results demonstrate a powerful method for selecting
lanthipeptide modification enzymes with adapted substrate specificity.
Collapse
Affiliation(s)
- Xinghong Zhao
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rubén Cebrián
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Yuxin Fu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Rick Rink
- Lanthio Pharma, Rozenburglaan 13 B, Groningen 9727 DL, The Netherlands
| | - Tjibbe Bosma
- Lanthio Pharma, Rozenburglaan 13 B, Groningen 9727 DL, The Netherlands
| | - Gert N. Moll
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
- Lanthio Pharma, Rozenburglaan 13 B, Groningen 9727 DL, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
4
|
An Engineered Double Lipid II Binding Motifs-Containing Lantibiotic Displays Potent and Selective Antimicrobial Activity against Enterococcus faecium. Antimicrob Agents Chemother 2020; 64:AAC.02050-19. [PMID: 32179527 PMCID: PMC7269505 DOI: 10.1128/aac.02050-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/22/2020] [Indexed: 12/23/2022] Open
Abstract
Lipid II is an essential precursor for bacterial cell wall biosynthesis and thereby an important target for various antibiotics. Several lanthionine-containing peptide antibiotics target lipid II with lanthionine-stabilized lipid II binding motifs. Here, we used the biosynthesis system of the lantibiotic nisin to synthesize a two-lipid II binding motifs-containing lantibiotic, termed TL19, which contains the N-terminal lipid II binding motif of nisin and the distinct C-terminal lipid II binding motif of one peptide of the two-component haloduracin (i. Lipid II is an essential precursor for bacterial cell wall biosynthesis and thereby an important target for various antibiotics. Several lanthionine-containing peptide antibiotics target lipid II with lanthionine-stabilized lipid II binding motifs. Here, we used the biosynthesis system of the lantibiotic nisin to synthesize a two-lipid II binding motifs-containing lantibiotic, termed TL19, which contains the N-terminal lipid II binding motif of nisin and the distinct C-terminal lipid II binding motif of one peptide of the two-component haloduracin (i.e., HalA1). Further characterization demonstrated that (i) TL19 exerts 64-fold stronger antimicrobial activity against Enterococcus faecium than nisin(1-22), which has only one lipid II binding site, and (ii) both the N- and C-terminal domains are essential for the potent antimicrobial activity of TL19, as evidenced by mutagenesis of each single and the double domains. These results show the feasibility of a new approach to synthesize potent lantibiotics with two different lipid II binding motifs to treat specific antibiotic-resistant pathogens.
Collapse
|
5
|
|
6
|
Covalent Structure and Bioactivity of the Type AII Lantibiotic Salivaricin A2. Appl Environ Microbiol 2018; 84:AEM.02528-17. [PMID: 29269497 DOI: 10.1128/aem.02528-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/18/2017] [Indexed: 01/31/2023] Open
Abstract
Lantibiotics are a class of lanthionine-containing, ribosomally synthesized, and posttranslationally modified peptides (RiPPs) produced by Gram-positive bacteria. Salivaricin A2 belongs to the type AII lantibiotics, which are generally considered to kill Gram-positive bacteria by binding to the cell wall precursor lipid II via a conserved ring A structure. Salivaricin A2 was first reported to be isolated from a probiotic strain, Streptococcus salivarius K12, but the structural and bioactivity characterizations of the antibiotic have remained limited. In this study, salivaricin A2 was purified and its covalent structure was characterized. N-terminal analogues of salivaricin A2 were generated to study the importance for bioactivity of the length and charge of the N-terminal amino acids. Analogue salivaricin A2(3-22) has no antibacterial activity and does not have an antagonistic effect on the native compound. The truncated analogue also lost its ability to bind to lipid II in a thin-layer chromatography (TLC) assay, suggesting that the N-terminal amino acids are important for binding to lipid II. The creation of N-terminal analogues of salivaricin A2 promoted a better understanding of the bioactivity of this antibiotic and further elucidated the structural importance of the N-terminal leader peptide. The antibacterial activity of salivaricin A2 is due not only to the presence of the positively charged N-terminal amino acid residues, but to the length of the N-terminal linear peptide.IMPORTANCE The amino acid composition of the N-terminal linear peptide of salivaricin A2 is crucial for function. Our study shows that the length of the amino acid residues in the linear peptide is crucial for salivaricin A2 antimicrobial activity. Very few type AII lantibiotic covalent structures have been confirmed. The characterization of the covalent structure of salivaricin A2 provides additional support for the predicted lanthionine and methyl-lanthionine ring formations present in this structural class of lantibiotics. Removal of the N-terminal Lys1 and Arg2 residues from the peptide causes a dramatic shift in the chemical shift values of amino acid residues 7 through 9, suggesting that the N-terminal amino acids contribute to a distinct structural conformer for the linear peptide region. The demonstration that the bioactivity could be partially restored with the substitution of N-terminal alanine residues supports further studies aimed at determining whether new analogues of salivaricin A2 for novel applications can be synthesized.
Collapse
|
7
|
Gao Y, Zou Y, Ma Y, Wang D, Sun Y, Ma G. Infrared Probe Technique Reveals a Millipede-like Structure for Aβ(8-28) Amyloid Fibril. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:937-946. [PMID: 26796491 DOI: 10.1021/acs.langmuir.5b03616] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amyloid fibrils are unique fibrous polypeptide aggregates. They have been associated with more than 20 serious human diseases including Alzheimer's disease and Parkinson's disease. Besides their pathological significance, amyloid fibrils are also gaining increasing attention as emerging nanomaterials with novel functions. Structural characterization of amyloid fibril is no doubt fundamentally important for the development of therapeutics for amyloid-related diseases and for the rational design of amyloid-based materials. In this study, we explored to use side-chain-based infrared (IR) probe to gain detailed structural insights into the amyloid fibril by a 21-residue model amyloidogenic peptide, Aβ(8-28). We first proposed an approach to incorporate thiocyanate (SCN) IR probe in a site-specific manner into amyloidogenic peptide using 1-cyano-4-dimethylaminopyridinium tetrafluoroborate as cyanylating agent. Using this approach, we obtained three Aβ(8-28) variants, labeled with SCN probe at three different positions. We then showed with thioflavin T fluorescence assay, Congo red assay, and atomic force microscopy that the three labeled Aβ(8-28) peptides can quickly form amyloid fibrils under high concentration and high salt conditions. Finally, we performed a detailed IR spectral analysis of the Aβ(8-28) fibril in both amide I and probe regions and proposed a millipede-like structure for the Aβ(8-28) fibril.
Collapse
Affiliation(s)
- Yachao Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Ye Zou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Yan Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Dan Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Ying Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| |
Collapse
|
8
|
Sakurai K, Nakahata R, Lee YH, Kardos J, Ikegami T, Goto Y. Effects of a reduced disulfide bond on aggregation properties of the human IgG1 CH3 domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1526-35. [PMID: 25748879 DOI: 10.1016/j.bbapap.2015.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/13/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Recombinant human monoclonal antibodies have become important protein-based therapeutics for the treatment of various diseases. An IgG1 molecule, which is now mainly used for antibody preparation, consists of a total of 12 immunoglobulin domains. Each domain has one disulfide bond. The CH3 domain is the C-terminal domain of the heavy chain of IgG1. The disulfide bonds of some of the CH3 domains are known to be reduced in recombinant human monoclonal antibodies. The lack of intramolecular disulfide bonds may decrease the stability and increase the aggregation propensity of an antibody molecule. To investigate the effects of a reduced disulfide bond in the CH3 domain on conformational stability and aggregation propensity, we performed several physicochemical measurements including circular dichroism, differential scanning calorimetry (DSC), and 2D NMR. DSC measurements showed that both the stability and reversibility of the reduced form were lower than those of the oxidized form. In addition, detailed analyses of the thermal denaturation data revealed that, although a dominant fraction of the reduced form retained a stable dimeric structure, some fractions assumed a less-specifically associated oligomeric state between monomers. The results of the present study revealed the characteristic aggregation properties of antibody molecules.
Collapse
Affiliation(s)
- Kazumasa Sakurai
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan; Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Ryosuke Nakahata
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Young-Ho Lee
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - József Kardos
- Department of Biochemistry, Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, H-1117 Hungary; MTA-ELTE NAP B Neuroimmunology Research Group, Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, H-1117 Hungary
| | - Takahisa Ikegami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Biosynthesis and transport of the lantibiotic mutacin 1140 produced by Streptococcus mutans. J Bacteriol 2015; 197:1173-84. [PMID: 25605307 DOI: 10.1128/jb.02531-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Lantibiotics are ribosomally synthesized peptide antibiotics composed of an N-terminal leader peptide that is cleaved to yield the active antibacterial peptide. Significant advancements in molecular tools that promote the study of lantibiotic biosynthesis can be used in Streptococcus mutans. Herein, we further our understanding of leader peptide sequence and core peptide structural requirements for the biosynthesis and transport of the lantibiotic mutacin 1140. Our study on mutacin 1140 biosynthesis shows a dedicated secondary cleavage site within the leader peptide and the dependency of transport on core peptide posttranslational modifications (PTMs). The secondary cleavage site on the leader peptide is found at the -9 position, and secondary cleavage occurs before the core peptide is transported out of the cell. The coordinated cleavage at the -9 position was absent in a lanT deletion strain, suggesting that the core peptide interaction with the LanT transporter enables uniform cleavage at the -9 position. Following transport, the LanP protease was found to be tolerant to a wide variety of amino acid substitutions at the primary leader peptide cleavage site, with the exception of arginine at the -1 position. Several leader and core peptide mutations produced core peptide variants that had intermediate stages of PTM enzyme modifications, supporting the concept that PTM enzyme modifications, secondary cleavage, and transport are occurring in a highly coordinated fashion. IMPORTANCE Mutacin 1140 belongs to the class I lantibiotic family of ribosomally synthesized and posttranslationally modified peptides (RiPPs). The biosynthesis of mutacin 1140 is a highly efficient process which does not lead to a discernible level of production of partially modified core peptide variants. The products isolated from an extensive mutagenesis study on the leader and core peptides of mutacin 1140 show that the posttranslational modifications (PTMs) on the core peptide occur under a highly coordinated dynamic process. PTMs are dictated by the distance of the core peptide modifiable residues from PTM enzyme active sites. The formation of lanthionine rings aids in the formation of successive PTMs, as was observed in a peptide variant lacking a C-terminal decarboxylation.
Collapse
|
10
|
Zhu D, Chang D, Shi L. Transition-metal-free cross-coupling of thioethers with aryl(cyano)iodonium triflates: a facile and efficient method for the one-pot synthesis of thiocyanates. Chem Commun (Camb) 2015; 51:7180-3. [DOI: 10.1039/c5cc00875a] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel transition-metal-free method for the one-step synthesis of thiocyanates via the C–S bond cleavage of readily available thioethers was developed.
Collapse
Affiliation(s)
- Dan Zhu
- Institute of Organic Chemistry
- The Academy of Fundamental and Interdisciplinary Science
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| | - Denghu Chang
- Institute of Organic Chemistry
- The Academy of Fundamental and Interdisciplinary Science
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| | - Lei Shi
- Institute of Organic Chemistry
- The Academy of Fundamental and Interdisciplinary Science
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| |
Collapse
|
11
|
Frei R, Courant T, Wodrich MD, Waser J. General and Practical Formation of Thiocyanates from Thiols. Chemistry 2014; 21:2662-8. [DOI: 10.1002/chem.201406171] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Indexed: 11/10/2022]
|
12
|
Escano J, Stauffer B, Brennan J, Bullock M, Smith L. The leader peptide of mutacin 1140 has distinct structural components compared to related class I lantibiotics. Microbiologyopen 2014; 3:961-72. [PMID: 25400246 PMCID: PMC4263518 DOI: 10.1002/mbo3.222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 10/12/2014] [Accepted: 10/20/2014] [Indexed: 11/12/2022] Open
Abstract
Lantibiotics are ribosomally synthesized peptide antibiotics composed of an N-terminal leader peptide that promotes the core peptide's interaction with the post translational modification (PTM) enzymes. Following PTMs, mutacin 1140 is transported out of the cell and the leader peptide is cleaved to yield the antibacterial peptide. Mutacin 1140 leader peptide is structurally unique compared to other class I lantibiotic leader peptides. Herein, we further our understanding of the structural differences of mutacin 1140 leader peptide with regard to other class I leader peptides. We have determined that the length of the leader peptide is important for the biosynthesis of mutacin 1140. We have also determined that mutacin 1140 leader peptide contains a novel four amino acid motif compared to related lantibiotics. PTM enzyme recognition of the leader peptide appears to be evolutionarily distinct from related class I lantibiotics. Our study on mutacin 1140 leader peptide provides a basis for future studies aimed at understanding its interaction with the PTM enzymes.
Collapse
Affiliation(s)
- Jerome Escano
- Department of Biological Sciences, Texas A&M University, College Station, Texas, 77843
| | | | | | | | | |
Collapse
|
13
|
Yuan Y, Liang G. A biocompatible, highly efficient click reaction and its applications. Org Biomol Chem 2014; 12:865-71. [PMID: 24336835 DOI: 10.1039/c3ob41241e] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein, we review the development, optimization, applications and potential prospects of a novel click reaction based on the condensation reaction between 2-cyanobenzothiazole (CBT) and D-cysteine (D-Cys) in fireflies. This click condensation reaction has obvious advantages in biocompatibility, efficiency and stability in aqueous environments. Optimization of this click reaction has been carried out so that it can be controlled by pH change, reduction, or enzymatic cleavage to synthesize large molecules and self-assembled nanostructures, or enhance probe signals. Consequently, this CBT-based click reaction has been and could be successfully applied to a wide range of biomedical applications such as molecular imaging (e.g., optical imaging, nuclear imaging and magnetic resonance imaging), biomolecular detection, drug delivery and other potentialities.
Collapse
Affiliation(s)
- Yue Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | | |
Collapse
|
14
|
Quantification of thiols and disulfides. Biochim Biophys Acta Gen Subj 2013; 1840:838-46. [PMID: 23567800 DOI: 10.1016/j.bbagen.2013.03.031] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Disulfide bond formation is a key posttranslational modification, with implications for structure, function and stability of numerous proteins. While disulfide bond formation is a necessary and essential process for many proteins, it is deleterious and disruptive for others. Cells go to great lengths to regulate thiol-disulfide bond homeostasis, typically with several, apparently redundant, systems working in parallel. Dissecting the extent of oxidation and reduction of disulfides is an ongoing challenge due, in part, to the facility of thiol/disulfide exchange reactions. SCOPE OF REVIEW In the present account, we briefly survey the toolbox available to the experimentalist for the chemical determination of thiols and disulfides. We have chosen to focus on the key chemical aspects of current methodology, together with identifying potential difficulties inherent in their experimental implementation. MAJOR CONCLUSIONS While many reagents have been described for the measurement and manipulation of the redox status of thiols and disulfides, a number of these methods remain underutilized. The ability to effectively quantify changes in redox conditions in living cells presents a continuing challenge. GENERAL SIGNIFICANCE Many unresolved questions in the metabolic interconversion of thiols and disulfides remain. For example, while pool sizes of redox pairs and their intracellular distribution are being uncovered, very little is known about the flux in thiol-disulfide exchange pathways. New tools are needed to address this important aspect of cellular metabolism. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
|
15
|
Jiang XG, Apostol I, Luo Q, Lewis J, Keener R, Luo S, Jerums M, Zhang X, Wypych J, Huang G. Quantification of protein posttranslational modifications using stable isotope and mass spectrometry. Anal Biochem 2012; 421:506-16. [DOI: 10.1016/j.ab.2011.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/22/2011] [Accepted: 12/02/2011] [Indexed: 01/14/2023]
|
16
|
Determination of Peptide and Protein Disulfide Linkages by MALDI Mass Spectrometry. Top Curr Chem (Cham) 2012; 331:79-116. [DOI: 10.1007/128_2012_384] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Brych SR, Gokarn YR, Hultgen H, Stevenson RJ, Rajan R, Matsumura M. Characterization of antibody aggregation: Role of buried, unpaired cysteines in particle formation. J Pharm Sci 2010; 99:764-81. [DOI: 10.1002/jps.21868] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Oh KI, Choi JH, Lee JH, Han JB, Lee H, Cho M. Nitrile and thiocyanate IR probes: Molecular dynamics simulation studies. J Chem Phys 2008; 128:154504. [DOI: 10.1063/1.2904558] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
19
|
Liu D, Ren D, Huang H, Dankberg J, Rosenfeld R, Cocco MJ, Li L, Brems DN, Remmele RL. Structure and Stability Changes of Human IgG1 Fc as a Consequence of Methionine Oxidation. Biochemistry 2008; 47:5088-100. [DOI: 10.1021/bi702238b] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dingjiang Liu
- Department of Pharmaceutics, Amgen, Inc., Thousand Oaks, California 91320, Department of Protein Science, Amgen, Inc., Thousand Oaks, California 91320, and Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, California 92697-3900
| | - Da Ren
- Department of Pharmaceutics, Amgen, Inc., Thousand Oaks, California 91320, Department of Protein Science, Amgen, Inc., Thousand Oaks, California 91320, and Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, California 92697-3900
| | - Holly Huang
- Department of Pharmaceutics, Amgen, Inc., Thousand Oaks, California 91320, Department of Protein Science, Amgen, Inc., Thousand Oaks, California 91320, and Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, California 92697-3900
| | - Jane Dankberg
- Department of Pharmaceutics, Amgen, Inc., Thousand Oaks, California 91320, Department of Protein Science, Amgen, Inc., Thousand Oaks, California 91320, and Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, California 92697-3900
| | - Robert Rosenfeld
- Department of Pharmaceutics, Amgen, Inc., Thousand Oaks, California 91320, Department of Protein Science, Amgen, Inc., Thousand Oaks, California 91320, and Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, California 92697-3900
| | - Melanie J. Cocco
- Department of Pharmaceutics, Amgen, Inc., Thousand Oaks, California 91320, Department of Protein Science, Amgen, Inc., Thousand Oaks, California 91320, and Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, California 92697-3900
| | - Luke Li
- Department of Pharmaceutics, Amgen, Inc., Thousand Oaks, California 91320, Department of Protein Science, Amgen, Inc., Thousand Oaks, California 91320, and Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, California 92697-3900
| | - David N. Brems
- Department of Pharmaceutics, Amgen, Inc., Thousand Oaks, California 91320, Department of Protein Science, Amgen, Inc., Thousand Oaks, California 91320, and Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, California 92697-3900
| | - Richard L. Remmele
- Department of Pharmaceutics, Amgen, Inc., Thousand Oaks, California 91320, Department of Protein Science, Amgen, Inc., Thousand Oaks, California 91320, and Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, California 92697-3900
| |
Collapse
|
20
|
Abstract
Oxidation of sulfhydryl groups to form a disulfi de bond is one of the most common post-translational modifi cations in proteins. Disulfi de bonds play important roles in stabilizing three-dimensional structure and modulating bioactivity of the cystinyl proteins. The determination of disulfi de bond linkage is therefore an integral part of structural characterization of proteins. A mass spectrometry-based strategy utilizing chemical cleavage at cysteine residues following cyanylation reaction is described for the identifi cation of both sulfhydryl and disulfi de bond linkage in proteins. The method has been particularly powerful for the assignment of disulfi de bonds in proteins containing adjacent or closely spaced cysteines.
Collapse
Affiliation(s)
- Jiang Wu
- Wyeth Research, Cambridge, MA, USA
| |
Collapse
|
21
|
McAuley A, Jacob J, Kolvenbach CG, Westland K, Lee HJ, Brych SR, Rehder D, Kleemann GR, Brems DN, Matsumura M. Contributions of a disulfide bond to the structure, stability, and dimerization of human IgG1 antibody CH3 domain. Protein Sci 2008; 17:95-106. [PMID: 18156469 DOI: 10.1110/ps.073134408] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recombinant human monoclonal antibodies have become important protein-based therapeutics for the treatment of various diseases. The antibody structure is complex, consisting of beta-sheet rich domains stabilized by multiple disulfide bridges. The dimerization of the C(H)3 domain in the constant region of the heavy chain plays a pivotal role in the assembly of an antibody. This domain contains a single buried, highly conserved disulfide bond. This disulfide bond was not required for dimerization, since a recombinant human C(H)3 domain, even in the reduced state, existed as a dimer. Spectroscopic analyses showed that the secondary and tertiary structures of reduced and oxidized C(H)3 dimer were similar, but differences were observed. The reduced C(H)3 dimer was less stable than the oxidized form to denaturation by guanidinium chloride (GdmCl), pH, or heat. Equilibrium sedimentation revealed that the reduced dimer dissociated at lower GdmCl concentration than the oxidized form. This implies that the disulfide bond shifts the monomer-dimer equilibrium. Interestingly, the dimer-monomer dissociation transition occurred at lower GdmCl concentration than the unfolding transition. Thus, disulfide bond formation in the human C(H)3 domain is important for stability and dimerization. Here we show the importance of the role played by the disulfide bond and how it affects the stability and monomer-dimer equilibrium of the human C(H)3 domain. Hence, these results may have implications for the stability of the intact antibody.
Collapse
Affiliation(s)
- Arnold McAuley
- Department of Pharmaceutics, Amgen, Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gabant G, Augier J, Armengaud J. Assessment of solvent residues accessibility using three Sulfo-NHS-biotin reagents in parallel: application to footprint changes of a methyltransferase upon binding its substrate. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:360-370. [PMID: 17968972 DOI: 10.1002/jms.1328] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
NHS-biotin modification as a specific lysine probe coupled to mass spectrometry detection is increasingly used over the past years for assessing amino acid accessibility of proteins or complexes as an alternative when well-established methods are challenged. We present a strategy based on usage in parallel of three commercially available reagents (Sulfo-NHS-biotin, Sulfo-NHS-LC-biotin, and Sulfo-NHS-LC-LC-biotin) to efficiently assess the solvent accessibility of amino acids using MALDI-TOF mass spectrometry. The same qualitative pattern of reactivity was observed for these three reagents on the THUMPalpha protein at four reagent/polypeptide molar ratios (2 : 1, 6 : 1, 13 : 1, and 26 : 1). Peptide assignment of the detected ions gains in accuracy because of the triple redundancy due to specific increments of monoisotopic mass. These reagents are a good alternative to isotope labeling when using only a single MALDI-TOF mass spectrometer. We observed that hydroxyl groups of serine and tyrosine residues were also modified by these Sulfo-NHS-biotin reagents. The low amount of protein required and the method's simplicity make this procedure accessible and affordable in order to obtain topological information on proteins difficult to purify. This method was used to identify two lysine residues of the TrmG10 methyltransferase from Pyrococcus abyssi that were differentially reactive, modified in the protein but not in the tRNA-protein complex.
Collapse
Affiliation(s)
- Guillaume Gabant
- CEA VALRHO, DSV, iBEB, SBTN, LBSP, Institut de Biologie environnementale et Biotechnologie, Service de Biochimie et Toxicologie Nucléaire, Laboratoire de Biochimie des Systèmes Perturbés, F-30207 Bagnols-sur-Cèze, France
| | | | | |
Collapse
|
23
|
Kleemann GR, Beierle J, Nichols AC, Dillon TM, Pipes GD, Bondarenko PV. Characterization of IgG1 Immunoglobulins and Peptide−Fc Fusion Proteins by Limited Proteolysis in Conjunction with LC−MS. Anal Chem 2008; 80:2001-9. [PMID: 18293943 DOI: 10.1021/ac701629v] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gerd R. Kleemann
- Department of Pharmaceutics, Amgen Incorporated, One Amgen Center Drive, Thousand Oaks, California 91320, and Department of Pharmaceutics, Amgen Incorporated, 1201 Amgen Court West, Seattle, Washington 98119
| | - Jill Beierle
- Department of Pharmaceutics, Amgen Incorporated, One Amgen Center Drive, Thousand Oaks, California 91320, and Department of Pharmaceutics, Amgen Incorporated, 1201 Amgen Court West, Seattle, Washington 98119
| | - Andrew C. Nichols
- Department of Pharmaceutics, Amgen Incorporated, One Amgen Center Drive, Thousand Oaks, California 91320, and Department of Pharmaceutics, Amgen Incorporated, 1201 Amgen Court West, Seattle, Washington 98119
| | - Thomas M. Dillon
- Department of Pharmaceutics, Amgen Incorporated, One Amgen Center Drive, Thousand Oaks, California 91320, and Department of Pharmaceutics, Amgen Incorporated, 1201 Amgen Court West, Seattle, Washington 98119
| | - Gary D. Pipes
- Department of Pharmaceutics, Amgen Incorporated, One Amgen Center Drive, Thousand Oaks, California 91320, and Department of Pharmaceutics, Amgen Incorporated, 1201 Amgen Court West, Seattle, Washington 98119
| | - Pavel V. Bondarenko
- Department of Pharmaceutics, Amgen Incorporated, One Amgen Center Drive, Thousand Oaks, California 91320, and Department of Pharmaceutics, Amgen Incorporated, 1201 Amgen Court West, Seattle, Washington 98119
| |
Collapse
|