1
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
2
|
Yuan J, Liu Z, Han T, Li J, Han P, Wang J. Preparation and Molecular Dynamic Simulation of Superfine CL-20/TNT Cocrystal Based on the Opposite Spray Method. Int J Mol Sci 2024; 25:9501. [PMID: 39273448 PMCID: PMC11395131 DOI: 10.3390/ijms25179501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
In view of the current problems of slow crystallization rate, varying grain sizes, complex process conditions, and low safety in the preparation of CL-20/TNT cocrystal explosives in the laboratory, an opposite spray crystallization method is provided to quickly prepare ultrafine explosive cocrystal particles. CL-20/TNT cocrystal explosive was prepared using this method, and the obtained cocrystal samples were characterized by electron microscopy morphology, differential thermal analysis, infrared spectroscopy, and X-ray diffraction analysis. The effects of spray temperature, feed ratio, and preparation method on the formation of explosive cocrystal were studied, and the process conditions of the pneumatic atomization spray crystallization method were optimized. The crystal plane binding energy and molecular interaction forces between CL-20 and TNT were obtained through molecular dynamic simulation, and the optimal binding crystal plane and cocrystal mechanism were analyzed. The theoretical calculation temperature of the binding energy was preliminarily explored in relation to the preparation process temperature of cocrystal explosives. The mechanical sensitivity of ultrafine CL-20/TNT cocrystal samples was tested. The results showed that choosing acetone as the cosolvent, a spraying temperature of 30 °C, and a feeding ratio of 1:1 was beneficial for the formation and growth of cocrystal. The prepared CL-20/TNT cocrystal has a particle size of approximately 10 μm. The grain size is small, and the crystallization rate is fast. The impact and friction sensitivity of ultrafine CL-20/TNT cocrystal samples were significantly reduced. The experimental process conditions are simple and easy to control, and the safety of the preparation process is high, providing certain technical support for the preparation of high-quality cocrystal explosives.
Collapse
Affiliation(s)
- Junming Yuan
- School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Zhenyang Liu
- School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Tao Han
- School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Junyi Li
- School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Peijiang Han
- School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Jing Wang
- School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
3
|
Haneef J, Ali S. Multicomponent Amorphous Solid Forms of Telmisartan: Insights into Mechanochemical Activation and Physicochemical Attributes. AAPS PharmSciTech 2024; 25:84. [PMID: 38605282 DOI: 10.1208/s12249-024-02799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
The present work aims to explore the new solid forms of telmisartan (TEL) with alpha-ketoglutaric acid (KGA) and glutamic acid (GA) as potential coformers using mechanochemical approach and their role in augmentation in physicochemical parameters over pure crystalline TEL. Mechanochemical synthesis was performed using 1:1 stoichiometric ratio of TEL and the selected coformers in the presence of catalytic amount of ethanol for 1 h. The ground product was characterized by PXRD, DSC, and FTIR. The new solid forms were evaluated for apparent solubility, intrinsic dissolution, and physical stability. Preliminary characterization revealed the amorphization of the mechanochemical product as an alternate outcome of cocrystallization screening. Mechanistic understanding of the amorphous phase highlights the formation of amorphous-mediated cocrystallization that involves three steps, viz., molecular recognition, intermediate amorphous phase, and product nucleation. The solubility curves of both multicomponent amorphous solid forms (TEL-KGA and TEL-GA) showed the spring-parachute effect and revealed significant augmentation in apparent solubility (8-10-folds), and intrinsic dissolution release (6-9-folds) as compared to the pure drug. Besides, surface anisotropy and differential elemental distributions in intrinsic dissolution compacts of both solid forms were confirmed by FESEM and EDX mapping. Therefore, amorphous phases prepared from mechanochemical synthesis can serve as a potential solid form for the investigation of a cocrystal through amorphous-mediated cocrystallization. This has greater implications in solubility kinetics wherein the rapid precipitation of the amorphous phase can be prevented by the metastable cocrystal phase and contribute to the significant augmentation in the physicochemical parameters.
Collapse
Affiliation(s)
- Jamshed Haneef
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Shakir Ali
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
4
|
Alam Q, Ganeshpurkar A, Singh SK, Krishnamurthy S. Preparation, Characterization, in-vitro and in-vivo Pharmacokinetic Evaluation of Thermostable Dimethyl Fumarate Cocrystals. J Pharm Sci 2024; 113:647-658. [PMID: 37595751 DOI: 10.1016/j.xphs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/02/2023] [Accepted: 07/02/2023] [Indexed: 08/20/2023]
Abstract
Dimethyl fumarate (DMF) is an FDA-approved drug for treating relapsing-remitting multiple sclerosis; but it is susceptible to sublimation leading to its loss during processing. Cocrystals can protect against thermal energy via the interaction of DMF with a coformer via weak forces of interaction. With this hypothesis, we have, for the first time, prepared DMF cocrystals using the solvent evaporation method using coformers like citric acid and succinic acid screened by in-silico predictions and hydrogen bonding properties. Analysis using infra-red (IR), powder x-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and sublimation evaluation characterized cocrystals and their thermostability. Comparative analysis of the release profile has been done by dissolution and pharmacokinetic study of DMF and its cocrystals. The cocrystals have improved thermal stability and better pharmacological activities than DMF. In the safety and efficacy evaluation of the formulated cocrystals, they were found to be non-cytotoxic, antioxidant, and inhibiting IL-6 and TNF-α in PBMC induced by lipopolysaccharide (LPS). We have obtained cocrystals of DMF with improved thermal stability and better pharmacological activities than DMF.
Collapse
Affiliation(s)
- Qadir Alam
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Ankit Ganeshpurkar
- Pharmaceutical Chemistry Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India.
| |
Collapse
|
5
|
Dudek MK, Trzeciak K, Tajber L, Zając J, Kaźmierski S, Pindelska E, Makowski T, Svyntkivska M, Potrzebowski MJ. A New Look at the Mechanism of Cocrystal Formation and Coformers Exchange in Processes Forced by Mechanical and/or Thermal Stimuli - ex situ and in situ Studies of Low-Melting Eutectic Mixtures. Chemistry 2024; 30:e202302138. [PMID: 37957130 DOI: 10.1002/chem.202302138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Three different devices: ball mill, hot stage melting, and magic angle spinning (MAS) NMR rotor were used for the preparation of ethenzamide (ET) cocrystals with glutaric acid (GLU), ethylmalonic acid (EMA) and maleic acid (MAL) as coformers. In each case, well-defined binary systems (ET:EMA, ET:GLU, ET:MAL) were obtained. The common features of the two solvent free methods of cocrystal formation (grinding, melting) are presented on the basis of arguments obtained by solid state NMR spectroscopy. Thermal analysis (Differential Scanning Calorimetry) proved that the eutectic phase arises over a wide range of molar ratios of components for each of the binary systems. NMR techniques, supported by theoretical calculations, allowed to provide details about the pathway of the reaction mechanism with atomic accuracy. It was found that the formation of ET cocrystals is a complex process that requires five steps. Each step has been recognized and described. Variable temperature 1D and 2D MAS NMR experiments allowed to track physicochemical processes taking place in a molten state. Moreover, it was found that in a multicomponent mixture consisting of all four components, ET, EMA, GLU, and MAL, ET in the molten phase behaves as a specific selector choosing only one partner to form binary cocrystals according to energy preferences. The process of exchange of coformers in binary systems during grinding, melting, and NMR measurements is described. The stabilization energies (Estab ) and molecular electrostatic potential (MEP) maps computed for the cocrystals under discussion and their individual components rationalize the selection rules and explain the relationships between individual species.
Collapse
Affiliation(s)
- Marta K Dudek
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Lidia Tajber
- School of Pharmacy and Pharmaceuticals Sciences, the SFI Research Centre for Pharmaceuticals, Trinity College Dublin College Green, Dublin 2, Ireland
| | - Justyna Zając
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Edyta Pindelska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-093, Warsaw, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Mariia Svyntkivska
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
6
|
Turek M, Różycka-Sokołowska E, Owsianik K, Bałczewski P. New Perspectives for Antihypertensive Sartans as Components of Co-crystals and Co-amorphous Solids with Improved Properties and Multipurpose Activity. Mol Pharm 2024; 21:18-37. [PMID: 38108281 DOI: 10.1021/acs.molpharmaceut.3c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Sartans (angiotensin II receptor blockers, ARBs), drugs used in the treatment of hypertension, play a principal role in addressing the global health challenge of hypertension. In the past three years, their potential use has expanded to include the possibility of their application in the treatment of COVID-19 and neurodegenerative diseases (80 clinical studies worldwide). However, their therapeutic efficacy is limited by their poor solubility and bioavailability, prompting the need for innovative approaches to improve their pharmaceutical properties. This review discusses methods of co-crystallization and co-amorphization of sartans with nonpolymeric, low molecular, and stabilizing co-formers, as a promising strategy to synthesize new multipurpose drugs with enhanced pharmaceutical properties. The solid-state forms have demonstrated the potential to address the poor solubility limitations of conventional sartan formulations and offer new opportunities to develop dual-active drugs with broader therapeutic applications. The review includes an in-depth analysis of the co-crystal and co-amorphous forms of sartans, including their properties, possible applications, and the impact of synthetic methods on their pharmacokinetic properties. By shedding light on the solid forms of sartans, this article provides valuable insights into their potential as improved drug formulations. Moreover, this review may serve as a valuable resource for designing similar solid forms of sartans and other drugs, fostering further advances in pharmaceutical research and drug development.
Collapse
Affiliation(s)
- Marika Turek
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Ewa Różycka-Sokołowska
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Krzysztof Owsianik
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Piotr Bałczewski
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| |
Collapse
|
7
|
Ferreira PO, de Almeida AC, Costa GDP, Torquetti C, Baptista JA, Eusébio MES, Caires FJ, Castro RAE. Norfloxacin Cocrystals: Mechanochemical Synthesis and Scale-up Viability Through Solubility Studies. J Pharm Sci 2023; 112:2230-2239. [PMID: 36921800 DOI: 10.1016/j.xphs.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Cocrystals are recognized as one of the most efficient approaches to improve aqueous solubility of Biopharmaceutical Classification System, BCS, classes II and IV drugs. Cocrystal discovery and the establishment of experimental conditions suitable for scale-up purposes are some of the main challenges in cocrystal investigation. In this work, the investigation of mechanochemical synthesis of norfloxacin cocrystals with picolinic and isonicotinic acids is performed, leading to the discovery of two new cocrystals of this important BCS class IV antibiotic, which were characterized through thermal, spectral and diffractometric analysis. Norfloxacin apparent aqueous solubility using the cocrystals is also presented, with higher values being obtained for all the investigated systems when compared to the pure drug. Norfloxacin has 3 polymorphs and several solvents/hydrates, which represents a challenge for obtaining pure cocrystal forms from solvent crystallization. This challenge was successfully overcome in this work, as experimental conditions to obtain the pure cocrystals (the new ones and also norfloxacin-nicotinic acid and norfloxacin-saccharin) were established using Crystal16 equipment. This is a crucial step to envisage future scale-up procedures and therefore a valuable information for the pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | - Carolina Torquetti
- School of Sciences, São Paulo State University, 17033-360, Bauru, Brazil
| | - João A Baptista
- CQC/IMS, Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | | | - Flavio J Caires
- School of Sciences, São Paulo State University, 17033-360, Bauru, Brazil.
| | - Ricardo A E Castro
- CQC/IMS, Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
8
|
Villeda-Villegas M, Páez-Franco JC, Coyote-Dotor G, Núñez-Pineda A, Dorazco-González A, Fuentes-Noriega I, Rubio-Carrasco K, Toledo Jaldín HP, Morales-Morales D, Germán-Acacio JM. Diversity of Solid Forms Promoted by Ball Milling: Characterization and Intrinsic Dissolution Studies of Pioglitazone Hydrochloride and Fluvastatin Sodium Drug-Drug Systems. Pharmaceuticals (Basel) 2023; 16:781. [PMID: 37375729 DOI: 10.3390/ph16060781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Coamorphous salt in a 1:1 ratio prepared by ball milling from Fluvastatin sodium (FLV) and Pioglitazone hydrochloride (PGZ·HCl) can be selectively formed by neat grinding (NG). Furthermore, the salt-cocrystal continuum was preferably formed by employing liquid-assisted grinding (LAG) using ethanol (EtOH). Attempts to prepare the coamorphous salt starting from the salt-cocrystal continuum by NG were unsuccessful. Interestingly, through ball milling by NG or LAG, a great diversity of solid forms (PGZ·HCl-FLV 1:1) could be accessed: NG and hexane (coamorphous); ethyl acetate (physical mixture); EtOH (salt-cocrystal continuum); and water (which presents two Tg, indicating immiscibility of the components). An exploration was performed at different drug-to-drug ratios by NG. By differential scanning calorimetry (DSC), the presence of two endothermic events was observed in this screening: incongruous melting point (solidus) and excess of one of the components (liquidus), except in the 1:1 solid form. From these results, eutectic behavior was observed. Through the construction of a binary phase diagram, it was determined that the 1:1 molar ratio gives rise to the formation of the most stable coamorphous composition. Dissolution profile studies of these solid forms were carried out, specifically on pure FLV and the solid forms of PGZ⋅HCl-FLV (1:2; 1:4; and 1:6), together with the coamorphous 1:1 salt. By itself, pure FLV presented the highest Kint (13.6270 ± 0.8127 mg/cm2⋅min). On the other hand, the coamorphous 1:1 showed a very low Kint (0.0220 ± 0.0014 mg/cm2·min), indicating very fast recrystallization by the FLV, which avoids observing a sudden release of this drug in the solution. This same behavior was observed in the eutectic composition 1:2. In the other solid forms, the value of Kint increases along with the %w of FLV. From the mechanochemical point of view, ball milling by NG or LAG became an important synthetic tool since it allows obtaining a great variety of solid forms to explore the solid-state reactivity of the drug-drug solid-form PGZ HCl-FLV.
Collapse
Affiliation(s)
- Marco Villeda-Villegas
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de Mexico 14000, Mexico
| | - José C Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de Mexico 14000, Mexico
| | - Guadalupe Coyote-Dotor
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de Mexico 14000, Mexico
| | - Alejandra Núñez-Pineda
- Centro Conjunto de Investigación en Química Sustentable CCIQS UAEM-UNAM Carretera Toluca-Atlacomulco km 14.5, Toluca 50200, Mexico
- Instituto de Química, Universidad Nacional Autónoma de Mexico, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
| | - Alejandro Dorazco-González
- Instituto de Química, Universidad Nacional Autónoma de Mexico, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
| | - Inés Fuentes-Noriega
- Laboratorio de Biofarmacia, Departamento de Farmacia, Facultad de Química-UNAM, Ciudad de México 04510, Mexico
| | - Kenneth Rubio-Carrasco
- Laboratorio de Biofarmacia, Departamento de Farmacia, Facultad de Química-UNAM, Ciudad de México 04510, Mexico
| | - Helen P Toledo Jaldín
- Technological Superior Studies Tianguistenco, Mechanical Engineering, Santiago Tianguistenco 52650, Mexico
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de Mexico, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
| | - Juan Manuel Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de Mexico 14000, Mexico
| |
Collapse
|
9
|
Nga Wong S, Low KH, Lam Poon Y, Zhang X, Wan Chan H, Fung Chow S. Synthesis of the first remdesivir cocrystal: design, characterization, and therapeutic potential for pulmonary delivery. Int J Pharm 2023; 640:122983. [PMID: 37121494 DOI: 10.1016/j.ijpharm.2023.122983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
While cocrystal engineering is an emerging formulation strategy to overcome drug delivery challenges, its therapeutic potential in non-oral applications remains not thoroughly explored. We herein report for the first time the successful synthesis of a cocrystal for remdesivir (RDV), an antiviral drug with broad-spectrum activities against RNA viruses. The RDV cocrystal was prepared with salicylic acid (SA) via combined liquid-assisted grinding (LAG) and thermal annealing. Formation of RDV-SA was found to be a thermally activated process, where annealing at high temperature after grinding was a prerequisite to facilitate the cocrystal growth from an amorphous intermediate, rendering it elusive under ambient preparing conditions. Through powder X-ray analysis with Rietveld refinement, the three-dimensional molecular structure of RDV-SA was resolved. The thermally annealed RDV-SA produced by LAG crystalized in a non-centrosymmetric monoclinic space group P21 with a unit cell volume of 1826.53(17) Å3, accommodating one pair of RDV and SA molecules in the asymmetric unit. The cocrystal formation was also characterized by differential scanning calorimetry, solid-state nuclear magnetic resonance, and Fourier-transform infrared spectroscopy. RDV-SA was further developed as inhaled dry powders by spray drying for potential COVID-19 therapy. The optimized RDV-SA dry powders exhibited a mass median aerodynamic diameter of 4.33 ± 0.2 μm and fine particle fraction of 41.39 ± 4.25 %, indicating the suitability for pulmonary delivery. Compared with the raw RDV, RDV-SA displayed a 15.43-fold higher fraction of release in simulated lung fluid at 120 min (p =0.0003). RDV-SA was safe in A549 cells without any in vitro cytotoxicity observed in the RDV concentration from 0.05 to 10 µM.
Collapse
Affiliation(s)
- Si Nga Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kam-Hung Low
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yi Lam Poon
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China.
| |
Collapse
|
10
|
Solvent-Free Mechanochemical Synthesis of Organic Proton Conducting Salts Incorporating Imidazole and Dicarboxylic Acids. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
11
|
Lonergan RF, Conway GA, Doheny PW, Shepherd HJ. Spontaneous Synthesis of [Fe II (Atrz) 3 ]SO 4 and its Analogues Through Accelerated Ageing: New Insights from Small-Scale Reactions. Chemistry 2022; 28:e202201823. [PMID: 35984234 PMCID: PMC9826154 DOI: 10.1002/chem.202201823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 01/11/2023]
Abstract
Accelerated ageing reactions that take place between two solid materials on contact in the absence of added solvent have been used to synthesize two spin-crossover-active 1D coordination polymers and one of their Cu(II) analogues. The hygroscopy of the ligands and the relative humidity of the reaction chamber have been shown to be particularly important factors in the rate of reaction. Small-scale reactions between a few individual crystals have allowed observation of deliquescence of the 4-aminotriazole ligand at high humidity. The metal salt does not dissolve, and the ligand diffuses into the crystal of the metal salt during the reaction. In the case of the Cu analogue, the formation of the product causes the crystal of the metal salt to deform with the formation of pseudocrystals, which have a fibrous structure.
Collapse
Affiliation(s)
- Rhona F. Lonergan
- School of Physical SciencesUniversity of KentGiles LaneCanterburyCT2 7NZUK
| | - Georgina A. Conway
- School of Physical SciencesUniversity of KentGiles LaneCanterburyCT2 7NZUK
| | - Patrick W. Doheny
- School of Physical SciencesUniversity of KentGiles LaneCanterburyCT2 7NZUK
| | - Helena J. Shepherd
- School of Physical SciencesUniversity of KentGiles LaneCanterburyCT2 7NZUK
| |
Collapse
|
12
|
Huang Z, Staufenbiel S, Bodmeier R. Combination of co-crystal and nanocrystal techniques to improve the solubility and dissolution rate of poorly soluble drugs. Pharm Res 2022; 39:949-961. [PMID: 35552985 PMCID: PMC9160134 DOI: 10.1007/s11095-022-03243-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
Abstract
Purpose Solubility and dissolution rate are essential for the oral absorption and bioavailability of poorly soluble drugs. The aim of this study was to prepare nano-co-crystals by combination of nanocrystal and co-crystal technologies, and investigate its effect, in situ, on increased kinetic solubility and dissolution rate. Methods Co-crystals of itraconazole-fumaric acid, itraconazole-succinic acid, indomethacin-saccharin and indomethacin-nicotinamide were prepared and nano-sized by wet milling. The particle size and solid state of the co-crystals were characterized by optical microscope, LD, PCS, DSC and XRPD before and after milling. Results 300-450 nm sized nano-co-crystals with a stable physical solid state were successfully prepared. Nano-co-crystals exhibited a lower crystallinity reduction than nanocrystals after wet milling. The particle size effect on the kinetic solubility of co-crystals was analysed for macro-, micro- and nano-co-crystals with in situ kinetic solubility studies. The maximum kinetic solubility of nano-co-crystals increased with excess conditions until a plateau. The highest increase was obtained with itraconazole-succinic acid nano-co-crystals with a kinetic solubility of 263.5 ± 3.9 μg/mL which was 51.5 and 6.6 times higher than the solubility of raw itraconazole and itraconazole-succinic acid co-crystal. Conclusions The synergistic effect of nanocrystals and co-crystals with regard to increased kinetic solubility and dissolution rate was proven. The combination of the advantages of nanocrystals and co-crystals is a promising formulation strategy to increase both the solubility and dissolution rate of poorly soluble drugs. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03243-9.
Collapse
Affiliation(s)
- Zun Huang
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169, Berlin, Germany
| | - Sven Staufenbiel
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169, Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169, Berlin, Germany.
| |
Collapse
|
13
|
DUTT B, CHOUDHARY M, BUDHWAR V. A Brief Discussion of Multi-Component Organic Solids: Key Emphasis on Co-Crystallization. Turk J Pharm Sci 2022; 19:220-231. [DOI: 10.4274/tjps.galenos.2020.78700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Zhang J, Liang Z, Yang F, JI S, Lan P, Liao YX. Unique sandwich structure of pyrazinamide-methylmalonic acid cocrystal:ternary phase diagrams, characterization and property evaluation. CrystEngComm 2022. [DOI: 10.1039/d1ce01609a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pyrazinamide (PZA)-Methylmalonic acid (MMA) cocrystal was prepared and characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and Thermogravimetric analysis (TGA). Hirshfeld surface...
Collapse
|
15
|
Han J, Li L, Yu Q, Zheng D, Song Y, Zhang J, Gao Y, Heng W, Qian S, Pang Z. Self-gelation involved in the transformation of resveratrol and piperine from a co-amorphous system into a co-crystal system. CrystEngComm 2022. [DOI: 10.1039/d2ce00671e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-gelation of co-amorphous system promotes the transformation into its co-crystal system during dissolution.
Collapse
Affiliation(s)
- Jiawei Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
- School of Pharmacy, Changzhou University, Changzhou, 213164, P.R. China
| | - Luyuan Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Qian Yu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Daoyi Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Yutong Song
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| |
Collapse
|
16
|
Raval MK, Garala KC, Patel JM, Parikh RK, Sheth NR. Functionality improvement of Chlorzoxazone by crystallo-co-agglomeration using multivariate analysis approach. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2020.1799126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mihir K. Raval
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | | | - Jaydeep M. Patel
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | | | - Navin R. Sheth
- Gujarat Technological University, Ahmedabad, Gujarat, India
| |
Collapse
|
17
|
Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B 2021; 11:2537-2564. [PMID: 34522597 PMCID: PMC8424375 DOI: 10.1016/j.apsb.2021.03.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Pharmaceutical cocrystals are multicomponent systems in which at least one component is an active pharmaceutical ingredient and the others are pharmaceutically acceptable ingredients. Cocrystallization of a drug substance with a coformer is a promising and emerging approach to improve the performance of pharmaceuticals, such as solubility, dissolution profile, pharmacokinetics and stability. This review article presents a comprehensive overview of pharmaceutical cocrystals, including preparation methods, physicochemical properties, and applications. Furthermore, some examples of drug cocrystals are highlighted to illustrate the effect of crystal structures on the various aspects of active pharmaceutical ingredients, such as physical stability, chemical stability, mechanical properties, optical properties, bioavailability, sustained release and therapeutic effect. This review will provide guidance for more efficient design and manufacture of pharmaceutical cocrystals with desired physicochemical properties and applications.
Collapse
|
18
|
Gowayed OY, Moosa T, Moratos AM, Hua T, Arnold S, Garetz BA. Dynamic Light Scattering Study of a Laser-Induced Phase-Separated Droplet of Aqueous Glycine. J Phys Chem B 2021; 125:7828-7839. [PMID: 34259002 DOI: 10.1021/acs.jpcb.1c02620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tightly focusing a continuous-wave, near-infrared laser beam at the air/solution interface of a millimeter-thick layer of glycine in D2O forms a crystal through a polymorphically and spatially controlled nucleation process known as gradient-force laser-induced nucleation or optical-tweezer laser-induced nucleation. However, when this same beam is focused at the glass/solution interface of a film of aqueous glycine, a highly concentrated laser-induced phase-separated (LIPS) solution droplet is formed that does not nucleate while the focusing beam remains on. Two competing theories have emerged about the nature of the LIPS droplet: one proposes that it is a merger of prenucleation metastable nanodroplets and clusters into one large homogeneous "dense liquid droplet", and the other stipulates that it is the result of the partitioning of larger droplets into the new phase, but not a merging of droplets, around the focal point of the beam. In order to determine the nature of the LIPS droplet, dynamic light scattering was used to detect the presence of nanodroplets undergoing Brownian motion within the droplet and to measure their relative size following a range of laser exposure times. The observation of nanodroplets in motion in the center of the LIPS droplet revealed that the application of optical tweezers at the glass/solution interface forms a relatively monodisperse collection of large nanodroplets (>700 nm) concentrated around the focal point of the beam with smaller particles (<100 nm) depleted within the first 2 min of laser exposure. The LIPS droplet quickly reaches a steady state and is not affected by increasing focusing times. These findings allow for a better understanding of the interactions of optical tweezers with aqueous glycine nanodroplets. This understanding will help in studying the fundamental nature of metastable nanodroplets. More practically, laser-induced phase separation makes possible the nucleation-free separation of large nanodroplets from small clusters, facilitating materials technologies such as high purity, polymorphically selective nucleation of crystals and co-crystals used for pharmaceuticals, dyes, and photovoltaics.
Collapse
Affiliation(s)
- Omar Y Gowayed
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Tahany Moosa
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Angelica M Moratos
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Tianyi Hua
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Stephen Arnold
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Bruce A Garetz
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| |
Collapse
|
19
|
Veith H, Zaeh M, Luebbert C, Rodríguez-Hornedo N, Sadowski G. Stability of Pharmaceutical Co-Crystals at Humid Conditions Can Be Predicted. Pharmaceutics 2021; 13:433. [PMID: 33806996 PMCID: PMC8004816 DOI: 10.3390/pharmaceutics13030433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the stability of pharmaceutical formulations against relative humidity (RH) is essential if they are to become pharmaceutical products. The increasing interest in formulating active pharmaceutical ingredients as stable co-crystals (CCs) triggers the need for fast and reliable in-silico predictions of CC stability as a function of RH. CC storage at elevated RH can lead to deliquescence, which leads to CC dissolution and possible transformation to less soluble solid-state forms. In this work, the deliquescence RHs of the CCs succinic acid/nicotinamide, carbamazepine/nicotinamide, theophylline/citric acid, and urea/glutaric acid were predicted using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT). These deliquescence RH values together with predicted phase diagrams of CCs in water were used to determine critical storage conditions, that could lead to CC instability, that is, CC dissolution and precipitation of its components. The importance of CC phase purity on RH conditions for CC stability is demonstrated, where trace levels of a separate phase of active pharmaceutical ingredient or of coformer can significantly decrease the deliquescence RH. The use of additional excipients such as fructose or xylitol was predicted to decrease the deliquescence RH even further. All predictions were successfully validated by stability measurements at 58%, 76%, 86%, 93%, and 98% RH and 25 °C.
Collapse
Affiliation(s)
- Heiner Veith
- Laboratory of Thermodynamics, Department of Chemical and Biochemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, D-44227 Dortmund, Germany; (H.V.); (M.Z.); (C.L.)
| | - Maximilian Zaeh
- Laboratory of Thermodynamics, Department of Chemical and Biochemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, D-44227 Dortmund, Germany; (H.V.); (M.Z.); (C.L.)
| | - Christian Luebbert
- Laboratory of Thermodynamics, Department of Chemical and Biochemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, D-44227 Dortmund, Germany; (H.V.); (M.Z.); (C.L.)
| | - Naír Rodríguez-Hornedo
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church St, Ann Arbor, MI 48109-1065, USA;
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Department of Chemical and Biochemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, D-44227 Dortmund, Germany; (H.V.); (M.Z.); (C.L.)
| |
Collapse
|
20
|
Sharma V, Kaur G, Singh A, Banerjee B, Gupta VK. Synthesis and Characterization of 2-Aminobenzothiazol and 1-Methylisatin Co-Сrystal. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520070172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Simorangkir TPH. Study of possibility physical interactions antimalarial combination drugs. Infect Dis Rep 2020; 12:8761. [PMID: 32874476 PMCID: PMC7447933 DOI: 10.4081/idr.2020.8761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/01/2020] [Indexed: 11/25/2022] Open
Abstract
Identification of solid state to investigate the possibility of physical interaction between Antimalarial Artemisinin Combination Treatment base Artesunate (AS) and Amodiaquine (AQ) by hot contact method Kofler, cold contact method (crystallization reaction) and binary phase diagram confirmation had been carried out. The results of hot contact method Kofler shown the formation a new crystalline habit as a long and thin needle on the contact zone (mixing zone) between AS and AQ. A different melting point was seen in its single component. Cold contact methods between two of supersaturated solution of component AS and AQ in methanol solvent also indicated the growth of crystal habit as similar as hot contact method Kofler. Confirmation by biner phase diagram shown the specific diagram for cocrystalline phase. Solid state interaction between AS and AQ was analysed by powder X-ray diffraction, FTIR (Fourier Transformed Infra Red) spectrophotometric, microscopic SEM (Scanning Electron Microscopic) and thermal DTA (Differential Thermal Analysis), TG-DSC (Thermal Gravimetry- Differential Scanning Calorimetry). Microscopic analysis by SEM showed significantly the change of habit and morphology of crystal to long and thin needle shaped. The difference of powder X-ray diffraction (PXRD) interferences peaks were observed in addition to PXRD interference peaks of each component and its physical mixtures that proved formation of cocrystalline phase. DSC Thermogram indicated a new endothermic peak corresponding to melting point of a new cocrystalline phase at temperature 160,4°C.
Collapse
|
22
|
Muresan-Pop M, Chereches G, Borodi G, Fischer-Fodor E, Simon S. Structural characterization of 5-fluorouracil & piperazine new solid forms and evaluation of their antitumor activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Kuang W, Ji S, Wei Y, Zhang J, Lan P. A new 1 : 1 cocrystal of lamotrigine and 1,2,3,6-hydrophthalimide: discovery, characterization, and construction of ternary phase diagrams. CrystEngComm 2020. [DOI: 10.1039/d0ce00178c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A 1 : 1 cocrystal of lamotrigine (LAM) with 1,2,3,6-tetrahydrophthalimide (HPHT) was first successfully synthesized. The ternary phase diagram of the cocrystal was constructed, and its stability and dissolution were determined.
Collapse
Affiliation(s)
- Wenjie Kuang
- Guangxi Key Laboratory for Polysaccharide Materials and their Modification Guangxi University for Nationalities
- Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes
- College of Chemistry and Chemical Engineering
- Guangxi University for Nationalities
- Nanning 530006
| | - Shaochang Ji
- Guangxi Tobacco Monopoly Bureau
- Nanning 530006
- China
| | | | - Jinyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and their Modification Guangxi University for Nationalities
- Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes
- College of Chemistry and Chemical Engineering
- Guangxi University for Nationalities
- Nanning 530006
| | - Ping Lan
- Guangxi Key Laboratory for Polysaccharide Materials and their Modification Guangxi University for Nationalities
- Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes
- College of Chemistry and Chemical Engineering
- Guangxi University for Nationalities
- Nanning 530006
| |
Collapse
|
24
|
Budhwar V, Dutt B, Choudhary M. Cocrystallization: An innovative route toward better medication. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2020. [DOI: 10.4103/jrptps.jrptps_103_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Engku Mat Nasir EN, Rahman FA, Abd Rahim S, Edros RZ, Anuar N. Crystallisation parameters effect on the particle size distribution (PSD) of carbamazepine-saccharin (CBZ-SAC) co-crystals in batch cooling crystallisation. IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING 2020; 736:022109. [DOI: 10.1088/1757-899x/736/2/022109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
The crystallisation parameters effect on the particle size distribution (PSD) of carbamazepine-saccharin (CBZ-SAC) co-crystals in batch cooling crystallisation is presented. The particle size distribution study of CBZ-SAC co-crystals revealed that the multimodal with broad PSD was found for CBZ concentration of 19.14 mg/ml. Meanwhile, the unimodal with broad PSD were observed at CBZ concentration of 17.01 mg/ml and 17.96 mg/Crystal characterisation using differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier transform infrared (FTIR) and optical microscopy confirm the solid formed is CBZ-SAC co-crystal Form I with plate-like crystal morphology.
Collapse
|
26
|
Ishihara S, Hattori Y, Otsuka M. MCR-ALS analysis of IR spectroscopy and XRD for the investigation of ibuprofen - nicotinamide cocrystal formation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117142. [PMID: 31158774 DOI: 10.1016/j.saa.2019.117142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
To improve aqueous solubility, a poorly water-soluble active ingredient is classically combined with a conformer to form cocrystals. Hot melt extrusion is one preparation method for the formation of cocrystal solids. The aim of our study was to determine the optimal temperature conditions for the formation of ibuprofen and nicotinamide cocrystals using real-time infrared (IR) and X-ray diffraction (XRD) measurements. IR spectra and XRD patterns were subjected to multivariate curve resolution alternating least squares (MCR-ALS) analysis and decomposed into several components. Each component was descriptive of a specific step in the formation of the cocrystal. Cocrystal formation was followed by a separation phase between amorphous ibuprofen and crystalline nicotinamide. Our results suggest that, when using the hot melt exclusion method, careful consideration should be made towards optimizing processing temperatures in order to prevent amorphization and promote control over the process of cocrystal formation.
Collapse
Affiliation(s)
- Sae Ishihara
- Faculty of Pharmacy, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo city, Tokyo 202-8585, Japan
| | - Yusuke Hattori
- Faculty of Pharmacy, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo city, Tokyo 202-8585, Japan; Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo City, Tokyo 202-8585, Japan
| | - Makoto Otsuka
- Faculty of Pharmacy, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo city, Tokyo 202-8585, Japan; Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo City, Tokyo 202-8585, Japan.
| |
Collapse
|
27
|
Przybyłek M, Recki Ł, Mroczyńska K, Jeliński T, Cysewski P. Experimental and theoretical solubility advantage screening of bi-component solid curcumin formulations. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Dołęga A, Zieliński PM, Osiecka-Drewniak N. New Insight Into Thermodynamical Stability of Carbamazepine. J Pharm Sci 2019; 108:2654-2660. [PMID: 30926446 DOI: 10.1016/j.xphs.2019.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/07/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
Carbamazepine (CBZ)-an antiepileptic drug-belongs to Biopharmaceutics Classification System II Class. It has low solubility and consequently limited bioavailability. One of the ways to improve drugs solubility is amorphization of their structure. Herein, cooling CBZ-at different cooling rates-was investigated as a way to obtain glassy, better soluble form. During preliminary differential scanning calorimetry experiments, some peculiar behavior of the examined material, different from those stated in the literature, was observed. Further investigations using differential scanning calorimetry, thermogravimetric analysis, and polarizing optical microscope revealed that decomposition temperature of CBZ is about 30°C lower than previously assumed. Moreover, high-resolution thermogravimetric measurements indicate that some decomposition processes could start even below the temperature reported as the melting point of the form I of CBZ.
Collapse
Affiliation(s)
- Agnieszka Dołęga
- Department of Soft Matter Research Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | - Piotr M Zieliński
- Department of Soft Matter Research Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Natalia Osiecka-Drewniak
- Department of Soft Matter Research Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
29
|
Newman A, Zografi G. An Examination of Water Vapor Sorption by Multicomponent Crystalline and Amorphous Solids and Its Effects on Their Solid-State Properties. J Pharm Sci 2019; 108:1061-1080. [DOI: 10.1016/j.xphs.2018.10.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 10/28/2022]
|
30
|
Wu W, Wang Y, Löbmann K, Grohganz H, Rades T. Transformations between Co-Amorphous and Co-Crystal Systems and Their Influence on the Formation and Physical Stability of Co-Amorphous Systems. Mol Pharm 2019; 16:1294-1304. [PMID: 30624075 DOI: 10.1021/acs.molpharmaceut.8b01229] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The formation of co-amorphous and co-crystal systems are attractive formulation strategies for poorly water-soluble drugs. Intermolecular interactions between the drug and the coformer(s) play an important role in the formation of both systems, making the investigation of transformations between the two systems specifically interesting. The aim of this study thus was to investigate the transformation between the two systems and its influence on the formation and physical stability of co-amorphous systems. Carbamazepine (CBZ) along with benzoic acid, maleic acid, succinic acid, tartaric acid, saccharin, and nicotinamide were used as materials. First, CBZ- co-former co-crystals were prepared. Then the co-crystals and CBZ- co-former physical mixtures were ball milled to investigate the possible co-amorphization process. The XRPD and DSC results showed that CBZ and coformers tended to maintain (co-crystals as the starting material) or form co-crystals (physical mixtures as the starting material), rather than to form co-amorphous systems. Next, co-amorphization from CBZ- co-former physical mixtures via quench cooling was studied. While co-amorphous systems were obtained, the physical stability of these was very low, and the samples recrystallized to either co-crystal forms or the individual components. In conclusion, a possible transformation between the two systems was confirmed, but the resulting co-amorphous systems were highly unstable.
Collapse
Affiliation(s)
- Wenqi Wu
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Yixuan Wang
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark.,School of Functional Food and Wine , Shenyang Pharmaceutical University , Wenhua Rd. 103 , Shenyang 110016 , China
| | - Korbinian Löbmann
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Holger Grohganz
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Thomas Rades
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering , Åbo Akademi University , 20521 Turku , Finland
| |
Collapse
|
31
|
Shukla A, Khan E, Alsirawan MHDB, Mandal R, Tandon P, Vangala VR. Spectroscopic (FT-IR, FT-Raman, and 13C SS-NMR) and quantum chemical investigations to provide structural insights into nitrofurantoin–4-hydroxybenzoic acid cocrystals. NEW J CHEM 2019. [DOI: 10.1039/c8nj05946b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-covalent interactions contribute considerably to the stability of cocrystals and have appreciable effects on their molecular geometry as well.
Collapse
Affiliation(s)
- Anuradha Shukla
- Department of Physics
- University of Lucknow
- Lucknow 226007
- India
| | - Eram Khan
- Department of Physics
- University of Lucknow
- Lucknow 226007
- India
| | - MHD. Bashir Alsirawan
- Centre for Pharmaceutical Engineering Science
- School of Pharmacy and Medical Sciences
- University of Bradford
- Bradford BD7 1DP
- UK
| | - Rajorshi Mandal
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Poonam Tandon
- Department of Physics
- University of Lucknow
- Lucknow 226007
- India
| | - Venu R. Vangala
- Centre for Pharmaceutical Engineering Science
- School of Pharmacy and Medical Sciences
- University of Bradford
- Bradford BD7 1DP
- UK
| |
Collapse
|
32
|
Li H, Famulari A, Xin L, Zhou H, Zhang P, Guo F. Stoichiometry mechanosynthesis and interconversion of metal salts containing [CuCl 3(H 2O)] − and [Cu 2Cl 8] 4−. CrystEngComm 2019. [DOI: 10.1039/c9ce00911f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The mechanochemical interconversion of two salts was achieved by the addition of an appropriate amount of one of the corresponding components (HL or CuCl2·2H2O), and the progress of dynamic interconversion was revealed by PXRD, fluorescence and Raman spectroscopy.
Collapse
Affiliation(s)
- Haitao Li
- College of Chemistry
- Liaoning University
- Shenyang
- China
| | - Antonino Famulari
- Dipartimento di Chimica Materiali e Ingegneria Chimca. “Giulio Natta”
- Politecnico di Milano
- 20131 Milan
- Italy
| | - Lianxin Xin
- College of Chemistry
- Liaoning University
- Shenyang
- China
| | - Hongjian Zhou
- College of Chemistry
- Liaoning University
- Shenyang
- China
| | - Peng Zhang
- College of Chemistry
- Liaoning University
- Shenyang
- China
| | - Fang Guo
- College of Chemistry
- Liaoning University
- Shenyang
- China
| |
Collapse
|
33
|
Shaikh R, Singh R, Walker GM, Croker DM. Pharmaceutical Cocrystal Drug Products: An Outlook on Product Development. Trends Pharmacol Sci 2018; 39:1033-1048. [PMID: 30376967 DOI: 10.1016/j.tips.2018.10.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 01/30/2023]
Abstract
Active pharmaceutical ingredients (APIs) are most commonly formulated and delivered to patients in the solid state. Recently, an alternative API solid-state form, namely the pharmaceutical cocrystal, has witnessed increasing academic and industrial interest due to its potential to deliver bespoke physical properties in the pharmaceutical drug product. This interest has been supported by advances in cocrystal discovery, development, and approval, enabled primarily by a supportive new FDA guidance in February 2018. In this review, we describe the process of developing a pharmaceutical cocrystal drug product from screening to approval, with an emphasis on significant developments over the past decade.
Collapse
Affiliation(s)
- Rahamatullah Shaikh
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Ravendra Singh
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Gavin M Walker
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland; Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Denise M Croker
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland; Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| |
Collapse
|
34
|
Affiliation(s)
- Ann Newman
- Seventh Street Development Group; PO Box 251 Kure Beach NC 28449 USA
| | - Cen Chen
- Crystal Pharmatech; B4-101, Biobay, 218 Xinghu Street, Suzhou Industrial Park Suzhou 215123 China
| | - Carlos Sanrame
- Crystal Pharmatech; Suite 500-B, 3000 Eastpark Blvd Cranbury NJ 08512 USA
| |
Collapse
|
35
|
Rodrigues M, Baptista B, Lopes JA, Sarraguça MC. Pharmaceutical cocrystallization techniques. Advances and challenges. Int J Pharm 2018; 547:404-420. [PMID: 29890258 DOI: 10.1016/j.ijpharm.2018.06.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
Cocrystals are homogenous (single-phase) crystalline structures composed by two or more components in a definite stoichiometric ratio bonded together by noncovalent bonds. Pharmaceutical industry has been showing interest in cocrystals due to their ability to improve active pharmaceutical ingredients (API's) properties, such as solubility, dissolution, bioavailability, stability and processability. The necessity for high-throughput screening methods and methods capable of producing cocrystals in an industrial scale still hinders the use of cocrystals by the pharmaceutical industry. The aim of this review is to present an extensive overview of the cocrystallization methods, focusing in the specificities of each technique, its advantages and disadvantages. The review is divided into solvent-based and solvent-free methods. The most appropriate methods to the different stages of cocrystals manufacture, from the screening phase to industrial production are identified. The use of continuous and scalable methods in cocrystal production as well as the implementation of quality-by-design and process analytical technology concepts are also addressed.
Collapse
Affiliation(s)
- Marisa Rodrigues
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Bárbara Baptista
- Research Institute for Medicines (iMed.Lisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Almeida Lopes
- Research Institute for Medicines (iMed.Lisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mafalda Cruz Sarraguça
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
36
|
Polymorphism in the co-crystallization of the anticonvulsant drug carbamazepine and saccharin using supercritical CO2 as an anti-solvent. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Serrano DR, Walsh D, O'Connell P, Mugheirbi NA, Worku ZA, Bolas-Fernandez F, Galiana C, Dea-Ayuela MA, Healy AM. Optimising the in vitro and in vivo performance of oral cocrystal formulations via spray coating. Eur J Pharm Biopharm 2018; 124:13-27. [DOI: 10.1016/j.ejpb.2017.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 11/28/2022]
|
38
|
Li X, Qi M, Yu Q, Ma X. Accelerated Cocrystallization of Cytosine and Succinic Acid Through Compaction+Grinding. CRYSTAL RESEARCH AND TECHNOLOGY 2018. [DOI: 10.1002/crat.201700118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaorui Li
- School of Chemical Engineering Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 People's Republic of China
| | - Min Qi
- School of Chemical Engineering Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 People's Republic of China
| | - Qiushuo Yu
- School of Chemical Engineering Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 People's Republic of China
- Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy China
- Shaanxi Research Center of Engineering Technology for Clean Coal Conversion China
| | - Xiaoxun Ma
- School of Chemical Engineering Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 People's Republic of China
- Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy China
- Shaanxi Research Center of Engineering Technology for Clean Coal Conversion China
| |
Collapse
|
39
|
Ross SA, Lamprou DA, Douroumis D. Engineering and manufacturing of pharmaceutical co-crystals: a review of solvent-free manufacturing technologies. Chem Commun (Camb) 2018; 52:8772-86. [PMID: 27302311 DOI: 10.1039/c6cc01289b] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Design and synthesis of pharmaceutical cocrystals have received great interest in recent years. Cocrystallization of drug substances offers a tremendous opportunity for the development of new drug products with superior physical and pharmacological properties such as solubility, stability, hydroscopicity, dissolution rates and bioavailability. It is now possible to engineer and develop cocrystals via 'green chemistry' and environmentally friendly approaches such as solid-state synthesis in the absence of organic solvents. In addition, significant efforts have been directed towards computational screening, cocrystal manufacturing in a continuous manner and real-time monitoring for quality purposes by using various analytical tools. Pharmaceutical cocrystals are not fully exploited yet and there is a lot of ground to cover before they can be successfully utilized as medical products.
Collapse
Affiliation(s)
- S A Ross
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK.
| | - D A Lamprou
- Strathclyde Institute of Pharmacy and Biomedical Science (SIPBS)s, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK. and EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1 RD, UK
| | - D Douroumis
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
40
|
Tan D, Loots L, Friščić T. Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs). Chem Commun (Camb) 2018; 52:7760-81. [PMID: 27185190 DOI: 10.1039/c6cc02015a] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This overview highlights the emergent area of mechanochemical reactions for making active pharmaceutical ingredients (APIs), and covers the latest advances in the recently established area of mechanochemical screening and synthesis of pharmaceutical solid forms, specifically polymorphs, cocrystals, salts and salt cocrystals. We also provide an overview of the most recent developments in pharmaceutical uses of mechanochemistry, including real-time reaction monitoring, techniques for polymorph control and approaches for continuous manufacture using twin screw extrusion, and more. Most importantly, we show how the overlap of previously unrelated areas of mechanochemical screening for API solid forms, organic synthesis by milling, and mechanochemical screening for molecular recognition, enables the emergence of a new research discipline in which different aspects of pharmaceutical and medicinal chemistry are addressed through mechanochemistry rather than through conventional solution-based routes. The emergence of such medicinal mechanochemistry is likely to have a strong impact on future pharmaceutical and medicinal chemistry, as it offers not only access to materials and reactivity that are sometimes difficult or even impossible to access from solution, but can also provide a general answer to the demands of the pharmaceutical industry for cleaner, safer and efficient synthetic solutions.
Collapse
Affiliation(s)
- Davin Tan
- Department of Chemistry, McGill University, 801 Sherbrooke St. W, H3A 0B8 Montreal, Canada.
| | - Leigh Loots
- Department of Chemistry, McGill University, 801 Sherbrooke St. W, H3A 0B8 Montreal, Canada.
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. W, H3A 0B8 Montreal, Canada.
| |
Collapse
|
41
|
Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics 2018; 10:pharmaceutics10010018. [PMID: 29370068 PMCID: PMC5874831 DOI: 10.3390/pharmaceutics10010018] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
Cocrystals can be used as an alternative approach based on crystal engineering to enhance specific physicochemical and biopharmaceutical properties of active pharmaceutical ingredients (APIs) when the approaches to salt or polymorph formation do not meet the expected targets. In this article, an overview of pharmaceutical cocrystals will be presented, with an emphasis on the intermolecular interactions in cocrystals and the methods for their preparation. Furthermore, cocrystals of direct pharmaceutical interest, along with their in vitro properties and available in vivo data and characterization techniques are discussed, highlighting the potential of cocrystals as an attractive route for drug development.
Collapse
|
42
|
Emami S, Siahi-Shadbad M, Barzegar-Jalali M, Adibkia K. Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals. Drug Dev Ind Pharm 2018; 44:1034-1047. [PMID: 29347850 DOI: 10.1080/03639045.2018.1430821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES This study employed electrospray deposition (ESD) for simultaneous synthesis and particle engineering of cocrystals. SIGNIFICANCE Exploring new methods for the efficient production of cocrystals with desired particle properties is an essential demand. METHODS The possibility of cocrystal formation by ESD was examined for indomethacin-saccharin, indomethacin-nicotinamide, naproxen-nicotinamide, and naproxen-iso-nicotinamide cocrystals. Solutions of the drug and coformer at stoichiometric ratios were sprayed to a high electric field which caused rapid evaporation of the solvent and the formation of fine particles. The phase purity, size, and morphology of products were compared with reference cocrystals. Experiments were performed to evaluate the effects of stoichiometric ratio, concentration and solvent type on the cocrystal formation. Physical stability and dissolution properties of the electrosprayed cocrystals were also compared with reference cocrystals. RESULTS ESD was found to be an efficient and rapid method to produce cocrystals for all studied systems other than indomethacin-nicotinamide. Pure cocrystals only formed at a specific drug:coformer ratio. The solvent type has a weak effect on the cocrystal formation and morphology. Electrosprayed cocrystals exhibited nano to micrometer sizes with distinct morphologies with comparable physical stability with reference cocrystals. Nanococrystals of indomethacin-saccharin with a mean size of 219 nm displayed a threefold higher dissolution rate than solvent evaporated cocrystal. CONCLUSION ESD successfully was utilized to produce pure cocrystals of poorly soluble drugs with different morphologies and sizes ranging from nano to micrometer sizes in one step. This study highlighted the usefulness of ESD for simultaneous preparation and particle engineering of pharmaceutical cocrystals.
Collapse
Affiliation(s)
- Shahram Emami
- a Drug Applied Research Center and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammadreza Siahi-Shadbad
- c Department of Pharmaceutical and Food Control, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Barzegar-Jalali
- d Biotechnology Research Center, and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Khosro Adibkia
- e Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy , Tabriz University of medical sciences , Tabriz , Iran
| |
Collapse
|
43
|
Abd Rahim S, Amanina Mohamad Adaris N. Effect of crystallization method on the formation of carbamazepine-saccharin co-crystal. MATERIALS TODAY: PROCEEDINGS 2018; 5:22074-22079. [DOI: 10.1016/j.matpr.2018.07.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
44
|
Otsuka Y, Ito A, Takeuchi M, Tanaka H. Dry Mechanochemical Synthesis of Caffeine/Oxalic Acid Cocrystals and Their Evaluation by Powder X-Ray Diffraction and Chemometrics. J Pharm Sci 2017; 106:3458-3464. [DOI: 10.1016/j.xphs.2017.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/29/2017] [Accepted: 07/18/2017] [Indexed: 11/17/2022]
|
45
|
Affiliation(s)
- Davin Tan
- Department of Chemistry; McGill University; 801 Sherbrooke St.W. H3A0B8 Montreal Canada
| | - Tomislav Friščić
- Department of Chemistry; McGill University; 801 Sherbrooke St.W. H3A0B8 Montreal Canada
| |
Collapse
|
46
|
Newman A, Reutzel-Edens SM, Zografi G. Coamorphous Active Pharmaceutical Ingredient-Small Molecule Mixtures: Considerations in the Choice of Coformers for Enhancing Dissolution and Oral Bioavailability. J Pharm Sci 2017; 107:5-17. [PMID: 28989014 DOI: 10.1016/j.xphs.2017.09.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
In the recent years, coamorphous systems, containing an active pharmaceutical ingredient (API) and a small molecule coformer have appeared as alternatives to the use of either amorphous solid dispersions containing polymer or cocrystals of API and small molecule coformers, to improve the dissolution and oral bioavailability of poorly soluble crystalline API. This Commentary article considers the relative properties of amorphous solid dispersions and coamorphous systems in terms of methods of preparation; miscibility; glass transition temperature; physical stability; hygroscopicity; and aqueous dissolution. It also considers important questions concerning the fundamental criteria to be used for the proper selection of a small molecule coformer regarding its ability to form either coamorphous or cocrystal systems. Finally, we consider various aspects of product development that are specifically associated with the formulation of commercial coamorphous systems as solid oral dosage forms. These include coformer selection; screening; methods of preparation; preformulation; physical stability; bioavailability; and final formulation. Through such an analysis of coamorphous API-small molecule coformer systems, against the more widely studied API-polymer dispersions and cocrystals, it is believed that the strengths and weaknesses of coamorphous systems can be better understood, leading to more efficient formulation and manufacture of such systems for enhancing oral bioavailability.
Collapse
Affiliation(s)
- Ann Newman
- Seventh Street Development Group LLC, Kure Beach, North Carolina 28449.
| | - Susan M Reutzel-Edens
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - George Zografi
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
47
|
Kasten G, Nouri K, Grohganz H, Rades T, Löbmann K. Performance comparison between crystalline and co-amorphous salts of indomethacin-lysine. Int J Pharm 2017; 533:138-144. [PMID: 28947246 DOI: 10.1016/j.ijpharm.2017.09.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 11/30/2022]
Abstract
The introduction of a highly water soluble amino acid as co-amorphous co-former has previously been shown to significantly improve the dissolution rate of poorly water soluble drugs. In this work, dry ball milling (DBM) and liquid assisted grinding (LAG) were used to prepare different physical forms of salts of indomethacin (IND) with the amino acid lysine (LYS), allowing the direct comparison of their solid-state properties to their in vitro performance. X-ray powder diffraction and Fourier-transformed infrared spectroscopy showed that DBM experiments led to the formation of a fully co-amorphous salt, while LAG resulted in a crystalline salt. Differential scanning calorimetry showed that the samples prepared by DBM had a single glass transition temperature (Tg) of approx. 100°C for the co-amorphous salt, while a new melting point (223°C) was obtained for the crystalline salt prepared by LAG. Intrinsic dissolution and powder dissolution studies demonstrated an increased dissolution rate of the drug in the co-amorphous salt compared to pure amorphous IND and also the crystalline drug-LYS salt. Furthermore, the co-amorphous IND-LYS salt presented long term physical stability in dry conditions at 25°C and 40°C. Overall, it has been shown that the co-amorphous form of a salt has a superior performance in comparison to a crystalline salt.
Collapse
Affiliation(s)
- Georgia Kasten
- Universitetsparken 2, Department of Pharmacy, University of Copenhagen, Denmark
| | - Khatera Nouri
- Universitetsparken 2, Department of Pharmacy, University of Copenhagen, Denmark
| | - Holger Grohganz
- Universitetsparken 2, Department of Pharmacy, University of Copenhagen, Denmark
| | - Thomas Rades
- Universitetsparken 2, Department of Pharmacy, University of Copenhagen, Denmark
| | - Korbinian Löbmann
- Universitetsparken 2, Department of Pharmacy, University of Copenhagen, Denmark.
| |
Collapse
|
48
|
Lukin S, Stolar T, Tireli M, Blanco MV, Babić D, Friščić T, Užarević K, Halasz I. Tandem In Situ Monitoring for Quantitative Assessment of Mechanochemical Reactions Involving Structurally Unknown Phases. Chemistry 2017. [PMID: 28639258 DOI: 10.1002/chem.201702489] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report herein quantitative in situ monitoring by simultaneous PXRD and Raman spectroscopy of the mechanochemical reaction between benzoic acid and nicotinamide, affording a rich polymorphic system with four new cocrystal polymorphs, multiple phase transformations, and a variety of reaction pathways. After observing polymorphs by in situ monitoring, we were able to isolate and characterize three of the four polymorphs, most of which are not accessible from solution. Relative stabilities among the isolated polymorphs at ambient conditions were established by slurry experiments. Using two complementary methods for in situ monitoring enabled quantitative assessment and kinetic analysis of each studied mechanochemical reaction, even when involving unknown crystal structures, and short-lived intermediates. In situ Raman monitoring was introduced here also as a standalone laboratory technique for quantitative assessment of mechanochemical reactions and understanding of mechanochemical reactivity. Our results provide an important step toward a complete and high-throughput quantitative approach to mechanochemical reaction kinetics and mechanisms, necessary for the development of the mechanistic framework of milling reactions.
Collapse
Affiliation(s)
- Stipe Lukin
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Tomislav Stolar
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Martina Tireli
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | | | - Darko Babić
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Tomislav Friščić
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.,Department of Chemistry, McGill University, Montreal, Canada
| | | | - Ivan Halasz
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| |
Collapse
|
49
|
Hasa D, Jones W. Screening for new pharmaceutical solid forms using mechanochemistry: A practical guide. Adv Drug Deliv Rev 2017; 117:147-161. [PMID: 28478084 DOI: 10.1016/j.addr.2017.05.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/21/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022]
Abstract
Within the pharmaceutical industry, and elsewhere, the screening for new solid forms is a mandatory exercise for both existing and new chemical entities. This contribution focuses on mechanochemistry as a versatile approach for discovering new and alternative solid forms. Whilst a series of recently published extensive reviews exist which focus on mechanistic aspects and potential areas of development, in this review we focus on particular practical aspects of mechanochemistry in order to allow full optimisation of the approach in searches for new solid forms including polymorphs, salts and cocrystals as well as their solvated/hydrated analogues. As a consequence of the apparent experimental simplicity of the method (compared to more traditional protocols e.g. solvent-based methods), the high efficiency and range of conditions available in a mechanochemical screen, mechanochemistry should not be considered simply as an alternative method when other screening methods are not successful, but rather as a key strategy in any fully effective solid form screen providing reduced effort and time as well as the potential of requiring reduced amounts of material.
Collapse
Affiliation(s)
- Dritan Hasa
- Leicester School of Pharmacy, De Montfort University, The Gateway, LE1 9BH Leicester, United Kingdom
| | - William Jones
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom.
| |
Collapse
|
50
|
Healy AM, Worku ZA, Kumar D, Madi AM. Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals. Adv Drug Deliv Rev 2017; 117:25-46. [PMID: 28342786 DOI: 10.1016/j.addr.2017.03.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/27/2017] [Accepted: 03/21/2017] [Indexed: 11/17/2022]
Abstract
Active pharmaceutical ingredients (APIs) may exist in various solid forms, which can lead to differences in the intermolecular interactions, affecting the internal energy and enthalpy, and the degree of disorder, affecting the entropy. Differences in solid forms often lead to differences in thermodynamic parameters and physicochemical properties for example solubility, dissolution rate, stability and mechanical properties of APIs and excipients. Hence, solid forms of APIs play a vital role in drug discovery and development in the context of optimization of bioavailability, filing intellectual property rights and developing suitable manufacturing methods. In this review, the fundamental characteristics and trends observed for pharmaceutical hydrates, solvates and amorphous forms are presented, with special emphasis, due to their relative abundance, on pharmaceutical hydrates with single and two-component (i.e. cocrystal) host molecules.
Collapse
Affiliation(s)
- Anne Marie Healy
- Synthesis and Solid State Pharmaceutical Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Zelalem Ayenew Worku
- Synthesis and Solid State Pharmaceutical Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Dinesh Kumar
- Synthesis and Solid State Pharmaceutical Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Atif M Madi
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|