1
|
Kramarczyk D, Knapik-Kowalczuk J, Klimontko J, Kurek M, Jachowicz R, Paluch M. Tuning the Physical State of Aripiprazole by Mesoporous Silica. Mol Pharm 2024; 21:2315-2326. [PMID: 38644570 PMCID: PMC11080047 DOI: 10.1021/acs.molpharmaceut.3c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024]
Abstract
The main purpose of our studies is to demonstrate that commercially available mesoporous silica (MS) can be used to control the physical state of aripiprazole (ARP). The investigations performed utilizing differential scanning calorimetry and broadband dielectric spectroscopy reveal that silica can play different roles depending on its concentration in the system with amorphous ARP. At low MS content, it activates recrystallization of the active pharmaceutical ingredient and supports forming the III polymorphic form of ARP. At intermediate MS content (between ca. 27 and 65 wt %), MS works as a recrystallization inhibitor of ARP. At these concentrations, the formation of III polymorphic form is no longer favorable; therefore, it is possible to use this additive to obtain ARP in either IV or X polymorphic form. At the same time, employing MS in concentrations >65 wt % amorphous form of ARP with high physical stability can be obtained. Finally, regardless of the polymorphic form it crystallizes into, each composite is characterized by the same temperature dependence of relaxation times in the supercooled and glassy states.
Collapse
Affiliation(s)
- Daniel Kramarczyk
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Justyna Knapik-Kowalczuk
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Joanna Klimontko
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Mateusz Kurek
- Department
of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Renata Jachowicz
- Department
of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Marian Paluch
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
2
|
Julien PA, Arhangelskis M, Germann LS, Etter M, Dinnebier RE, Morris AJ, Friščić T. Illuminating milling mechanochemistry by tandem real-time fluorescence emission and Raman spectroscopy monitoring. Chem Sci 2023; 14:12121-12132. [PMID: 37969588 PMCID: PMC10631231 DOI: 10.1039/d3sc04082h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/07/2023] [Indexed: 11/17/2023] Open
Abstract
In pursuit of accessible and interpretable methods for direct and real-time observation of mechanochemical reactions, we demonstrate a tandem spectroscopic method for monitoring of ball-milling transformations combining fluorescence emission and Raman spectroscopy, accompanied by high-level molecular and periodic density-functional theory (DFT) calculations, including periodic time-dependent (TD-DFT) modelling of solid-state fluorescence spectra. This proof-of-principle report presents this readily accessible dual-spectroscopy technique as capable of observing changes to the supramolecular structure of the model pharmaceutical system indometacin during mechanochemical polymorph transformation and cocrystallisation. The observed time-resolved in situ spectroscopic and kinetic data are supported by ex situ X-ray diffraction and solid-state nuclear magnetic resonance spectroscopy measurements. The application of first principles (ab initio) calculations enabled the elucidation of how changes in crystalline environment, that result from mechanochemical reactions, affect vibrational and electronic excited states of molecules. The herein explored interpretation of both real-time and ex situ spectroscopic data through ab initio calculations provides an entry into developing a detailed mechanistic understanding of mechanochemical milling processes and highlights the challenges of using real-time spectroscopy.
Collapse
Affiliation(s)
- Patrick A Julien
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada 13 General Crerar Crescent K7K 7B4 Kingston Canada
| | - Mihails Arhangelskis
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Faculty of Chemistry, University of Warsaw 1 Pasteura St. 02-093 Warsaw Poland
| | - Luzia S Germann
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Max-Planck Institute for Solid State Research Heisenbergstrasse 1 D-70569 Stuttgart Germany
| | - Martin Etter
- Deutsches-Elektronen Synchrotron (DESY) Notkestrasse 85 22607 Hamburg Germany
| | - Robert E Dinnebier
- Max-Planck Institute for Solid State Research Heisenbergstrasse 1 D-70569 Stuttgart Germany
| | - Andrew J Morris
- School of Metallurgy and Materials, University of Birmingham Birmingham B15 2TT UK
| | - Tomislav Friščić
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
3
|
Farzan M, Roth R, Schoelkopf J, Huwyler J, Puchkov M. The processes behind drug loading and release in porous drug delivery systems. Eur J Pharm Biopharm 2023:S0939-6411(23)00141-8. [PMID: 37230292 DOI: 10.1016/j.ejpb.2023.05.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Porous materials are ubiquitous and exhibit properties suitable for depositing therapeutic compounds. Drug loading in porous materials can protect the drug, control its release rate, and improve its solubility. However, to achieve such outcomes from porous delivery systems, effective incorporation of the drug in the internal porosity of the carrier must be guaranteed. Mechanistic knowledge of the factors influencing drug loading and release from porous carriers allows rational design of formulations by selecting a suitable carrier for each application. Much of this knowledge exists in research areas other than drug delivery. Thus, a comprehensive overview of this topic from the drug delivery aspect is warranted. This review aims to identify the loading processes and carrier characteristics influencing the drug delivery outcome with porous materials. Additionally, the kinetics of drug release from porous materials are elucidated, and the common approaches to mathematical modeling of these processes are outlined.
Collapse
Affiliation(s)
- Maryam Farzan
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Roger Roth
- Fundamental Research, Omya International AG, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - Joachim Schoelkopf
- Fundamental Research, Omya International AG, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Maxim Puchkov
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| |
Collapse
|
4
|
Lin Z, Zheng K, Azad MA, Davé RN. Preparation of Free-Flowing Spray-Dried Amorphous Composites Using Neusilin ®. AAPS PharmSciTech 2023; 24:51. [PMID: 36703032 DOI: 10.1208/s12249-023-02511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
A highly porous additive, Neusilin®, with high adsorption capability is investigated to improve bulk properties, hence processability of spray-dried amorphous solid dispersions (ASDs). Griseofulvin (GF) is applied as a model BCS class 2 drug in ASDs. Two grades of Neusilin®, US2 (coarser) and UFL2 (finer), were used as additives to produce spray-dried amorphous composite (AC) powders, and their performance was compared with the resulting ASDs without added Neusilin®. The resulting AC powders that included Neusilin® had greatly enhanced flowability (flow function coefficient (FFC) > 10) comparable to larger particles (100 μm) yet had finer particle size (< 50 μm), hence retaining the advantage of fast dissolution rate of finer sizes. Dissolution results demonstrated that achieved GF supersaturation for AC powders with Neusilin® was as high as 3 times that of crystalline GF concentration and was achieved within 30 min. In addition, 80% of drug was released within 4 min. The flowability improvement for AC powders with Neusilin® was more significant as compared to spray-dried ASDs without Neusilin®. Thus, the role of Neusilin® in flowability improvement was evident, considering that spray-dried AC with Neusilin® UFL2 has higher FFC than ASDs having a similar size. Lastly, the AC powders retained a fully amorphous state of GF after 3-month ambient storage. The overall results conveyed that the improved flowability and dissolution rate could outweigh the loss of drug loading resulted by addition of Neusilin®.
Collapse
Affiliation(s)
- Zhixing Lin
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kai Zheng
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Mohammad A Azad
- Chemical, Biological and Bioengineering Department, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
5
|
Zarinwall A, Maurer V, Pierick J, Oldhues VM, Porsiel JC, Finke JH, Garnweitner G. Amorphization and modified release of ibuprofen by post-synthetic and solvent-free loading into tailored silica aerogels. Drug Deliv 2022; 29:2086-2099. [PMID: 35838584 PMCID: PMC9291651 DOI: 10.1080/10717544.2022.2092237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Promising active pharmaceutical ingredients (APIs) often exhibit poor aqueous solubility and thus a low bioavailability that substantially limits their pharmaceutical application. Hence, efficient formulations are required for an effective translation into highly efficient drug products. One strategy is the preservation of an amorphous state of the API within a carrier matrix, which leads to enhanced dissolution. In this work, mesoporous silica aerogels (SA) were utilized as a carrier matrix for the amorphization of the poorly water-soluble model drug ibuprofen. Loading of tailored SA was performed post-synthetically and solvent-free, either by co-milling or via the melting method. Thorough analyses of these processes demonstrated the influence of macrostructural changes during the drying and grinding process on the microstructural properties of the SA. Furthermore, interfacial SA-drug interaction properties were selectively tuned by attaching terminal hydrophilic amino- or hydrophobic methyl groups to the surface of the gel. We demonstrate that not only the chemical surface properties of the SA, but also formulation-related parameters, such as the carrier-to-drug ratio, as well as process-related parameters, such as the drug loading method, decisively influence the ibuprofen adsorption efficiency. In addition, the drug-loaded SA formulations exhibited a remarkable physical stability over a period of 6 months. Furthermore, the release behavior is shown to change considerably with different surface properties of the SA matrix. Hence, the reported results demonstrate that utilizing specifically processed and modified SA offers a compelling technique for enhancement of the bioavailability of poorly-water soluble APIs and a versatile adjustment of their release profile.
Collapse
Affiliation(s)
- Ajmal Zarinwall
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Viktor Maurer
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Jennifer Pierick
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Victor Marcus Oldhues
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Julian Cedric Porsiel
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany
| | - Jan Henrik Finke
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Georg Garnweitner
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
6
|
Grassi M, Colombo I, Manca D, Biasin A, Grassi L, Grassi G, Abrami M. Multiscale mathematical modelling of drug activation by co-grinding. Chem Eng Sci 2022; 263:118073. [DOI: 10.1016/j.ces.2022.118073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Yin W, Xuan D, Wang H, Zhou M, Deng B, Ma F, Lu Y, Zhang J. Biodegradable Imiquimod-Loaded Mesoporous Organosilica as a Nanocarrier and Adjuvant for Enhanced and Prolonged Immunity against Foot-and-Mouth Disease Virus in Mice. ACS APPLIED BIO MATERIALS 2022; 5:3095-3106. [PMID: 35679606 DOI: 10.1021/acsabm.2c00382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Foot-and-mouth disease (FMD), a serious, fast-spreading, and virulent disease, has led to huge economic losses to people all over the world. Vaccines are the most effective way to control FMD. However, the weak immunogenicity of inactivated FMD virus (FMDV) requires the addition of adjuvants to enhance the immune effectiveness of the vaccines. Herein, we formulated and fabricated biodegradable dendritic mesoporous tetrasulfide-doped organosilica nanoparticles SOMSN with imiquimod complex (SOMSN-IMQ) and used it as a platform for FMD vaccine delivery and as an adjuvant. SOMSN-IMQ demonstrated excellent stability for 6 months when stored in PBS, while it could be completely degraded within 42 days in SBF at room temperature. Biosafety experiments such as cell toxicity, hemolysis, and histology indicated that the as-prepared SOMSN-IMQ showed nontoxicity and good biocompatibility. Furthermore, SOMSN-IMQ exhibited a maximum adsorption capacity of 1000 μg/mg for inactivated FMDV antigens. Our results showed that SOMSN-IMQ can be effectively engulfed by RAW264.7 cells in a dose-dependent manner. After immunization, SOMSN-IMQ@FMDV can elicit persistent higher antibody levels, higher IgG2a/IgG1 ratio, and cytokine expression, which indicated that SOMSN-IMQ@FMDV triggered superior humoral and cellular immune responses. Moreover, SOMSN-IMQ could provoke maturation and activation of dendritic cells in lymph nodes (LDCs) as well as the proliferation of lymphocytes in vivo. Thus, SOMSN-IMQ could promote effective and potent immunity and provide a promising adjuvant platform for FMDV vaccination with acceptable safety.
Collapse
Affiliation(s)
- Wenzhu Yin
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious and Zoonoses, Yangzhou 225009, P. R. China
| | - Dechun Xuan
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China.,School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Haiyan Wang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Mingxu Zhou
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Bihua Deng
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China.,School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious and Zoonoses, Yangzhou 225009, P. R. China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China.,School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious and Zoonoses, Yangzhou 225009, P. R. China
| |
Collapse
|
8
|
DoE-Based Solid Self-microemulsifying Drug Delivery System (S-SMEDDS) Approach for Improving the Dissolution Properties of Raltegravir Potassium. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09621-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Park H, Kim JS, Hong S, Ha ES, Nie H, Zhou QT, Kim MS. Tableting process-induced solid-state polymorphic transition. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-021-00556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Kramarczyk D, Knapik-Kowalczuk J, Smolka W, Monteiro MF, Tajber L, Paluch M. Inhibition of celecoxib crystallization by mesoporous silica – molecular dynamics studies leading to the discovery of the stabilization origin. Eur J Pharm Sci 2022; 171:106132. [DOI: 10.1016/j.ejps.2022.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
|
11
|
Shi Q, Li F, Yeh S, Moinuddin SM, Xin J, Xu J, Chen H, Ling B. Recent Advances in Enhancement of Dissolution and Supersaturation of Poorly Water-Soluble Drug in Amorphous Pharmaceutical Solids: A Review. AAPS PharmSciTech 2021; 23:16. [PMID: 34893936 DOI: 10.1208/s12249-021-02137-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Amorphization is one of the most effective pharmaceutical approaches to enhance the dissolution and oral bioavailability of poorly water-soluble drugs. In recent years, amorphous formulations have been experiencing rapid development both in theoretical and practical application. Based on using different types of stabilizing agents, amorphous formulations can be mainly classified as polymer-based amorphous solid dispersion, coamorphous formulation, mesoporous silica-based amorphous formulation, etc. This paper summarizes recent advances in the dissolution and supersaturation of these amorphous formulations. Moreover, we also highlight the roles of stabilizing agents such as polymers, low molecular weight co-formers, and mesoporous silica. Maintaining supersaturation in solution is a key factor for the enhancement of dissolution profile and oral bioavailability, and thus, the strategies and challenges for maintaining supersaturation are also discussed. With an in-depth understanding of the inherent mechanisms of dissolution behaviors, the design of amorphous pharmaceutical formulations will become more scientific and reasonable, leading to vigorous development of commercial amorphous drug products.
Collapse
|
12
|
Schenck L, Boyce C, Frank D, Koranne S, Ferguson HM, Strotman N. Hierarchical Particle Approach for Co-Precipitated Amorphous Solid Dispersions for Use in Preclinical In Vivo Studies. Pharmaceutics 2021; 13:pharmaceutics13071034. [PMID: 34371726 PMCID: PMC8308979 DOI: 10.3390/pharmaceutics13071034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
Amorphous solid dispersions (ASD) have become a well-established strategy to improve exposure for compounds with insufficient aqueous solubility. Of methods to generate ASDs, spray drying is a leading route due to its relative simplicity, availability of equipment, and commercial scale capacity. However, the broader industry adoption of spray drying has revealed potential limitations, including the inability to process compounds with low solubility in volatile solvents, inconsistent molecular uniformity of spray dried amorphous dispersions, variable physical properties across batches and scales, and challenges containing potent compounds. In contrast, generating ASDs via co-precipitation to yield co-precipitated amorphous dispersions (cPAD) offers solutions to many of those challenges and has been shown to achieve ASDs comparable to those manufactured via spray drying. This manuscript applies co-precipitation for early safety studies, developing a streamlined process to achieve material suitable for dosing as a suspension in conventional toxicity studies. Development targets involved achieving a rapid, safely contained process for generating ASDs with high recovery yields. Furthermore, a hierarchical particle approach was used to generate composite particles where the cPAD material is incorporated in a matrix of water-soluble excipients to allow for rapid re-dispersibility in the safety study vehicle to achieve a uniform suspension for consistent dosing. Adopting such an approach yielded a co-precipitated amorphous dispersion with comparable stability, thermal properties, and in vivo pharmacokinetics to spray dried amorphous materials of the same composition.
Collapse
Affiliation(s)
- Luke Schenck
- Process Research & Development, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.F.); (N.S.)
- Correspondence:
| | - Christopher Boyce
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (C.B.); (H.M.F.)
| | - Derek Frank
- Process Research & Development, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.F.); (N.S.)
| | - Sampada Koranne
- Preformulation, Merck & Co., Inc., Kenilworth, NJ 07033, USA;
| | - Heidi M. Ferguson
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (C.B.); (H.M.F.)
| | - Neil Strotman
- Process Research & Development, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.F.); (N.S.)
| |
Collapse
|
13
|
Šagud I, Zanolla D, Zingone G, Perissutti B, Škorić I. Impact of mesoporous silica on the chemical degradation of Praziquantel upon grinding. CR CHIM 2021. [DOI: 10.5802/crchim.82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Pacułt J, Rams-Baron M, Chmiel K, Jurkiewicz K, Antosik A, Szafraniec J, Kurek M, Jachowicz R, Paluch M. How can we improve the physical stability of co-amorphous system containing flutamide and bicalutamide? The case of ternary amorphous solid dispersions. Eur J Pharm Sci 2021; 159:105697. [PMID: 33568330 DOI: 10.1016/j.ejps.2020.105697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The article describes the preparation and characterization of binary mixtures of two antiandrogens used in prostate cancer treatment, i.e. flutamide (FL) and bicalutamide (BIC), as well as their ternary mixtures with either poly(methyl methacrylate-co-ethyl acrylate) (MMA/EA) or polyvinylpyrrolidone (PVP). The samples were converted into amorphous form to improve their water solubility and dissolution rate. Broadband dielectric spectroscopy and differential scanning calorimetry revealed that FL-BIC (65%) (w/w) does not tend to crystallize from the supercooled liquid state. We made the assumption that the drug-to-drug weight ratio should be maintained as in the case of monotherapy so we decided to investigate the system containing FL and BIC in 15:1 (w/w) ratio with 30% additive of polymers as stabilizers. Our research has shown that only in the case of the FL-BIC-PVP mixture the crystallization has been completely inhibited, both in glassy and supercooled liquid state, which was confirmed by X-ray diffraction studies. In addition, we performed solubility and dissolution rate tests, which showed a significant improvement in solubility of ternary system as compared to its crystalline counterpart. Enhanced physical stability and water solubility of the amorphous ternary system makes it promising for further studies.
Collapse
Affiliation(s)
- Justyna Pacułt
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marzena Rams-Baron
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Krzysztof Chmiel
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Agata Antosik
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Joanna Szafraniec
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Mateusz Kurek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Renata Jachowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
15
|
Sarabu S, Kallakunta VR, Butreddy A, Janga KY, Ajjarapu S, Bandari S, Zhang F, Murthy SN, Repka MA. A One-Step Twin-Screw Melt Granulation with Gelucire 48/16 and Surface Adsorbent to Improve the Solubility of Poorly Soluble Drugs: Effect of Formulation Variables on Dissolution and Stability. AAPS PharmSciTech 2021; 22:79. [PMID: 33606113 DOI: 10.1208/s12249-021-01945-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/26/2021] [Indexed: 11/30/2022] Open
Abstract
Fenofibrate is an effective lipid-lowering drug; however, its poor solubility and high log p (5.2) result in insufficient absorption from the gastrointestinal tract, leading to poor bioavailability. In this study, a one-step continuous twin-screw melt granulation process was investigated to improve the solubility and dissolution of fenofibrate using Gelucire® 48/16 and Neusilin® US2 as the solubilizer and surface adsorbent, respectively. The formulations (granules) were prepared at different ratios of fenofibrate, Gelucire® 48/16, and Neusilin® US2 based on phase-solubility studies and characterized using dissolution, differential scanning calorimetry, powder X-ray diffraction, and scanning electron microscopy analyses and studies on flow properties. In the phase-solubility studies, a linear relation was observed between Gelucire® 48/16 concentration and the amount of fenofibrate dissolved. In contrast, the dissolution rate of the prepared formulations was independent of the fenofibrate: Gelucire® 48/16 ratio and dependent on the Neusilin® US2 levels in the formulation. Increasing Neusilin® US2 levels decreased the rate of dissolution of the granules but improved the stability of the tablets under storage at accelerated stability conditions. Interestingly, higher Gelucire® 48/16 levels in the granules resulted in tablets with a hard matrix, which slowed disintegration and dissolution. All formulations exhibited improved dissolution compared to pure fenofibrate.
Collapse
|
16
|
Relevance of the theoretical critical pore radius in mesoporous silica for fast crystallizing drugs. Int J Pharm 2020; 591:120019. [DOI: 10.1016/j.ijpharm.2020.120019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
|
17
|
Mahajan AN, Surti N, Patel P, Patel A, Shah D, Patel V. Melt Dispersion Adsorbed onto Porous Carriers: An Effective Method to Enhance the Dissolution and Flow Properties of Raloxifene Hydrochloride. Assay Drug Dev Technol 2020; 18:282-294. [PMID: 32881580 DOI: 10.1089/adt.2020.990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of the present investigation is to enhance the dissolution and flow properties of raloxifene hydrochloride (RXH), a biopharmaceutical classification system class II drug. Melt dispersion of RXH with polyethylene glycol (PEG) 6000 was prepared by the fusion method. The melt dispersion was then adsorbed onto a porous adsorbent, Neusilin, by the melt adsorption method. Response surface methodology was employed to establish the design space for formulation variables such as the ratio of RXH to PEG 6000 in melt dispersion and amount of porous adsorbent to melt dispersion. Differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and accelerated stability techniques were utilized to characterize formulations. Negative Gibbs free energy values indicated spontaneous solubilization of RXH in PEG 6000. The time required for 80% of drug release from optimized formulation was <20 min compared with plain RXH. Accelerated stability studies confirmed the stabilization of amorphous melt dispersion in nanopores (nanoconfinement) of inorganic silicate Neusilin. Melt dispersion, adsorbed on porous carriers, is a promising technique to improve the dissolution characteristic as well as flow properties of drug molecules.
Collapse
Affiliation(s)
| | - Naazneen Surti
- Department of Pharmaceutics, Babaria Institute of Pharmacy, Vadodara, India
| | - Priyal Patel
- Department of Pharmaceutics, Babaria Institute of Pharmacy, Vadodara, India
| | - Ashwini Patel
- Department of Pharmaceutics, Babaria Institute of Pharmacy, Vadodara, India
| | - Dimal Shah
- Department of Pharmaceutics, Babaria Institute of Pharmacy, Vadodara, India
| | - Vandana Patel
- Department of Pharmaceutics, Babaria Institute of Pharmacy, Vadodara, India
| |
Collapse
|
18
|
Jha DK, Shah DS, Amin PD. Thermodynamic aspects of the preparation of amorphous solid dispersions of Naringenin with enhanced dissolution rate. Int J Pharm 2020; 583:119363. [DOI: 10.1016/j.ijpharm.2020.119363] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
|
19
|
Knapik-Kowalczuk J, Kramarczyk D, Chmiel K, Romanova J, Kawakami K, Paluch M. Importance of Mesoporous Silica Particle Size in the Stabilization of Amorphous Pharmaceuticals-The Case of Simvastatin. Pharmaceutics 2020; 12:E384. [PMID: 32331310 PMCID: PMC7238159 DOI: 10.3390/pharmaceutics12040384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022] Open
Abstract
In this paper, the role of mesoporous silica (MS) particle size in the stabilization of amorphous simvastatin (SVT) is revealed. For inhibiting recrystallization of the supercooled drug, the two MS materials (Syloid® XDP 3050 and Syloid® 244 FP) were employed. The crystallization tendency of SVT alone and in mixture with the MS materials was investigated by Differential Scanning Calorimetry (DSC) and Broadband Dielectric Spectroscopy (BDS). Neither confinement of the SVT molecules inside the MS pores nor molecular interactions between functional groups of the SVT molecules and the surface of the stabilizing excipient could explain the observed stabilization effect. The stabilization effect might be correlated with diffusion length of the SVT molecules in the MS materials that depended on the particle size. Moreover, MS materials possessing different particle sizes could offer free spaces with different sizes, which might influence crystal growth of SVT. All of these factors must be considered when mesoporous materials are used for stabilizing pharmaceutical glasses.
Collapse
Affiliation(s)
- Justyna Knapik-Kowalczuk
- Faculty of Science and Technology, Institute of Physics, University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Daniel Kramarczyk
- Faculty of Science and Technology, Institute of Physics, University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Krzysztof Chmiel
- Faculty of Science and Technology, Institute of Physics, University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Jana Romanova
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Kohsaku Kawakami
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Marian Paluch
- Faculty of Science and Technology, Institute of Physics, University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
20
|
Real D, Orzan L, Leonardi D, Salomon CJ. Improving the Dissolution of Triclabendazole from Stable Crystalline Solid Dispersions Formulated for Oral Delivery. AAPS PharmSciTech 2019; 21:16. [PMID: 31807963 DOI: 10.1208/s12249-019-1551-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Triclabendazole belongs to the class II/IV of the Biopharmaceuticals Classification System, and its low aqueous solubility represents a major drawback during the development of effective dosage forms. Therefore, the goal of this study was to elucidate whether polymeric solid dispersions would represent a suitable approach to overcome such disadvantage. Due to the lack of information on triclabendazole release, four different dissolution media were evaluated to analyze drug dissolution rate. The polymeric solid dispersions were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The selected final formulations were further stored for 24 months, and their physical stability was evaluated by means of X-ray diffraction and drug dissolution assays. Drug solubility studies indicated that poloxamer 407 (P407) solubilized a higher amount of drug than polyethylene glycol 6000. Drug-to-carrier ratio, nature of the selected carriers, and the type of dissolution media were important factors for increasing dissolution. By infrared spectroscopy, there were no specific interactions between the drug and polymers. The physicochemical characterization of the systems showed a detectable evidence of drug amorphization by increasing the carrier ratio. Micromeritic studies indicated that raw triclabendazole, physical mixtures, and reference formulation showed poor flow properties, in contrast to the triclabendazole:P407 solid dispersion sample. Both the crystalline properties and dissolution rate of selected samples were very similar after 24 months at room temperature. Thus, considering physical stability and dissolution studies, the development of the solid dispersion is a very suitable methodology to improve triclabendazole dissolution and, potentially, its biopharmaceutical performance.
Collapse
|
21
|
Application of an adsorption isotherm to explain incomplete drug release from ordered mesoporous silica materials under supersaturating conditions. J Control Release 2019; 307:186-199. [DOI: 10.1016/j.jconrel.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022]
|
22
|
Baán A, Adriaensens P, Lammens J, Delgado Hernandez R, Vanden Berghe W, Pieters L, Vervaet C, Kiekens F. Dry amorphisation of mangiferin, a poorly water-soluble compound, using mesoporous silica. Eur J Pharm Biopharm 2019; 141:172-179. [DOI: 10.1016/j.ejpb.2019.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/03/2023]
|
23
|
Majumder M, Rajabnezhad S, Nokhodchi A, Maniruzzaman M. Chemico-calorimetric analysis of amorphous granules manufactured via continuous granulation process. Drug Deliv Transl Res 2019; 8:1658-1669. [PMID: 29691811 PMCID: PMC6280807 DOI: 10.1007/s13346-018-0519-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The current study explores the first case of the implementation of solution calorimetry (SolCal) in order to determine the amorphous content of crystalline benzoyl-methoxy-methylindol-acetic acid (BMA)-a model poorly soluble drug, in the amorphous granules prepared via single-step continuous twin-screw dry granulations (TSG). Amorphous magnesium aluminometasilicate (Neusilin®) (US2) was used as a novel inorganic carrier via a TwinLab 10 mm twin-screw extruder. The BMA/US2 blends were processed at 180 °C and varying drug: carrier ratios of 1:4, 1:2.5 and 1:1 (w/w). Physico-chemical characterisation conducted via SEM, DSC and XRPD showed amorphous state of the drug in all granulated formulations. Reverse optical microscopy revealed a meso-porous structure of US2 in which the drug particles are adsorbed and/or entrapped within the porous network of the carrier. This phenomenon can be the underlying reason for the increase of the amorphous content in the extruded granules. Solution calorimetry (SolCal) study revealed amorphous content of the drug in all formulations quite precisely, whereas the dynamic vapour sorption (DVS) analysis complemented the results from SolCal. Furthermore, an attempt has been made for the first time to interrelate the findings from the SolCal to that of the release of the drug from the amorphous granules. It can be concluded that SolCal can be used as a novel technique to precisely quantify and interrelate the amorphous content to its physico-chemical performances such as drug release from the granulated formulations processed via TSG.
Collapse
Affiliation(s)
- Mridul Majumder
- M2M Pharmaceuticals Ltd., The Gateway Building, 1 Collegiate Square, Thames Valley Science Park (TVSP), Reading, RG2 9LH, United Kingdom.
| | - Saeid Rajabnezhad
- Department of Pharmacy/Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - Ali Nokhodchi
- Department of Pharmacy/Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, UK.,Drug Applied research Center and Faculty of Pharmacy, Tabriz Medical Sciences University, Tabriz, Iran
| | - Mohammed Maniruzzaman
- Department of Pharmacy/Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, UK.
| |
Collapse
|
24
|
Pacult J, Rams-Baron M, Chmiel K, Jurkiewicz K, Antosik A, Szafraniec J, Kurek M, Jachowicz R, Paluch M. How can we improve the physical stability of co-amorphous system containing flutamide and bicalutamide? The case of ternary amorphous solid dispersions. Eur J Pharm Sci 2019; 136:104947. [PMID: 31170526 DOI: 10.1016/j.ejps.2019.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/24/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Abstract
The article describes the preparation and characterization of binary mixtures of two antiandrogens used in prostate cancer treatment, i.e. flutamide (FL) and bicalutamide (BIC), as well as their ternary mixtures with either poly(methyl methacrylate-co-ethyl acrylate) (MMA/EA) or polyvinylpyrrolidone (PVP). The samples were converted into amorphous form to improve their water solubility and dissolution rate. Broadband dielectric spectroscopy and differential scanning calorimetry revealed that FL-BIC (65%) (w/w) does not tend to crystallize from the supercooled liquid state. We made the assumption that the drug-to-drug weight ratio should be maintained as in the case of monotherapy so we decided to investigate the system containing FL and BIC in 15:1 (w/w) ratio with 30% additive of polymers as stabilizers. Our research has shown that only in the case of the FL-BIC-PVP mixture the crystallization has been completely inhibited, both in glassy and supercooled liquid state, which was confirmed by X-ray diffraction studies. In addition, we performed solubility and dissolution rate tests, which showed a significant improvement in solubility of ternary system as compared to its crystalline counterpart. Enhanced physical stability and water solubility of the amorphous ternary system makes it promising for further studies.
Collapse
Affiliation(s)
- Justyna Pacult
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marzena Rams-Baron
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Krzysztof Chmiel
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Agata Antosik
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Joanna Szafraniec
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Mateusz Kurek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Renata Jachowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
25
|
Schenck L, Mann AKP, Liu Z, Milewski M, Zhang S, Ren J, Dewitt K, Hermans A, Cote A. Building a better particle: Leveraging physicochemical understanding of amorphous solid dispersions and a hierarchical particle approach for improved delivery at high drug loadings. Int J Pharm 2019; 559:147-155. [PMID: 30654058 DOI: 10.1016/j.ijpharm.2019.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
Amorphous solid dispersions are a promising option for managing compounds with poor aqueous solubility. However, for compounds with high melting points, thermal stability limitations, or poor solubility in volatile solvents, conventional routes of hot melt extrusion or spray drying may not be viable. Co-precipitated amorphous dispersions (cPAD) can provide a solution. For the material studied in this paper, the cPAD material that was seemingly identical to spray dried material in terms of being single phase amorphous (as measured by DSC and XRD ) but showed slower dissolution behavior. It was identified that physical properties of the cPAD material could be improved to enhance wettability and improve dissolution performance. This was achieved by incorporating the cPAD material into a matrix of water soluble excipients generated via evaporative isolation routes. Importantly, this approach appears to offer another route to further increase the drug load in final dosage units and is significant as increased drug loading generally results in slower or incomplete release. Results showed successful proof of concept via in vitro biorelevant dissolution and confirmatory canine pharmacokinetic studies yielding comparable exposure for capsules comprised of conventional spray dried material as well as capsules with elevated drug load comprised of cPAD hierarchical particles.
Collapse
Affiliation(s)
- Luke Schenck
- Particle Engineering Labs, Chemical Engineering R&D, Merck & Co., Inc, Rahway, NJ 07065, USA.
| | - Amanda K P Mann
- Department of Analytical Sciences, Pharmaceutical Sciences, Merck & Co., Inc, Rahway, NJ 07065, USA.
| | - Zhen Liu
- Preformulation, Pharmaceutical Sciences Merck & Co., Inc, West Point, PA 19486, USA
| | - Mikolaj Milewski
- Biopharmaceutics and Specialty Dosage Forms, Pharmaceutical Sciences, Merck & Co., Inc, West Point, PA 19486, USA
| | - Siwei Zhang
- MMC, Process Research and Design, Merck & Co., Inc, Rahway, NJ 07065, USA
| | - Jie Ren
- OFST, Pharmaceutical Sciences, Merck & Co., Inc, West Point, PA 19486, USA
| | - Kristel Dewitt
- Department of Analytical Sciences, Pharmaceutical Sciences, Merck & Co., Inc, Rahway, NJ 07065, USA
| | - Andre Hermans
- Department of Analytical Sciences, Pharmaceutical Sciences, Merck & Co., Inc, Rahway, NJ 07065, USA
| | - Aaron Cote
- Technology Labs, Chemical Engineering R&D, Merck & Co., Inc, Rahway, NJ 07065, USA
| |
Collapse
|
26
|
Nanocrystals of Poorly Soluble Drugs: Drug Bioavailability and Physicochemical Stability. Pharmaceutics 2018; 10:pharmaceutics10030134. [PMID: 30134537 PMCID: PMC6161002 DOI: 10.3390/pharmaceutics10030134] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/13/2018] [Accepted: 08/18/2018] [Indexed: 11/16/2022] Open
Abstract
Many approaches have been developed over time to overcome the bioavailability limitations of poorly soluble drugs. With the advances in nanotechnology in recent decades, science and industry have been approaching this issue through the formulation of drugs as nanocrystals, which consist of “pure drugs and a minimum of surface active agents required for stabilization”. They are defined as “carrier-free submicron colloidal drug delivery systems with a mean particle size in the nanometer range, typically between 10–800 nm”. The primary importance of these nanoparticles was the reduction of particle size to nanoscale dimensions, with an increase in the particle surface area in contact with the dissolution medium, and thus in bioavailability. This approach has been proven successful, as demonstrated by the number of such drug products on the market. Nonetheless, despite the definition that indicates nanocrystals as a “carrier-free” system, surface active agents are necessary to prevent colloidal particles aggregation and thus improve stability. In addition, in more recent years, nanocrystal properties and technologies have attracted the interest of researchers as a means to obtain colloidal particles with modified biological properties, and thus their interest is now also addressed to modify the drug delivery and targeting. The present work provides an overview of the achievements in improving the bioavailability of poorly soluble drugs according to their administration route, describes the methods developed to overcome physicochemical and stability-related problems, and in particular reviews different stabilizers and surface agents that are able to modify the drug delivery and targeting.
Collapse
|
27
|
Dening TJ, Taylor LS. Supersaturation Potential of Ordered Mesoporous Silica Delivery Systems. Part 1: Dissolution Performance and Drug Membrane Transport Rates. Mol Pharm 2018; 15:3489-3501. [PMID: 29985627 DOI: 10.1021/acs.molpharmaceut.8b00488] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ordered mesoporous silica materials have shown great potential as oral drug delivery systems for poorly soluble drugs. However, the ability of these delivery systems to generate drug supersaturation has not been widely investigated, and the recently noted phenomenon of incomplete drug release is not well understood. Therefore, the aim of this study was to comprehensively evaluate the release of hydrophobic drug molecules into solution from ordered mesoporous silica, focusing on the extent and duration of drug supersaturation. The dissolution and supersaturation behavior of ritonavir, following loading into mesoporous SBA-15 silica particles, was investigated by undertaking simple in vitro dissolution studies in phosphate buffer pH 6.8 and fasted state simulated intestinal fluid, as well as membrane flux studies using a side-by-side diffusion cell apparatus. It was found that supersaturated ritonavir solutions were generated from ritonavir-loaded mesoporous SBA-15 particles; however, drug release was always incomplete, even under sink conditions. In addition, the percentage drug release was observed to decrease significantly as the theoretical supersaturation ratio and dose of ritonavir-loaded SBA-15 formulation increased. The data obtained suggest an equilibrium exists between drug adsorbed to the SBA-15 silica surface and free drug present in solution. The findings described herein are highly significant in aiding our understanding of ordered mesoporous silica as a supersaturating drug delivery system for bioavailability enhancement.
Collapse
Affiliation(s)
- Tahnee J Dening
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
28
|
Politov AA, Shakhtshneider TP, Boldyreva EV, Boldyrev VV. Luminescence Spectroscopy as a Tool to Study the Amorphization of Indomethacin upon Co-Grinding with Polymers. DOKLADY PHYSICAL CHEMISTRY 2018. [DOI: 10.1134/s0012501618060015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Parikh A, Kathawala K, Tan CC, Garg S, Zhou XF. Self-nanomicellizing solid dispersion of edaravone: part I - oral bioavailability improvement. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2051-2069. [PMID: 30013324 PMCID: PMC6038876 DOI: 10.2147/dddt.s161940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Edaravone (EDR) is known for its free radical scavenging, antiapoptotic, antinecrotic, and anticytokine effects in neurological and non-neurological diseases. It is currently available clinically as Radicava® and Radicut®, intravenous medications, recently approved for the treatment of amyotrophic lateral sclerosis and cerebral infarction. However, the oral use of EDR is still restricted by its poor oral bioavailability (BA) due to poor aqueous solubility, stability, rapid metabolism, and low permeability. The present study reports the development of novel EDR formulation (NEF) using self-nanomicellizing solid dispersion (SNMSD) strategy with the aim to enable its oral use. Materials and methods The selection of a suitable carrier for the development of NEF was performed based on the miscibility study. The optimization of EDR-to-carrier ratio was conducted via kinetic solubility study after preparing SNMSDs using solvent evaporation technique. The drug–polymer carrier interaction and self-nanomicellizing properties of NEF were investigated with advanced characterization studies. In vitro permeation, metabolism, and dissolution study was carried out to examine the effect of the presence of a carrier on physico-chemical properties of EDR. Additionally, the dose-dependent pharmacokinetic study of NEF was conducted and compared with the EDR suspension. Results Soluplus® (SOL) as a carrier was selected based on the potential for improving aqueous solubility. The NEF containing EDR and SOL (1:5) resulted in the highest enhancement in aqueous solubility (17.53-fold) due to amorphization, hydrogen bonding interaction, and micellization. Moreover, the NEF demonstrated significant improvement in metabolism, permeability, and dissolution profile of EDR. Furthermore, the oral BA of NEF showed 10.2-, 16.1-, and 14.8-fold enhancement compared to EDR suspension at 46, 138, and 414 µmol/kg doses. Conclusion The results demonstrated that SNMSD strategy could serve as a promising way to enhance EDR oral BA and NEF could be a potential candidate for the treatment of diseases in which oxidative stress plays a key role in their pathogenesis.
Collapse
Affiliation(s)
- Ankit Parikh
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Krishna Kathawala
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Chun Chuan Tan
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| |
Collapse
|
30
|
Knapik-Kowalczuk J, Tu W, Chmiel K, Rams-Baron M, Paluch M. Co-Stabilization of Amorphous Pharmaceuticals—The Case of Nifedipine and Nimodipine. Mol Pharm 2018; 15:2455-2465. [DOI: 10.1021/acs.molpharmaceut.8b00308] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Justyna Knapik-Kowalczuk
- Institute of Physics, University of Silesia, ul. Pułku Piechoty 1a, 41-500 Chorzów, Poland
- SMCEBI, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Wenkang Tu
- Institute of Physics, University of Silesia, ul. Pułku Piechoty 1a, 41-500 Chorzów, Poland
- SMCEBI, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Krzysztof Chmiel
- Institute of Physics, University of Silesia, ul. Pułku Piechoty 1a, 41-500 Chorzów, Poland
- SMCEBI, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Marzena Rams-Baron
- Institute of Physics, University of Silesia, ul. Pułku Piechoty 1a, 41-500 Chorzów, Poland
- SMCEBI, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, ul. Pułku Piechoty 1a, 41-500 Chorzów, Poland
- SMCEBI, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
31
|
Sun WJ, Aburub A, Sun CC. A mesoporous silica based platform to enable tablet formulations of low dose drugs by direct compression. Int J Pharm 2018; 539:184-189. [DOI: 10.1016/j.ijpharm.2018.01.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 11/26/2022]
|
32
|
Stable and Fast-Dissolving Amorphous Drug Composites Preparation via Impregnation of Neusilin® UFL2. J Pharm Sci 2018; 107:170-182. [DOI: 10.1016/j.xphs.2017.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 01/21/2023]
|
33
|
Enhanced Dissolution of a Porous Carrier–Containing Ternary Amorphous Solid Dispersion System Prepared by a Hot Melt Method. J Pharm Sci 2018; 107:362-371. [DOI: 10.1016/j.xphs.2017.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 11/22/2022]
|
34
|
Tahir H, Shahzad Y, Waters LJ, Hussain T, Yousaf AM, Mahmood T, Sheikh R. Impact of processing methods on the dissolution of artemether from two non-ordered mesoporous silicas. Eur J Pharm Sci 2018; 112:139-145. [DOI: 10.1016/j.ejps.2017.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/12/2017] [Accepted: 11/17/2017] [Indexed: 11/29/2022]
|
35
|
Chiarappa G, Piccolo A, Colombo I, Hasa D, Voinovich D, Moneghini M, Grassi G, Farra R, Abrami M, Posocco P, Pricl S, Grassi M. Exploring the Shape Influence on Melting Temperature, Enthalpy, and Solubility of Organic Drug Nanocrystals by a Thermodynamic Model. CRYSTAL GROWTH & DESIGN 2017; 17:4072-4083. [DOI: 10.1021/acs.cgd.6b01714] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Affiliation(s)
| | | | | | - Dritan Hasa
- Leicester
School of Pharmacy, De Montfort University, The Gateway, LE1 9BH Leicester, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Self microemulsifying particles of loratadine for improved oral bioavailability: preparation, characterization and in vivo evaluation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0344-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Sun WJ, Aburub A, Sun CC. Particle Engineering for Enabling a Formulation Platform Suitable for Manufacturing Low-Dose Tablets by Direct Compression. J Pharm Sci 2017; 106:1772-1777. [DOI: 10.1016/j.xphs.2017.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 10/19/2022]
|
38
|
Calvo NL, Maggio RM, Kaufman TS. Chemometrics-assisted solid-state characterization of pharmaceutically relevant materials. Polymorphic substances. J Pharm Biomed Anal 2017; 147:518-537. [PMID: 28668295 DOI: 10.1016/j.jpba.2017.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 11/26/2022]
Abstract
Current regulations command to properly characterize pharmaceutically relevant solid systems. Chemometrics comprise a range of valuable tools, suitable to process large amounts of data and extract valuable information hidden in their structure. This review aims to detail the results of the fruitful association between analytical techniques and chemometrics methods, focusing on those which help to gain insight into the characteristics of drug polymorphism as an important aspect of the solid state of bulk drugs and drug products. Hence, the combination of Raman, terahertz, mid- and near- infrared spectroscopies, as well as instrumental signals resulting from X-ray powder diffraction, 13C solid state nuclear magnetic resonance spectroscopy and thermal methods with quali-and quantitative chemometrics methodologies are examined. The main issues reviewed, concerning pharmaceutical drug polymorphism, include the use of chemometrics-based approaches to perform polymorph classification and assignment of polymorphic identity, as well as the determination of given polymorphs in simple mixtures and complex systems. Aspects such as the solvation/desolvation of solids, phase transformation, crystallinity and the recrystallization from the amorphous state are also discussed. A brief perspective of the field for the next future is provided, based on the developments of the last decade and the current state of the art of analytical instrumentation and chemometrics methodologies.
Collapse
Affiliation(s)
- Natalia L Calvo
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (S2002LRK), Argentina
| | - Rubén M Maggio
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (S2002LRK), Argentina
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (S2002LRK), Argentina.
| |
Collapse
|
39
|
Amorphization of Atorvastatin Calcium by Mechanical Process: Characterization and Stabilization Within Polymeric Matrix. J Pharm Innov 2017. [DOI: 10.1007/s12247-017-9282-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Szczurek J, Rams-Baron M, Knapik-Kowalczuk J, Antosik A, Szafraniec J, Jamróz W, Dulski M, Jachowicz R, Paluch M. Molecular Dynamics, Recrystallization Behavior, and Water Solubility of the Amorphous Anticancer Agent Bicalutamide and Its Polyvinylpyrrolidone Mixtures. Mol Pharm 2017; 14:1071-1081. [PMID: 28231007 DOI: 10.1021/acs.molpharmaceut.6b01007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we investigated the molecular mobility and physical stability of amorphous bicalutamide, a poorly water-soluble drug widely used in prostate cancer treatment. Our broadband dielectric spectroscopy measurements and differential scanning calorimetry studies revealed that amorphous BIC is a moderately fragile material with a strong tendency to recrystallize from the amorphous state. However, mixing the drug with polymer polyvinylpyrrolidone results in a substantial improvement of physical stability attributed to the antiplasticizing effect governed by the polymer additive. Furthermore, IR study demonstrated the existence of specific interactions between the drug and excipient. We found out that preparation of bicalutamide-polyvinylpyrrolidone mixture in a 2-1 weight ratio completely hinder material recrystallization. Moreover, we determined the time-scale of structural relaxation in the glassy state for investigated materials. Because molecular mobility is considered an important factor governing crystallization behavior, such information was used to approximate the long-term physical stability of an amorphous drug and drug-polymer systems upon their storage at room temperature. Moreover, we found that such systems have distinctly higher water solubility and dissolution rate in comparison to the pure amorphous form, indicating the genuine formulation potential of the proposed approach.
Collapse
Affiliation(s)
- Justyna Szczurek
- Institute of Physics, University of Silesia , Uniwersytecka 4, 40-007 Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marzena Rams-Baron
- Institute of Physics, University of Silesia , Uniwersytecka 4, 40-007 Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Justyna Knapik-Kowalczuk
- Institute of Physics, University of Silesia , Uniwersytecka 4, 40-007 Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Agata Antosik
- Jagiellonian University , Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Joanna Szafraniec
- Jagiellonian University , Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Witold Jamróz
- Jagiellonian University , Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Mateusz Dulski
- Silesian Center for Education and Interdisciplinary Research , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.,Institute of Materials Science, University of Silesia , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Renata Jachowicz
- Jagiellonian University , Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia , Uniwersytecka 4, 40-007 Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
41
|
Semjonov K, Kogermann K, Laidmäe I, Antikainen O, Strachan CJ, Ehlers H, Yliruusi J, Heinämäki J. The formation and physical stability of two-phase solid dispersion systems of indomethacin in supercooled molten mixtures with different matrix formers. Eur J Pharm Sci 2017; 97:237-246. [DOI: 10.1016/j.ejps.2016.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 11/10/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
42
|
Hellrup J, Mahlin D. Confinement of Amorphous Lactose in Pores Formed Upon Co-Spray Drying With Nanoparticles. J Pharm Sci 2016; 106:322-330. [PMID: 27836110 DOI: 10.1016/j.xphs.2016.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022]
Abstract
This study aims at investigating factors influencing humidity-induced recrystallization of amorphous lactose, produced by co-spray drying with particles of cellulose nanocrystals or sodium montmorillonite. In particular, the focus is on how the nanoparticle shape and surface properties influence the nanometer to micrometer length scale nanofiller arrangement in the nanocomposites and how the arrangements influence the mechanisms involved in the inhibition of the amorphous to crystalline transition. The nanocomposites were produced by co-spray drying. Solid-state transformations were analyzed at 60%-94% relative humidity using X-ray powder diffraction, microcalorimetry, and light microscopy. The recrystallization rate constant for the lactose/cellulose nanocrystals and lactose/sodium montmorillonite nanocomposites was lowered at nanofiller contents higher than 60% and was stable for months at 80% nanofiller. The most likely explanation to these results is spontaneous formations of mesoporous particle networks that the lactose is confined upon co-spray drying at high filler content. Compartmentalization and rigidification of the amorphous lactose proved to be less important mechanisms involved in the stabilization of lactose in the nanocomposites.
Collapse
Affiliation(s)
- Joel Hellrup
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | - Denny Mahlin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
Xiong X, Xu K, Li S, Tang P, Xiao Y, Li H. Solid-state amorphization of rebamipide and investigation on solubility and stability of the amorphous form. Drug Dev Ind Pharm 2016; 43:283-292. [DOI: 10.1080/03639045.2016.1239627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xinnuo Xiong
- College of Chemical Engineering, Sichuan University, Chengdu, China
| | - Kailin Xu
- College of Chemical Engineering, Sichuan University, Chengdu, China
| | - Shanshan Li
- College of Chemical Engineering, Sichuan University, Chengdu, China
| | - Peixiao Tang
- College of Chemical Engineering, Sichuan University, Chengdu, China
| | - Ying Xiao
- College of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hui Li
- College of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Katla VM, Veerabrahma K. Cationic solid self micro emulsifying drug delivery system (SSMED) of losartan: Formulation development, characterization and in vivo evaluation. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Censi R, Gigliobianco MR, Dubbini A, Malaj L, Di Martino P. New Nanometric Solid Dispersions of Glibenclamide in Neusilin(®) UFL2. AAPS PharmSciTech 2016; 17:1204-12. [PMID: 26645108 DOI: 10.1208/s12249-015-0457-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/18/2015] [Indexed: 11/30/2022] Open
Abstract
To improve the poor water solubility and dissolution rate of the oral hypoglycemic drug glibenclamide, it was molecularly dispersed in Neusilin(®) UFL2, an amorphous synthetic form of magnesium aluminometasilicate, at different proportions; the physicochemical and biopharmaceutical properties, as well as the stability of the four different batches recovered were characterised, and it was determined that complete dispersion of glibenclamide in the amorphous polymer was obtained at the drug to Neusilin ratio of 1 to 2.5. Completely amorphous dispersion was proven by Thermal Analysis and X-Ray Powder Diffractometry. Very small particles were obtained, ranging from approximately 200 to 400 nm. The amorphous batches were physically and chemically stable for the entire duration of experiments. The physicochemical properties of the four batches were compared to those of the starting materials and physical mixtures of Neusilin(®) UFL2 and glibenclamide, the latter showing the typical behaviour of simple mixes, i.e., the additivity of properties of single components. The dissolution studies of the four solid dispersions revealed a very high dissolution rate of the completely amorphous batches (Batches 3 and 4), behaviour that was ascribed to their high Intrinsic dissolution rate due to the amorphous characteristics of the solid dispersions, to their very small particle size, and to the presence of polysorbate 80 that improved solid wettability. The technique under investigation thus proved effective for recovering stable amorphous dispersions of very small particle sizes.
Collapse
|
46
|
Abd-Elrahman AA, El Nabarawi MA, Hassan DH, Taha AA. Ketoprofen mesoporous silica nanoparticles SBA-15 hard gelatin capsules: preparation and in vitro/in vivo characterization. Drug Deliv 2016; 23:3387-3398. [PMID: 27167529 DOI: 10.1080/10717544.2016.1186251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
SBA-15 is used to enhance the bioavailability of poorly soluble ketoprofen (KP) through stabilization of its amorphous state. Additionally, the current work provides a complete in vitro and in vivo study on preformulated KP-SBA-15 sample and formulated KP-SBA-15 in hard gelatin capsule. Loading of KP was done by a novel method called immersion-rotavapor method. KP was quantified by extraction and thermal gravimetric analysis (TGA). Characterization of the loaded SBA-15 sample was done by high resolution transmission electron microscopy (HRTEM), small angle X-ray diffraction (SAXRD), nitrogen adsorption/desorption isotherms, differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy and dissolution profiles. The loaded sample was formulated in hard gelatin capsule. The anti-inflammatory and analgesic studies were carried out on 24 adult male albino rats. TGA and extraction results showed 54.4 wt% of drug incorporated. Characterization of KP-SBA-15 sample confirmed the successful encapsulation of KP into the carrier pores in a molecular amorphous state. Additionally, loading of KP did not affect the mesoporous internal structure. During the first 5 min, the dissolution study showed very high release rates; nearly 50% of KP was released. These results were reflected on the in vivo study resulting in 82% inhibition in edema after 1 h and maximum analgesia after 30 min from the administration of the formulated sample. SBA-15 mesoporous silica nanoparticle proved to be a very promising drug delivery carrier that can be used as a facile way to enhance the bioavailability of poorly soluble drugs.
Collapse
Affiliation(s)
- Ahmed A Abd-Elrahman
- a Department of Pharmaceutics and Industrial Pharmacy , College of Pharmacy, Cairo University , Cairo , Egypt and
| | - Mohamed A El Nabarawi
- a Department of Pharmaceutics and Industrial Pharmacy , College of Pharmacy, Cairo University , Cairo , Egypt and
| | - Doaa H Hassan
- b Department of Pharmaceutics and Industrial Pharmacy , College of Pharmacy, Misr University for Science and Technology , Sixth of October City, Giza , Egypt
| | - Amal A Taha
- b Department of Pharmaceutics and Industrial Pharmacy , College of Pharmacy, Misr University for Science and Technology , Sixth of October City, Giza , Egypt
| |
Collapse
|
47
|
Novel tablet formulation of amorphous indomethacin using wet granulation with a high-speed mixer granulator combined with porous calcium silicate. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Maniruzzaman M, Farias S, Slipper IJ, Boateng JS, Chowdhry BZ, Nair A, Douroumis D. Development and optimization of ketoconazole oral strips by means of continuous hot-melt extrusion processing. J Pharm Pharmacol 2016; 68:890-900. [DOI: 10.1111/jphp.12569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 04/10/2016] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
The aim of this study was to develop mucoadhesive oral strips using hot-melt extrusion as a continuous manufacturing process.
Methods
Powder blends of ketoconazole, a water-insoluble drug – either hydroxypropyl methylcellulose (HPMC) or soluplus (SOL), sorbitol (SRB) and magnesium aluminometasilicate (MAS) were extruded to manufacture thin strips with 0.5-mm thickness. The presence of the inorganic metasilicate facilitated smooth processing of the extruded strips as it worked as an absorbent directly impacting on the extensive mixing of the drug/excipients inside the extruder barrel.
Key findings
The use of MAS also favoured the rapid hydration, swelling and eventual disintegration of the strips. Differential scanning calorimetry and transmission X-ray diffraction analysis revealed the existence of the amorphous drug within the extruded strips. Scanning electron microscopy and energy dispersive X-ray undertaken on the formulations showed a homogeneous drug distribution within the extruded strips.
Conclusion
The strips produced via continuous hot-melt extrusion processing showed significantly faster release of ketoconazole compared to the bulk drug substance.
Collapse
Affiliation(s)
- Mohammed Maniruzzaman
- Department of Pharmacy (Chemistry), School of Life Sciences, University of Sussex, Brighton, UK
| | - Smirna Farias
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Chatham Maritime, Kent, UK
| | - Ian J Slipper
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Chatham Maritime, Kent, UK
| | - Joshua S Boateng
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Chatham Maritime, Kent, UK
| | - Babur Z Chowdhry
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Chatham Maritime, Kent, UK
| | - Arun Nair
- Fuji Chemical Industry Co., Ltd., Minato-ku, Tokyo, Japan
| | - Dennis Douroumis
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Chatham Maritime, Kent, UK
| |
Collapse
|
49
|
Grzybowska K, Capaccioli S, Paluch M. Recent developments in the experimental investigations of relaxations in pharmaceuticals by dielectric techniques at ambient and elevated pressure. Adv Drug Deliv Rev 2016; 100:158-82. [PMID: 26705851 DOI: 10.1016/j.addr.2015.12.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
In recent years, there is a growing interest in improving the physicochemical stability of amorphous pharmaceutical solids due to their very promising applications to manufacture medicines characterized by a better water solubility, and consequently by a higher dissolution rate than those of their crystalline counterparts. In this review article, we show that the molecular mobility investigated both in the supercooled liquid and glassy states is the crucial factor required to understand molecular mechanisms that govern the physical stability of amorphous drugs. We demonstrate that pharmaceuticals can be thoroughly examined by means of the broadband dielectric spectroscopy, which is a very useful experimental technique to explore different relaxation processes and crystallization kinetics as well. Such studies conducted in the wide temperature and pressure ranges provide data needed in searching correlations between properties of molecular dynamics and crystallization process, which are aimed at developing effective and efficient methods for stabilizing amorphous drugs.
Collapse
|
50
|
Unintended and in situ amorphisation of pharmaceuticals. Adv Drug Deliv Rev 2016; 100:126-32. [PMID: 26724250 DOI: 10.1016/j.addr.2015.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/28/2015] [Accepted: 12/16/2015] [Indexed: 01/11/2023]
Abstract
Amorphisation of poorly water-soluble drugs is one approach that can be applied to improve their solubility and thus their bioavailability. Amorphisation is a process that usually requires deliberate external energy input. However, amorphisation can happen both unintentionally, as in process-induced amorphisation during manufacturing, or in situ during dissolution, vaporisation, or lipolysis. The systems in which unintended and in situ amorphisation has been observed normally contain a drug and a carrier. Common carriers include polymers and mesoporous silica particles. However, the precise mechanisms by which in situ amorphisation occurs are often not fully understood. In situ amorphisation can be exploited and performed before administration of the drug or possibly even within the gastrointestinal tract, as can be inferred from in situ amorphisation observed during in vitro lipolysis. The use of in situ amorphisation can thus confer the advantages of the amorphous form, such as higher apparent solubility and faster dissolution rate, without the disadvantage of its physical instability.
Collapse
|