1
|
Gomez-Flores A, Hwang G, Ilyas S, Kim H. A CFD study of the transport and fate of airborne droplets in a ventilated office: The role of droplet-droplet interactions. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 16:31. [PMID: 34221534 PMCID: PMC8239320 DOI: 10.1007/s11783-021-1465-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/15/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Previous studies reported that specially designed ventilation systems provide good air quality and safe environment by removing airborne droplets that contain viruses expelled by infected people. These water droplets can be stable in the environment and remain suspended in air for prolonged periods. Encounters between droplets may occur and droplet interactions should be considered. However, the previous studies focused on other physical phenomena (air flow, drag force, evaporation) for droplet transport and neglected droplet interactions. In this work, we used computational fluid dynamics (CFD) to simulate the transport and fate of airborne droplets expelled by an asymptomatic person and considered droplet interactions. Droplet drag with turbulence for prediction of transport and fate of droplets indicated that the turbulence increased the transport of 1 µm droplets, whereas it decreased the transport of 50 µm droplets. In contrast to only considering drag and turbulence, consideration of droplet interactions tended to increase both the transport and fate. Although the length scale of the office is much larger than the droplet sizes, the droplet interactions, which occurred at the initial stages of release when droplet separation distances were shorter, had a significant effect in droplet fate by considerably manipulating the final locations on surfaces where droplets adhered. Therefore, it is proposed that when an exact prediction of transport and fate is required, especially for high droplet concentrations, the effects of droplet interactions should not be ignored. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s11783-021-1465-8 and is accessible for authorized users.
Collapse
Affiliation(s)
- Allan Gomez-Flores
- Department of Environment and Energy, Jeonbuk National University, Jeonju Jeonbuk, 54896 Republic of Korea
| | - Gukhwa Hwang
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, Jeonju Jeonbuk, 54896 Republic of Korea
| | - Sadia Ilyas
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, Jeonju Jeonbuk, 54896 Republic of Korea
| | - Hyunjung Kim
- Department of Environment and Energy, Jeonbuk National University, Jeonju Jeonbuk, 54896 Republic of Korea
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, Jeonju Jeonbuk, 54896 Republic of Korea
| |
Collapse
|
2
|
Bakkari MA, Valiveti CK, Kaushik RS, Tummala H. Toll-like Receptor-4 (TLR4) Agonist-Based Intranasal Nanovaccine Delivery System for Inducing Systemic and Mucosal Immunity. Mol Pharm 2021; 18:2233-2241. [PMID: 34010002 DOI: 10.1021/acs.molpharmaceut.0c01256] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Eliciting a robust immune response at mucosal sites is critical in preventing the entry of mucosal pathogens such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This task is challenging to achieve without the inclusion of a strong and safe mucosal adjuvant. Previously, inulin acetate (InAc), a plant-based polymer, is shown to activate toll-like receptor-4 (TLR4) and elicit a robust systemic immune response as a vaccine adjuvant. This study investigates the potential of nanoparticles prepared with InAc (InAc-NPs) as an intranasal vaccine delivery system to generate both mucosal and systemic immune responses. InAc-NPs (∼250 nm in diameter) activated wild-type (WT) macrophages but failed to activate macrophages from TLR4 knockout mice or WT macrophages when pretreated with a TLR4 antagonist (lipopolysaccharide-RS (LPS-RS)), which indicates the selective nature of a InAc-based nanodelivery system as a TLR4 agonist. Intranasal immunization using antigen-loaded InAc-NPs generated ∼65-fold and 19-fold higher serum IgG1 and IgG2a titers against the antigen, respectively, as compared to PLGA-NPs as a delivery system. InAc-NPs have also stimulated the secretion of sIgA at various mucosal sites, including nasal-associated lymphoid tissues (NALTs), lungs, and intestine, and produced a strong memory response indicative of both humoral and cellular immune activation. Overall, by stimulating both systemic and mucosal immunity, InAc-NPs laid a basis for a potential intranasal delivery system for mucosal vaccination.
Collapse
Affiliation(s)
- Mohammed Ali Bakkari
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, South Dakota 57007, United States.,College of Pharmacy, Jazan University, Jazan 45142, Kingdom of Saudi Arabia
| | - Chaitanya K Valiveti
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota57007, United States
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, South Dakota 57007, United States
| |
Collapse
|
3
|
Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi-Kolli M, Badehnoosh B, Ghandali M, Hamblin MR, Mirzaei H. Chitosan-Based Nanoparticles Against Viral Infections. Front Cell Infect Microbiol 2021; 11:643953. [PMID: 33816349 PMCID: PMC8011499 DOI: 10.3389/fcimb.2021.643953] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 01/23/2023] Open
Abstract
Viral infections, in addition to damaging host cells, can compromise the host immune system, leading to frequent relapse or long-term persistence. Viruses have the capacity to destroy the host cell while liberating their own RNA or DNA in order to replicate within additional host cells. The viral life cycle makes it challenging to develop anti-viral drugs. Nanotechnology-based approaches have been suggested to deal effectively with viral diseases, and overcome some limitations of anti-viral drugs. Nanotechnology has enabled scientists to overcome the challenges of solubility and toxicity of anti-viral drugs, and can enhance their selectivity towards viruses and virally infected cells, while preserving healthy host cells. Chitosan is a naturally occurring polymer that has been used to construct nanoparticles (NPs), which are biocompatible, biodegradable, less toxic, easy to prepare, and can function as effective drug delivery systems (DDSs). Furthermore, chitosan is Generally Recognized as Safe (GRAS) by the US Food and Drug Administration (U.S. FDA). Chitosan NPs have been used in drug delivery by the oral, ocular, pulmonary, nasal, mucosal, buccal, or vaginal routes. They have also been studied for gene delivery, vaccine delivery, and advanced cancer therapy. Multiple lines of evidence suggest that chitosan NPs could be used as new therapeutic tools against viral infections. In this review we summarize reports concerning the therapeutic potential of chitosan NPs against various viral infections.
Collapse
Affiliation(s)
- Homa Boroumand
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Badie
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Andreica BI, Cheng X, Marin L. Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Rungrojcharoenkit K, Sunintaboon P, Ellison D, Macareo L, Midoeng P, Chaisuwirat P, Fernandez S, Ubol S. Development of an adjuvanted nanoparticle vaccine against influenza virus, an in vitro study. PLoS One 2020; 15:e0237218. [PMID: 32760143 PMCID: PMC7410248 DOI: 10.1371/journal.pone.0237218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/22/2020] [Indexed: 12/02/2022] Open
Abstract
Influenza is an infectious respiratory illness caused by influenza viruses. Despite yearly updates, the efficacy of influenza vaccines is significantly curtailed by the virus antigenic drift and antigenic shift. These constant changes to the influenza virus make-up also challenge the development of a universal flu vaccine, which requires conserved antigenic regions shared by influenza viruses of different subtypes. We propose that it is possible to bypass these challenges by the development of an influenza vaccine based on conserved proteins delivered in an adjuvanted nanoparticle system. In this study, we generated influenza nanoparticle constructs using trimethyl chitosan nanoparticles (TMC nPs) as the carrier of recombinant influenza hemagglutinin subunit 2 (HA2) and nucleoprotein (NP). The purified HA2 and NP recombinant proteins were encapsulated into TMC nPs to form HA2-TMC nPs and NP-TMC nPs, respectively. Primary human intranasal epithelium cells (HNEpCs) were used as an in vitro model to measure immunity responses. HA2-TMC nPs, NP-TMC nPs, and HA2-NP-TMC nPs (influenza nanoparticle constructs) showed no toxicity in HNEpCs. The loading efficiency of HA2 and NP into the TMC nPs was 97.9% and 98.5%, respectively. HA2-TMC nPs and NP-TMC nPs more efficiently delivered HA2 and NP proteins to HNEpCs than soluble HA2 and NP proteins alone. The induction of various cytokines and chemokines was more evident in influenza nanoparticle construct-treated HNEpCs than in soluble protein-treated HNEpCs. In addition, soluble factors secreted by influenza nanoparticle construct-treated HNEpCs significantly induced MoDCs maturation markers (CD80, CD83, CD86 and HLA-DR), as compared to soluble factors secreted by protein-treated HNEpCs. HNEpCs treated with the influenza nanoparticle constructs significantly reduced influenza virus replication in an in vitro challenge assay. The results indicate that TMC nPs can be used as influenza vaccine adjuvants and carriers capable of delivering HA2 and NP proteins to HNEpCs.
Collapse
Affiliation(s)
- Kamonthip Rungrojcharoenkit
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Damon Ellison
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Louis Macareo
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panuwat Midoeng
- Division of Pathology, Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Preamrudee Chaisuwirat
- Division of Pathology, Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- * E-mail: (SF); (SU)
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail: (SF); (SU)
| |
Collapse
|
6
|
Yang X, Chen X, Lei T, Qin L, Zhou Y, Hu C, Liu Q, Gao H. The construction of in vitro nasal cavity-mimic M-cell model, design of M cell-targeting nanoparticles and evaluation of mucosal vaccination by nasal administration. Acta Pharm Sin B 2020; 10:1094-1105. [PMID: 32642415 PMCID: PMC7332807 DOI: 10.1016/j.apsb.2020.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 12/18/2022] Open
Abstract
In order to better evaluate the transport effect of nanoparticles through the nasal mucosa, an in vitro nasal cavity-mimic model was designed based on M cells. The differentiation of M cells was induced by co-culture of Calu-3 and Raji cells in invert model. The ZO-1 protein staining and the transport of fluorescein sodium and dexamethasone showed that the inverted co-culture model formed a dense monolayer and possessed the transport ability. The differentiation of M cells was observed by up-regulated expression of Sialyl Lewis A antigen (SLAA) and integrin β1, and down-regulated activity of alkaline phosphatase. After targeting M cells with iRGD peptide (cRGDKGPDC), the transport of nanoparticles increased. In vivo, the co-administration of iRGD could result in the increase of nanoparticles transported to the brain through the nasal cavity after intranasal administration. In the evaluation of immune effect in vivo, the nasal administration of OVA-PLGA/iRGD led to more release of IgG, IFN-γ, IL-2 and secretory IgA (sIgA) compared with OVA@PLGA group. Collectively, the study constructed in vitro M cell model, and proved the enhanced effect of targeting towards M cell with iRGD on improving nasal immunity.
Collapse
Affiliation(s)
- Xiaotong Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China
| | - Xianchun Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Ting Lei
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China
| | - Lin Qin
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China
| | - Chuan Hu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China
| | - Qingfeng Liu
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Tsai MH, Chuang CC, Chen CC, Yen HJ, Cheng KM, Chen XA, Shyu HF, Lee CY, Young JJ, Kau JH. Nanoparticles assembled from fucoidan and trimethylchitosan as anthrax vaccine adjuvant: In vitro and in vivo efficacy in comparison to CpG. Carbohydr Polym 2020; 236:116041. [PMID: 32172855 DOI: 10.1016/j.carbpol.2020.116041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/15/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
Fucoidan/trimethylchitosan nanoparticles (FUC-TMC-NPs) have the potential to improve the immunostimulating efficiency of anthrax vaccine adsorbed (AVA). FUC-TMC-NPs with positive (+) or negative (-) surface charges were prepared via polyelectrolyte complexation, both charged NP types permitted high viability and presented no cytotoxicity on L929, A549 and JAWS II dendritic cells. Flow cytometry measurements indicated lower (+)-FUC-TMC-NPs internalization levels than (-)-FUC-TMC-NPs, yet produced high levels of pro-inflammatory cytokines IFN-γ, IL12p40, and IL-4. Moreover, fluorescence microscope images proved that both charged NP could deliver drugs into the nucleus. In vivo studies on A/J mice showed that (+)-FUC-TMC-NPs carrying AVA triggered an efficient response with a higher IgG anti-PA antibody titer than AVA with CpG oligodeoxynucleotides, and yielded 100 % protection when challenged with the anthracis spores. Furthermore, PA-specific IgG1 and IgG2a analysis confirmed that (+)-FUC-TMC-NPs strongly stimulated humoral immunity. In conclusion, (+)-FUC-TMC-NP is promising anthrax vaccine adjuvant as an alternative to CpG.
Collapse
Affiliation(s)
- Meng-Hung Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 11490, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Chuan-Chang Chuang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 11490, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Hui-Ju Yen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Kuang-Ming Cheng
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Xin-An Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Huey-Fen Shyu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Chia-Ying Lee
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Jenn-Jong Young
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC.
| | - Jyh-Hwa Kau
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 11490, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC.
| |
Collapse
|
8
|
Malik A, Gupta M, Gupta V, Gogoi H, Bhatnagar R. Novel application of trimethyl chitosan as an adjuvant in vaccine delivery. Int J Nanomedicine 2018; 13:7959-7970. [PMID: 30538470 PMCID: PMC6260144 DOI: 10.2147/ijn.s165876] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The application of natural carbohydrate polysaccharides for antigen delivery and its adjuvanation potential has garnered interest in the scientific community in the recent years. These biomaterials are considered favorable candidates for adjuvant development due to their desirable properties like enormous bioavailability, non-toxicity, biodegradability, stability, affordability, and immunostimulating ability. Chitosan is the one such extensively studied natural polymer which has been appreciated for its excellent applications in pharmaceuticals. Trimethyl chitosan (TMC), a derivative of chitosan, possesses these properties. In addition it has the properties of high aqueous solubility, high charge density, mucoadhesive, permeation enhancing (ability to cross tight junction), and stability over a range of ionic conditions which makes the spectrum of its applicability much broader. It has also been seen to perform analogously to alum, complete Freund’s adjuvant, incomplete Freund’s adjuvant, and cyclic guanosine monophosphate adjuvanation, which justifies its role as a potent adjuvant. Although many review articles detailing the applications of chitosan in vaccine delivery are available, a comprehensive review of the applications of TMC as an adjuvant is not available to date. This article provides a comprehensive overview of structural and chemical properties of TMC which affect its adjuvant characteristics; the efficacy of various delivery routes for TMC antigen combination; and the recent advances in the elucidation of its mechanism of action.
Collapse
Affiliation(s)
- Anshu Malik
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| | - Manish Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| | - Vatika Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| | - Himanshu Gogoi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| |
Collapse
|
9
|
Senra TD, Campana-Filho SP, Desbrières J. Surfactant-polysaccharide complexes based on quaternized chitosan. Characterization and application to emulsion stability. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Mosafer J, Sabbaghi AH, Badiee A, Dehghan S, Tafaghodi M. Preparation, characterization and in vivo evaluation of alginate-coated chitosan and trimethylchitosan nanoparticles loaded with PR8 influenza virus for nasal immunization. Asian J Pharm Sci 2018; 14:216-221. [PMID: 32104453 PMCID: PMC7032123 DOI: 10.1016/j.ajps.2018.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/14/2018] [Accepted: 04/06/2018] [Indexed: 11/18/2022] Open
Abstract
For efficient mucosal vaccine delivery, nanoparticulate antigens are better taken by microfold cells in the nasal associated lymphoid tissue and also dendritic cells. Nanoparticles based on polymers such as chitosan (CHT) and its water soluble derivative, trimethylchitosan (TMC), could be successfully used as carrier/adjuvant for this purpose. Sodium alginate, a negatively charged biopolymer, could modify the immunostimulatory properties of CHT and TMC NPs and increase their stability. Sodium alginate (ALG)-coated chitosan (CHT) and trimethylchitosan (TMC) nanoparticles (NPs) loaded with inactivated PR8 influenza virus were successfully prepared by direct coating of the virus with CHT or TMC polymers to evaluate their immunoadjuvant potential after nasal immunization. After nasal immunizations in BALB/c mice, PR8-CHT formulation elicited higher IgG2a and IgG1 antibody titers compared with PR8-TMC. ALG coating of this formulation (PR8-CHT-ALG) significantly decreased the antibody titers and a less immune response was induced than PR8-TMC-ALG formulation. PR8-TMC-ALG formulation showed significantly higher IgG2a/IgG1 ratio, as criteria for Th1-type immune response, compared with PR8-CHT-ALG and PR8 virus alone. Altogether, the PR8-TMC-ALG formulation could be considered as an efficient intranasal antigen delivery system for nasal vaccines.
Collapse
Affiliation(s)
- Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Badiee
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Solmaz Dehghan
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Corresponding author. Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box 9196773117, Mashhad, Iran. Tel.: +98 51 31801337.
| |
Collapse
|
11
|
Malik A, Gupta M, Mani R, Gogoi H, Bhatnagar R. Trimethyl Chitosan Nanoparticles Encapsulated Protective Antigen Protects the Mice Against Anthrax. Front Immunol 2018; 9:562. [PMID: 29616046 PMCID: PMC5870345 DOI: 10.3389/fimmu.2018.00562] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
Anthrax is an era old deadly disease against which there are only two currently available licensed vaccines named anthrax vaccine adsorbed and precipitated (AVP). Though they can provide a protective immunity, their multiple side-effects owing to their ill-defined composition and presence of toxic proteins (LF and EF) of Bacillus anthracis, the causative organism of anthrax, in the vaccine formulation makes their widespread use objectionable. Hence, an anthrax vaccine that contains well-defined and controlled components would be highly desirable. In this context, we have evaluated the potential of various vaccine formulations comprising of protective antigen (PA) encapsulated trimethyl-chitosan nanoparticles (TMC-PA) in conjunction with either CpG-C ODN 2395 (CpG) or Poly I:C. Each formulation was administered via three different routes, viz., subcutaneous (SC), intramuscular (IM), and intraperitoneal in female BALB/c mice. Irrespective of the route of immunization, CpG or Poly I:C adjuvanted TMC-PA nanoparticles induced a significantly higher humoral response (total serum IgG and its isotypes viz., IgG1, IgG2a, and IgG2b), compared to their CpG or Poly I:C PA counterparts. This clearly demonstrates the synergistic behavior of CpG and Poly I:C with TMC nanoparticles. The adjuvant potential of TMC nanoparticles could be observed in all the three routes as the TMC-PA nanoparticles by themselves induced IgG titers (1-1.5 × 105) significantly higher than both CpG PA and Poly I:C PA groups (2-8 × 104). The effect of formulations on T-helper (Th) cell development was assessed by quantifying the Th1-dependant (TNF-α, IFN-γ, and IL-2), Th2-dependant (IL-4, IL-6, and IL-10), and Th17-type (IL-17A) cytokines. Adjuvanation with CpG and Poly I:C, the TMC-PA nanoparticles triggered a Th1 skewed immune response, as suggested by an increase in the levels of total IgG2a along with IFN-γ cytokine production. Interestingly, the TMC-PA group showed a Th2-biased immune response. Upon challenge with the B. anthracis Ames strain, CpG and Poly I:C adjuvanted TMC-PA nanoparticles immunized via the SC and IM routes showed the highest protective efficacy of ~83%. Altogether, the results suggest that CpG or Poly I:C adjuvanted, PA-loaded TMC nanoparticles could be used as an effective, non-toxic, second generation subunit-vaccine candidate against anthrax.
Collapse
Affiliation(s)
- Anshu Malik
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Manish Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rajesh Mani
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Himanshu Gogoi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
12
|
Biodegradable Polymeric Nanocarrier-Based Immunotherapy in Hepatitis Vaccination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:303-320. [DOI: 10.1007/978-981-13-0950-2_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Nantachit N, Sunintaboon P, Ubol S. Responses of primary human nasal epithelial cells to EDIII-DENV stimulation: the first step to intranasal dengue vaccination. Virol J 2016; 13:142. [PMID: 27538960 PMCID: PMC4991056 DOI: 10.1186/s12985-016-0598-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022] Open
Abstract
Background About half of the world’s population are living in the endemic area of dengue viruses implying that a rapid-mass vaccination may be required. In addition, a major target of dengue vaccine are children, thus, a needle-free administration is more attractive. These problems may be overcome by the alternative route of vaccination such as topical, oral and intranasal vaccination. Here, we investigated the possibility to deliver a dengue immunogen intranasally, a painless route of vaccination. The tested immunogen was the domain III of dengue serotype-3 E protein (EDIII-D3) loaded into trimethyl chitosan nanoparticles (EDIII-D3 TMC NPs). The primary human nasal epithelial cells, HNEpCs, were used as an in vitro model for nasal responses. Results At tested concentrations, EDIII-D3 TMC NPs not only exerted no detectable toxicity toward HNEpC cultures but also efficiently delivered EDIII-D3 immunogens into HNEpCs. Moreover, HNEpCs quickly and strongly produced proinflammatory cytokines (IL-1β, IL-6, TNF-α), type-I IFN, the growth factors (GM-CSF, IL-7), the chemokines (MCP-1, MIP-1β, IL-8), Th1-related cytokines (IL-2, IL-12p70, IL-17, IFN-γ) and Th2-related cytokine (IL-4) in response to EDIII-D3 TMC NPs treatment. Conclusions A potential mucosal delivery system for dengue immunogens was revealed and found to stimulate a strong local innate antiviral response which possibly leading to a systemic adaptive immunity.
Collapse
Affiliation(s)
- Nattika Nantachit
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
14
|
Li H, Lu Y, Xiang J, Jiang H, Zhong Y, Lu Y. Enhancement of immunogenic response and protection in model rats by CSTM nanoparticles anticaries DNA vaccine. Nanomedicine (Lond) 2016; 11:1407-16. [PMID: 27221078 DOI: 10.2217/nnm-2016-0012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To construct anticaries DNA vaccine and evaluate its ability to elicit mucosal and systemic immune responses in rats. MATERIALS & METHODS wapA fragment was cloned into pVAX1 plasmid to generate pVAX1-wapA. The pVAX1-wapA/trimethyl chitosan nanoparticles were prepared by complex coacervation method. RESULTS Significantly higher specific IgG antibody titers were observed in rats immunized with nanoparticles compared with rats immunized with naked pVAX1-wapA. Anti-WapA IgA and IgG antibody levels after intranasal immunization were significantly higher than those following intramuscular delivery of nanoparticles or naked pVAX1-wapA. Furthermore, fewer enamel, slight dentin and dentin moderate lesions were observed in rats immunized with nanoparticles. CONCLUSION The results implicate WapA as an excellent candidate for anticaries vaccine development and nanoparticles as an effective delivery system.
Collapse
Affiliation(s)
- Hongjiao Li
- Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Yiming Lu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Jingjie Xiang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Hailong Jiang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yanqiang Zhong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Ying Lu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
15
|
Senra TDA, Santos DM, Desbrières J, Campana-Filho SP. Extensive N
-methylation of chitosan: evaluating the effects of the reaction conditions by using response surface methodology. POLYM INT 2015. [DOI: 10.1002/pi.4962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Tonimar DA Senra
- Instituto de Química de São Carlos/Universidade de São Paulo; Av. Trabalhador são-carlense 400 13566-590 São Carlos/SP Brazil
- UPPA; Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR CNRS 5254; Hélioparc Pau Pyrénées, 2 Av. du Président Angot 64053 Pau Cedex 9 France
| | - Danilo M Santos
- Instituto de Química de São Carlos/Universidade de São Paulo; Av. Trabalhador são-carlense 400 13566-590 São Carlos/SP Brazil
| | - Jacques Desbrières
- UPPA; Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR CNRS 5254; Hélioparc Pau Pyrénées, 2 Av. du Président Angot 64053 Pau Cedex 9 France
| | - Sergio P Campana-Filho
- Instituto de Química de São Carlos/Universidade de São Paulo; Av. Trabalhador são-carlense 400 13566-590 São Carlos/SP Brazil
| |
Collapse
|
16
|
H9N2 influenza whole inactivated virus combined with polyethyleneimine strongly enhances mucosal and systemic immunity after intranasal immunization in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:421-9. [PMID: 25673304 DOI: 10.1128/cvi.00778-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Influenza whole inactivated virus (WIV) is more immunogenic and induces protective antibody responses compared with other formulations, like split virus or subunit vaccines, after intranasal mucosal delivery. Polyethyleneimine (PEI), an organic polycation, is widely used as a reagent for gene transfection and DNA vaccine delivery. Although PEI recently has demonstrated potent mucosal adjuvant activity for viral subunit glycoprotein antigens, its immune activity with H9N2 WIV is not well demonstrated. Here, mice were immunized intranasally with H9N2 WIV combined with PEI, and the levels of local respiratory tract and systemic immune responses were measured. Compared to H9N2 WIV alone, antigen-specific IgA levels in the local nasal cavity, trachea, and lung, as well as levels of IgG and its subtypes (IgG1 and IgG2a) in the serum, were strongly enhanced with the combination. Similarly, the activation and proliferation of splenocytes were markedly increased. In addition, PEI is superior as an H9N2 WIV delivery system due to its ability to greatly increase the viral adhesion to mucosal epithelial cells and to enhance the cellular uptake and endosomal escape of antigens in dendritic cells (DCs) and further significantly activate DCs to mature. Taken together, these results provided more insights that PEI has potential as an adjuvant for H9N2 particle antigen intranasal vaccination.
Collapse
|
17
|
Sawaengsak C, Mori Y, Yamanishi K, Mitrevej A, Sinchaipanid N. Chitosan nanoparticle encapsulated hemagglutinin-split influenza virus mucosal vaccine. AAPS PharmSciTech 2014; 15:317-25. [PMID: 24343789 DOI: 10.1208/s12249-013-0058-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022] Open
Abstract
Subunit/split influenza vaccines are less reactogenic compared with the whole virus vaccines. However, their immunogenicity is relatively low and thus required proper adjuvant and/or delivery vehicle for immunogenicity enhancement. Influenza vaccines administered intramuscularly induce minimum, if any, mucosal immunity at the respiratory mucosa which is the prime site of the infection. In this study, chitosan (CS) nanoparticles were prepared by ionic cross-linking of the CS with sodium tripolyphosphate (TPP) at the CS/TPP ratio of 1:0.6 using 2 h mixing time. The CS/TPP nanoparticles were used as delivery vehicle of an intranasal influenza vaccine made of hemagglutinin (HA)-split influenza virus product. Innocuousness, immunogenicity, and protective efficacy of the CS/TPP-HA vaccine were tested in influenza mouse model in comparison with the antigen alone vaccine. The CS/TPP-HA nanoparticles had required characteristics including nano-sizes, positive charges, and high antigen encapsulation efficiency. Mice that received two doses of the CS/TPP-HA vaccine intranasally showed no adverse symptoms indicating the vaccine innocuousness. The animals developed higher systemic and mucosal antibody responses than vaccine made of the HA-split influenza virus alone. The CS/TPP-HA vaccine could induce also a cell-mediated immune response shown as high numbers of IFN-γ-secreting cells in spleens while the HA vaccine alone could not. Besides, the CS nanoparticle encapsulated HA-split vaccine reduced markedly the influenza morbidity and also conferred 100% protective rate to the vaccinated mice against lethal influenza virus challenge. Overall results indicated that the CS nanoparticles invented in this study is an effective and safe delivery vehicle/adjuvant for the influenza vaccine.
Collapse
|
18
|
Zhang W, Wang L, Liu Y, Chen X, Li J, Yang T, An W, Ma X, Pan R, Ma G. Comparison of PLA microparticles and alum as adjuvants for H5N1 influenza split vaccine: adjuvanticity evaluation and preliminary action mode analysis. Pharm Res 2014; 31:1015-31. [PMID: 24170280 DOI: 10.1007/s11095-013-1224-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/03/2013] [Indexed: 01/10/2023]
Abstract
PURPOSE To compare the adjuvanticity of polymeric particles (new-generation adjuvant) and alum (the traditional and FDA-approved adjuvant) for H5N1 influenza split vaccine, and to investigate respective action mode. METHODS Vaccine formulations were prepared by incubating lyophilized poly(lactic acid) (PLA) microparticles or alum within antigen solution. Antigen-specific immune responses in mice were evaluated using ELISA, ELISpot, and flow cytometry assay. Adjuvants' action modes were investigated by determining antigen persistence at injection sites, local inflammation response, antigen transport into draining lymph node, and activation of DCs in secondary lymphoid organs (SLOs). RESULTS Alum promoted antigen-specific humoral immune response. PLA microparticles augmented both humoral immune response and cell-mediated-immunity which might enhance cross-protection of influenza vaccine. With regard to action mode, alum adjuvant functions by improving antigen persistence at injection sites, inducing severe local inflammation, slightly improving antigen transport into draining lymph nodes, and improving the expression of MHC II on DCs in SLOs. PLA microparticles function by slightly improving antigen transport into draining lymph nodes, and promoting the expression of both MHC molecules and co-stimulatory molecules on DCs in SLOs. CONCLUSIONS Considering the adjuvanticity and side effects (local inflammation) of both adjuvants, we conclude that PLA microparticles are promising alternative adjuvant for H5N1 influenza split vaccine.
Collapse
Affiliation(s)
- Weifeng Zhang
- National Key Laboratory of Biochemical Engineering PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering Chinese Academy of Sciences, Bei-Er-Jie No.1, Zhong-Guan-Cun, Haidian District, Beijing, 100190, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kang H, Yan M, Yu Q, Yang Q. Characterization of Nasal Cavity-Associated Lymphoid Tissue in Ducks. Anat Rec (Hoboken) 2014; 297:916-24. [DOI: 10.1002/ar.22888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 12/30/2013] [Accepted: 01/06/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Haihong Kang
- College of Veterinary Medicine; Nanjing Agricultural University; Nanjing People's Republic of China
| | - Mengfei Yan
- College of Veterinary Medicine; Nanjing Agricultural University; Nanjing People's Republic of China
| | - Qinghua Yu
- College of Veterinary Medicine; Nanjing Agricultural University; Nanjing People's Republic of China
| | - Qian Yang
- College of Veterinary Medicine; Nanjing Agricultural University; Nanjing People's Republic of China
| |
Collapse
|
20
|
Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine antigen delivery systems for stimulating cellular immune responses. Hum Vaccin Immunother 2013; 9:2584-90. [PMID: 23978910 DOI: 10.4161/hv.26136] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There is a need for both new and improved vaccination formulations for a range of diseases for which current vaccines are either inadequate or non-existent. Biodegradable polymer-based vaccines fulfill many of the desired properties in achieving effective long-term protection in a manner that is safe, economical, and potentially more practicable on a global scale. Here we discuss some of the work performed with micro/nanoparticles made from either synthetic (poly[lactic-co-glycolic acid] [PLGA] and polyanhydrides) or natural (chitosan) biodegradable polymers. Our attention is focused on, but not limited to, the generation of antitumor immunity where we stress the importance of particle size and co-delivery of antigen and adjuvant.
Collapse
Affiliation(s)
- Vijaya B Joshi
- Department of Pharmaceutical Sciences and Experimental Therapeutics; College of Pharmacy; University of Iowa; Iowa City, IA USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics; College of Pharmacy; University of Iowa; Iowa City, IA USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics; College of Pharmacy; University of Iowa; Iowa City, IA USA
| |
Collapse
|
21
|
Tajdini F, Amini MA, Mokarram AR, Taghizadeh M, Azimi SM. Foot and Mouth Disease virus-loaded fungal chitosan nanoparticles for intranasal administration: impact of formulation on physicochemical and immunological characteristics. Pharm Dev Technol 2013; 19:333-41. [DOI: 10.3109/10837450.2013.784335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Çokçalışkan C, Özyörük F, Gürsoy RN, Alkan M, Günbeyaz M, Arca HÇ, Uzunlu E, Şenel S. Chitosan-based systems for intranasal immunization against foot-and-mouth disease. Pharm Dev Technol 2013; 19:181-8. [DOI: 10.3109/10837450.2013.763263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Tafaghodi M, Saluja V, Kersten GF, Kraan H, Slütter B, Amorij JP, Jiskoot W. Hepatitis B surface antigen nanoparticles coated with chitosan and trimethyl chitosan: Impact of formulation on physicochemical and immunological characteristics. Vaccine 2012; 30:5341-8. [DOI: 10.1016/j.vaccine.2012.06.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 06/09/2012] [Accepted: 06/13/2012] [Indexed: 01/21/2023]
|
24
|
Sezer AD, Cevher E. Topical drug delivery using chitosan nano- and microparticles. Expert Opin Drug Deliv 2012; 9:1129-46. [DOI: 10.1517/17425247.2012.702752] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Geus EDD, Rebel JM, Vervelde L. Induction of respiratory immune responses in the chicken; implications for development of mucosal avian influenza virus vaccines. Vet Q 2012; 32:75-86. [DOI: 10.1080/01652176.2012.711956] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
26
|
Wu Y, Wu S, Hou L, Wei W, Zhou M, Su Z, Wu J, Chen W, Ma G. Novel thermal-sensitive hydrogel enhances both humoral and cell-mediated immune responses by intranasal vaccine delivery. Eur J Pharm Biopharm 2012; 81:486-97. [PMID: 22507968 DOI: 10.1016/j.ejpb.2012.03.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 03/25/2012] [Accepted: 03/31/2012] [Indexed: 11/25/2022]
Abstract
A novel thermal sensitive hydrogel was formulated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) and α, β-glycerophosphate (α, β-GP). A serial of hydrogels containing different amount of GP and HTCC with diverse quarternize degree (QD, 41%, 59%, 79.5%, and 99%) were prepared and characterized by rheological method. The hydrogel was subsequently evaluated for intranasal vaccine delivery with adenovirus based Zaire Ebola virus glycoprotein antigen (Ad-GPZ). Results showed that moderate quarternized HTCC (60% and 79.5%) hydrogel/antigen formulations induced highest IgG, IgG1, and IgG2a antibody titers in serum, as well as mucosal IgA responses in lung wash, which may attributed to the prolonged antigen residence time due to the thermal-sensitivity of this hydrogel. Furthermore, CD8(+) splenocytes for IFN-γ positive cell assay and the release profile of Th1/Th2 type cytokines (IFN-γ, IL-2, IL-10, and IL-4) showed that hydrogel/Ad-GPZ generated an overwhelmingly enhanced Th1 biased cellular immune response. In addition, this hydrogel displayed low toxicity to nasal tissue and epithelial cells even by frequently intranasal dosing of hydrogel. All these results strongly supported this hydrogel as a safe and effective delivery system for nasal immunization.
Collapse
Affiliation(s)
- Youbin Wu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
A step-by-step approach to study the influence of N-acetylation on the adjuvanticity of N,N,N-trimethyl chitosan (TMC) in an intranasal nanoparticulate influenza virus vaccine. Eur J Pharm Sci 2012; 45:467-74. [DOI: 10.1016/j.ejps.2011.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 09/20/2011] [Accepted: 10/04/2011] [Indexed: 11/15/2022]
|
28
|
PLGA, PLGA-TMC and TMC-TPP nanoparticles differentially modulate the outcome of nasal vaccination by inducing tolerance or enhancing humoral immunity. PLoS One 2011; 6:e26684. [PMID: 22073184 PMCID: PMC3206834 DOI: 10.1371/journal.pone.0026684] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/02/2011] [Indexed: 01/04/2023] Open
Abstract
Development of vaccines in autoimmune diseases has received wide attention over the last decade. However, many vaccines showed limited clinical efficacy. To enhance vaccine efficacy in infectious diseases, biocompatible and biodegradable polymeric nanoparticles have gained interest as antigen delivery systems. We investigated in mice whether antigen-encapsulated PLGA (poly-lactic-co-glycolic acid), PLGA-TMC (N-trimethyl chitosan) or TMC-TPP (tri-polyphosphate) nanoparticles can also be used to modulate the immunological outcome after nasal vaccination. These three nanoparticles enhanced the antigen presentation by dendritic cells, as shown by increased in vitro and in vivo CD4+ T-cell proliferation. However, only nasal PLGA nanoparticles were found to induce an immunoregulatory response as shown by enhanced Foxp3 expression in the nasopharynx associated lymphoid tissue and cervical lymph nodes. Nasal administration of OVA-containing PLGA particle resulted in functional suppression of an OVA-specific Th-1 mediated delayed-type hypersensitivity reaction, while TMC-TPP nanoparticles induced humoral immunity, which coincided with the enhanced generation of OVA-specific B-cells in the cervical lymph nodes. Intranasal treatment with Hsp70-mB29a peptide-loaded PLGA nanoparticles suppressed proteoglycan-induced arthritis, leading to a significant reduction of disease. We have uncovered a role for PLGA nanoparticles to enhance CD4+ T-cell mediated immunomodulation after nasal application. The exploitation of this differential regulation of nanoparticles to modulate nasal immune responses can lead to innovative vaccine development for prophylactic or therapeutic vaccination in infectious or autoimmune diseases.
Collapse
|
29
|
Kaur G, Narang RK, Rath G, Goyal AK. Advances in Pulmonary Delivery of Nanoparticles. ACTA ACUST UNITED AC 2011; 40:75-96. [DOI: 10.3109/10731199.2011.592494] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Dash M, Chiellini F, Ottenbrite R, Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011. [DOI: 10.1016/j.progpolymsci.2011.02.001] [Citation(s) in RCA: 1932] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Bal SM, Slütter B, Jiskoot W, Bouwstra JA. Small is beautiful: N-trimethyl chitosan–ovalbumin conjugates for microneedle-based transcutaneous immunisation. Vaccine 2011; 29:4025-32. [DOI: 10.1016/j.vaccine.2011.03.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 03/02/2011] [Accepted: 03/12/2011] [Indexed: 11/27/2022]
|
32
|
Slütter B, Bal SM, Que I, Kaijzel E, Löwik C, Bouwstra J, Jiskoot W. Antigen−Adjuvant Nanoconjugates for Nasal Vaccination: An Improvement over the Use of Nanoparticles? Mol Pharm 2010; 7:2207-15. [DOI: 10.1021/mp100210g] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bram Slütter
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands, and Department of Endocrinology and Metabolic Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Suzanne M. Bal
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands, and Department of Endocrinology and Metabolic Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ivo Que
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands, and Department of Endocrinology and Metabolic Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Eric Kaijzel
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands, and Department of Endocrinology and Metabolic Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Clemens Löwik
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands, and Department of Endocrinology and Metabolic Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joke Bouwstra
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands, and Department of Endocrinology and Metabolic Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands, and Department of Endocrinology and Metabolic Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
33
|
Slütter B, Jiskoot W. Dual role of CpG as immune modulator and physical crosslinker in ovalbumin loaded N-trimethyl chitosan (TMC) nanoparticles for nasal vaccination. J Control Release 2010; 148:117-121. [DOI: 10.1016/j.jconrel.2010.06.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/13/2010] [Indexed: 10/19/2022]
|
34
|
Günbeyaz M, Faraji A, Özkul A, Puralı N, Şenel S. Chitosan based delivery systems for mucosal immunization against bovine herpesvirus 1 (BHV-1). Eur J Pharm Sci 2010; 41:531-45. [DOI: 10.1016/j.ejps.2010.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/20/2010] [Accepted: 08/19/2010] [Indexed: 12/27/2022]
|
35
|
Mohanan D, Slütter B, Henriksen-Lacey M, Jiskoot W, Bouwstra JA, Perrie Y, Kündig TM, Gander B, Johansen P. Administration routes affect the quality of immune responses: A cross-sectional evaluation of particulate antigen-delivery systems. J Control Release 2010; 147:342-9. [PMID: 20727926 DOI: 10.1016/j.jconrel.2010.08.012] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/16/2010] [Accepted: 08/09/2010] [Indexed: 12/16/2022]
Abstract
Particulate delivery systems such as liposomes and polymeric nano- and microparticles are attracting great interest for developing new vaccines. Materials and formulation properties essential for this purpose have been extensively studied, but relatively little is known about the influence of the administration route of such delivery systems on the type and strength of immune response elicited. Thus, the present study aimed at elucidating the influence on the immune response when of immunising mice by different routes, such as the subcutaneous, intradermal, intramuscular, and intralymphatic routes with ovalbumin-loaded liposomes, N-trimethyl chitosan (TMC) nanoparticles, and poly(lactide-co-glycolide) (PLGA) microparticles, all with and without specifically selected immune-response modifiers. The results showed that the route of administration caused only minor differences in inducing an antibody response of the IgG1 subclass, and any such differences were abolished upon booster immunisation with the various adjuvanted and non-adjuvanted delivery systems. In contrast, the administration route strongly affected both the kinetics and magnitude of the IgG2a response. A single intralymphatic administration of all evaluated delivery systems induced a robust IgG2a response, whereas subcutaneous administration failed to elicit a substantial IgG2a response even after boosting, except with the adjuvanted nanoparticles. The intradermal and intramuscular routes generated intermediate IgG2a titers. The benefit of the intralymphatic administration route for eliciting a Th1-type response was confirmed in terms of IFN-gamma production of isolated and re-stimulated splenocytes from animals previously immunised with adjuvanted and non-adjuvanted liposomes as well as with adjuvanted microparticles. Altogether the results show that the IgG2a associated with Th1-type immune responses are sensitive to the route of administration, whereas IgG1 response associated with Th2-type immune responses were relatively insensitive to the administration route of the particulate delivery systems. The route of administration should therefore be considered when planning and interpreting pre-clinical research or development on vaccine delivery systems.
Collapse
Affiliation(s)
- Deepa Mohanan
- Department of Dermatology, University Hospital of Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Slütter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Löwik C, Bouwstra J, Broere F, Jiskoot W. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: Nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 2010; 28:6282-91. [DOI: 10.1016/j.vaccine.2010.06.121] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/11/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
|
37
|
Microneedle-based transcutaneous immunisation in mice with N-trimethyl chitosan adjuvanted diphtheria toxoid formulations. Pharm Res 2010; 27:1837-47. [PMID: 20559701 PMCID: PMC2920068 DOI: 10.1007/s11095-010-0182-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/28/2010] [Indexed: 01/15/2023]
Abstract
Purpose The purpose of this study was to gain insight into the delivery and immunogenicity of N-trimethyl chitosan (TMC) adjuvanted diphtheria toxoid (DT) formulations applied transcutaneously with microneedles. Methods Mice were vaccinated with DT-loaded TMC nanoparticles, a solution of TMC and DT (TMC/DT) or DT alone. The formulations were applied onto the skin before or after microneedle treatment with two different 300-µm-long microneedle arrays and also injected intradermally (ID). As a positive control, alum-adjuvanted DT (DT-alum) was injected subcutaneously (SC). Ex vivo confocal microscopy studies were performed with rhodamine-labelled TMC. Results Independent of the microneedle array used and the sequence of microneedle treatment and vaccine application, transcutaneous immunisation with the TMC/DT mixture elicited 8-fold higher IgG titres compared to the TMC nanoparticles or DT solution. The toxin-neutralising antibody titres from this group were similar to those elicited by SC DT-alum. After ID immunisation, both TMC-containing formulations induced enhanced titres compared to a DT solution. Confocal microscopy studies revealed that transport of the TMC nanoparticles across the microneedle conduits was limited compared to a TMC solution. Conclusions In conclusion, TMC has an adjuvant function in transcutaneous immunisation with microneedles, but only if applied in a solution. Electronic Supplementary Material The online version of this article (doi:10.1007/s11095-010-0182-y) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Bal SM, Slütter B, van Riet E, Kruithof AC, Ding Z, Kersten GF, Jiskoot W, Bouwstra JA. Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations. J Control Release 2010; 142:374-83. [DOI: 10.1016/j.jconrel.2009.11.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/11/2009] [Accepted: 11/15/2009] [Indexed: 10/20/2022]
|
39
|
Saluja V, Amorij JP, van Roosmalen ML, Leenhouts K, Huckriede A, Hinrichs WLJ, Frijlink HW. Intranasal delivery of influenza subunit vaccine formulated with GEM particles as an adjuvant. AAPS JOURNAL 2010; 12:109-16. [PMID: 20058113 PMCID: PMC2844513 DOI: 10.1208/s12248-009-9168-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/07/2009] [Indexed: 01/10/2023]
Abstract
Nasal administration of influenza vaccine has the potential to facilitate influenza control and prevention. However, when administered intranasally (i.n.), commercially available inactivated vaccines only generate systemic and mucosal immune responses if strong adjuvants are used, which are often associated with safety problems. We describe the successful use of a safe adjuvant Gram-positive enhancer matrix (GEM) particles derived from the food-grade bacterium Lactococcus lactis for i.n. vaccination with subunit influenza vaccine in mice. It is shown that simple admixing of the vaccine with the GEM particles results in a strongly enhanced immune response. Already after one booster, the i.n. delivered GEM subunit vaccine resulted in hemagglutination inhibition titers in serum at a level equal to the conventional intramuscular (i.m.) route. Moreover, i.n. immunization with GEM subunit vaccine elicited superior mucosal and Th1 skewed immune responses compared to those induced by i.m. and i.n. administered subunit vaccine alone. In conclusion, GEM particles act as a potent adjuvant for i.n. influenza immunization.
Collapse
Affiliation(s)
- Vinay Saluja
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Hagenaars N, Verheul RJ, Mooren I, de Jong PH, Mastrobattista E, Glansbeek HL, Heldens JG, van den Bosch H, Hennink WE, Jiskoot W. Relationship between structure and adjuvanticity of N,N,N-trimethyl chitosan (TMC) structural variants in a nasal influenza vaccine. J Control Release 2009; 140:126-33. [DOI: 10.1016/j.jconrel.2009.08.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 11/29/2022]
|