1
|
Chen D, Ye X, Xu R, Li W, Xiao Y, Niu X, Yang X, Wang M, Su Y, Zeng W, Luo F, Gao Y. Self-assembled Palmitic Acid-modified Thymopentin Functions as a Delivery System of Nanovaccine for Cancer Immunotherapy. Chembiochem 2025; 26:e202400857. [PMID: 39814680 DOI: 10.1002/cbic.202400857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
In clinical practice, thymopentin (TP-5) is a commonly utilized immunomodulatory peptide drug. The relatively short half-life of TP-5, however, significantly limits its applicability in immunotherapy. Inspired by the structure of the TLR2 ligand lipopeptide Pam3CSK4, fatty acid-modified TP-5 peptides were designed and synthesized in this study. Utilizing its amphiphilicity, they were sonicated to assemble into nanoparticles with the diameters of approximately 100 nm. Compared with TP-5, TP-5 monopalmitate-modified nanoparticle has immune-activating properties both in vivo and in vitro. It markedly increased TNF-α secretion from RAW264.7 cells and aided in the maturation of DCs. The immunogenicity of OVA model antigen was increased in vivo when capsulated by TP-5 lipopeptide nanoparticle, which considerably slowed the growth of B16-OVA melanoma. This fatty acid-modified TP-5 assembled nanoparticle offers a straightforward and useful delivery system for the design of innovative nanovaccine for cancer immunotherapy.
Collapse
Affiliation(s)
- Danhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaoyun Ye
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Ran Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Youmei Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaoshuang Niu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xin Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Mengfan Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Ye Su
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenxuan Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Feiyu Luo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
2
|
Alves LP, Oliveira KDS, dos Santos ACG, de Melo DF, Moreira LMCDC, Oshiro Junior JA, da Silva DTC, Cavalcanti ALDM, Damasceno BPGDL. Cellulose Acetate Microparticles Synthesized from Agave sisalana Perrine for Controlled Release of Simvastatin. Polymers (Basel) 2024; 16:1898. [PMID: 39000753 PMCID: PMC11243862 DOI: 10.3390/polym16131898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Simvastatin (SIM) is widely prescribed to treat hyperlipidemia, despite its limitations, such as a short half-life and low oral bioavailability. To overcome these drawbacks, the development of a controlled-release formulation is desirable. This study aims to develop a microparticulate system based on cellulose acetate (ACT) obtained from Agave sisalana Perrine to promote a controlled SIM release. SIM-loaded microparticles (SMP) were prepared using the solvent emulsification-evaporation method. Several parameters were evaluated, including particle size, surface charge, morphology, encapsulation efficiency, thermochemical characteristics, crystallinity, and in vitro release profile. ACT exhibited favorable flow properties after acetylation, with a degree of substitution values superior to 2.5, as confirmed by both the chemical route and H-NMR, indicating the formation of cellulose triacetate. The obtained SMP were spherical with an average size ranging from 1842 to 1857 nm, a zeta potential of -4.45 mV, and a high SIM incorporation efficiency (98%). Thermal and XRD analyses revealed that SIM was homogeneously dispersed into the polymeric matrix in its amorphous state. In vitro studies using dialysis bags revealed that the controlled SIM release from microparticles was higher under simulated intestinal conditions and followed the Higuchi kinetic model. Our results suggest that ACT-based microparticles are a promising system for SIM delivery, which can improve its bioavailability, and result in better patient compliance.
Collapse
Affiliation(s)
- Larissa Pereira Alves
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Kevin da Silva Oliveira
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Ana Cláudia Gonçalves dos Santos
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Demis Ferreira de Melo
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Lívia Maria Coelho de Carvalho Moreira
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - João Augusto Oshiro Junior
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
| | - Dayanne Tomaz Casimiro da Silva
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Airlla Laana de Medeiros Cavalcanti
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| |
Collapse
|
3
|
Alwani S, Wasan EK, Badea I. Solid Lipid Nanoparticles for Pulmonary Delivery of Biopharmaceuticals: A Review of Opportunities, Challenges, and Delivery Applications. Mol Pharm 2024; 21:3084-3102. [PMID: 38828798 DOI: 10.1021/acs.molpharmaceut.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biopharmaceuticals such as nucleic acids, proteins, and peptides constitute a new array of treatment modalities for chronic ailments. Invasive routes remain the mainstay of administering biopharmaceuticals due to their labile nature in the biological environment. However, it is not preferred for long-term therapy due to the lack of patient adherence and clinical suitability. Therefore, alternative routes of administration are sought to utilize novel biopharmaceutical therapies to their utmost potential. Nanoparticle-mediated pulmonary delivery of biologics can facilitate both local and systemic disorders. Solid lipid nanoparticles (SLNs) afford many opportunities as pulmonary carriers due to their physicochemical stability and ability to incorporate both hydrophilic and hydrophobic moieties, thus allowing novel combinatorial drug/gene therapies. These applications include pulmonary infections, lung cancer, and cystic fibrosis, while systemic delivery of biomolecules, like insulin, is also attractive for the treatment of chronic ailments. This Review explores physiological and particle-associated factors affecting pulmonary delivery of biopharmaceuticals. It compares the advantages and limitations of SLNs as pulmonary nanocarriers along with design improvements underway to overcome these limitations. Current research illustrating various SLN designs to deliver proteins, peptides, plasmids, oligonucleotides, siRNA, and mRNA is also summarized.
Collapse
Affiliation(s)
- Saniya Alwani
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| | - Ellen K Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| |
Collapse
|
4
|
Abu Elella MH, Al Khatib AO, Al-Obaidi H. Spray-Dried Nanolipid Powders for Pulmonary Drug Delivery: A Comprehensive Mini Review. Pharmaceutics 2024; 16:680. [PMID: 38794342 PMCID: PMC11125033 DOI: 10.3390/pharmaceutics16050680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Lung diseases have received great attention in the past years because they contribute approximately one-third of the total global mortality. Pulmonary drug delivery is regarded as one of the most appealing routes to treat lung diseases. It addresses numerous drawbacks linked to traditional dosage forms. It presents notable features, such as, for example, a non-invasive route, localized lung drug delivery, low enzymatic activity, low drug degradation, higher patient compliance, and avoiding first-pass metabolism. Therefore, the pulmonary route is commonly explored for delivering drugs both locally and systemically. Inhalable nanocarrier powders, especially, lipid nanoparticle formulations, including solid-lipid and nanostructured-lipid nanocarriers, are attracting considerable interest in addressing respiratory diseases thanks to their significant advantages, including deep lung deposition, biocompatibility, biodegradability, mucoadhesion, and controlled drug released. Spray drying is a scalable, fast, and commercially viable technique to produce nanolipid powders. This review highlights the ideal criteria for inhalable spray-dried SLN and NLC powders for the pulmonary administration route. Additionally, the most promising inhalation devices, known as dry powder inhalers (DPIs) for the pulmonary delivery of nanolipid powder-based medications, and pulmonary applications of SLN and NLC powders for treating chronic lung conditions, are considered.
Collapse
Affiliation(s)
- Mahmoud H. Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; (M.H.A.E.); (A.O.A.K.)
| | - Arwa Omar Al Khatib
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; (M.H.A.E.); (A.O.A.K.)
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan
| | - Hisham Al-Obaidi
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; (M.H.A.E.); (A.O.A.K.)
| |
Collapse
|
5
|
Ahmed S, Mansour M, Ishak RAH, Mortada ND. Customizable Resveratrol Spray-dried Micro-composites for Inhalation as a Promising Contender for Treatment of Idiopathic Pulmonary Fibrosis. Int J Pharm 2023:123117. [PMID: 37315636 DOI: 10.1016/j.ijpharm.2023.123117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
The past decades have witnessed tremendous expansion in utilization of plant-derived medicines as resveratrol (RES) in treating several diseases like idiopathic pulmonary fibrosis (IPF). RES can exhibit its role in treating IPF via its outstanding antioxidant and anti-inflammatory activities. The goal of this work was to formulate RES-loaded spray-dried composite microparticles (SDCMs) suitable for pulmonary delivery via dry powder inhaler (DPI). They were prepared by spray drying of a previously prepared RES-loaded bovine serum albumin nanoparticles (BSA NPs) dispersion using different carriers. RES-loaded BSA NPs, prepared by the desolvation technique, acquired suitable particle size of 177.67±0.95 nm and entrapment efficiency of 98.7±0.35% with perfectly uniform size distribution and high stability. Considering the attributes of the pulmonary route, NPs were co-spray dried with compatible carriers viz. mannitol, dextran, trehalose, leucine, glycine, aspartic acid, and glutamic acid to fabricate SDCMs. All formulations showed suitable mass median aerodynamic diameter less than 5 µm; that is suitable for deep lung deposition. However, the best aerosolization behavior was attained from using leucine with fine particle fraction (FPF) of 75.74%, followed by glycine with FPF of 54.7%. Finally, a pharmacodynamic study was conducted on bleomycin-induced mice, and it strongly revealed the role of the optimized formulations in alleviating PF through suppressing the levels of hydroxyproline, tumor necrosis factor-α and matrix metalloproteinase-9 with obvious improvements in the treated lung histopathology. These findings indicate that in addition to leucine, the glycine amino acid, which is not commonly used yet, is very promising in the formulation of DPIs.
Collapse
Affiliation(s)
- Sara Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Postal Code 11566, Cairo, Egypt
| | - Mai Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Postal Code 11566, Cairo, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Postal Code 11566, Cairo, Egypt.
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Postal Code 11566, Cairo, Egypt
| |
Collapse
|
6
|
Pulmonary Delivery of Emerging Antibacterials for Bacterial Lung Infections Treatment. Pharm Res 2022; 40:1057-1072. [PMID: 36123511 PMCID: PMC9484715 DOI: 10.1007/s11095-022-03379-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/20/2022] [Indexed: 11/08/2022]
Abstract
Bacterial infections in the respiratory tract are considered as one of the major challenges to the public health worldwide. Pulmonary delivery is an attractive approach in the management of bacterial respiratory infections with a few inhaled antibiotics approved. However, with the rapid emergence of antibiotic-resistant bacteria, it is necessary to develop new/alternative inhaled antibacterial agents in the post-antibiotic era. A pipeline of novel biological antibacterial agents, including antimicrobial peptides, RNAi therapeutics, and bacteriophages, has emerged to combat bacterial infections with excellent performance. In this review, the causal effects of bacterial infections on the related pulmonary infectious diseases will be firstly introduced. This is followed by an overview on the development of emerging antibacterial therapeutics for managing lung bacterial infections through nebulization/inhalation of dried powders. The obstacles and underlying proposals regarding their clinical transformation are also discussed to seek insights for further development. Research on inhaled therapy of these emerging antibacterials are still in the infancy, but the promising progress warrants further attention.
Collapse
|
7
|
Fine powder of lipid microparticles – spray drying process development and optimization. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Prasanna P, Rathee S, Upadhyay A, Sulakshana S. Nanotherapeutics in the treatment of acute respiratory distress syndrome. Life Sci 2021; 276:119428. [PMID: 33785346 PMCID: PMC7999693 DOI: 10.1016/j.lfs.2021.119428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 01/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a form of oxygenation failure primarily characterized by rapid inflammation resulting from a direct pulmonary or indirect systemic insult. ARDS has been a major cause of death in the recent COVID-19 outbreak wherein asymptomatic respiratory tract infection progresses to ARDS from pneumonia have emphasized the need for a reliable therapy for the disease. The disease has a high mortality rate of approximately 30-50%. Despite the high mortality rate, a dearth of effective pharmacotherapy exists that demands extensive research in this area. The complex ARDS pathophysiology which remains to be understood completely and the multifactorial etiology of the disease has led to the poor diagnosis, impeded drug-delivery to the deeper pulmonary tissues, and delayed treatment of the ARDS patients. Besides, critically ill patients are unable to tolerate the off-target side effects. The vast domain of nanobiotechnology presents several drug delivery systems offering numerous benefits such as targeted delivery, prolonged drug release, and uniform drug-distribution. The present review presents a brief insight into the ARDS pathophysiology and summarizes conventional pharmacotherapies available to date. Furthermore, the review provides an updated report of major developments in the nanomedicinal approaches for the treatment of ARDS. We also discuss different nano-formulations studied extensively in the ARDS preclinical models along with underlining the advantages as well as challenges that need to be addressed in the future.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102, India
| | - Shweta Rathee
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028, India
| | - Arun Upadhyay
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sulakshana Sulakshana
- Department of Anesthesiology and Critical Care, Sri Ram Murti Smarak Institute of Medical Sciences (SRMS-IMS), Bareilly, Uttar Pradesh 243202, India.
| |
Collapse
|
9
|
Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm Sin B 2021; 11:871-885. [PMID: 33996404 PMCID: PMC8105777 DOI: 10.1016/j.apsb.2021.02.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The use of lipid nanocarriers for drug delivery applications is an active research area, and a great interest has particularly been shown in the past two decades. Among different lipid nanocarriers, ISAsomes (Internally self-assembled somes or particles), including cubosomes and hexosomes, and solid lipid nanoparticles (SLNs) have unique structural features, making them attractive as nanocarriers for drug delivery. In this contribution, we focus exclusively on recent advances in formation and characterization of ISAsomes, mainly cubosomes and hexosomes, and their use as versatile nanocarriers for different drug delivery applications. Additionally, the advantages of SLNs and their application in oral and pulmonary drug delivery are discussed with focus on the biological fates of these lipid nanocarriers in vivo. Despite the demonstrated advantages in in vitro and in vivo evaluations including preclinical studies, further investigations on improved understanding of the interactions of these nanoparticles with biological fluids and tissues of the target sites is necessary for efficient designing of drug nanocarriers and exploring potential clinical applications.
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| |
Collapse
|
10
|
Aminu N, Bello I, Umar NM, Tanko N, Aminu A, Audu MM. The influence of nanoparticulate drug delivery systems in drug therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101961] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Shen AM, Minko T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J Control Release 2020; 326:222-244. [PMID: 32681948 PMCID: PMC7501141 DOI: 10.1016/j.jconrel.2020.07.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
Pulmonary delivery of lipid-based nanotherapeutics by inhalation presents an advantageous alternative to oral and intravenous routes of administration that avoids enzymatic degradation in gastrointestinal tract and hepatic first pass metabolism and also limits off-target adverse side effects upon heathy tissues. For lung-related indications, inhalation provides localized delivery in order to enhance therapeutic efficacy at the site of action. Optimization of physicochemical properties, selected drug and inhalation format can greatly influence the pharmacokinetic behavior of inhaled nanoparticle systems and their payloads. The present review analyzes a wide range of nanoparticle systems, their formulations and consequent effect on pharmacokinetic distribution of delivered active components after inhalation.
Collapse
Affiliation(s)
- Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Environmental and Occupational Health Science Institute, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
Wolska E, Sznitowska M, Krzemińska K, Ferreira Monteiro M. Analytical Techniques for the Assessment of Drug-Lipid Interactions and the Active Substance Distribution in Liquid Dispersions of Solid Lipid Microparticles (SLM) Produced de novo and Reconstituted from Spray-Dried Powders. Pharmaceutics 2020; 12:pharmaceutics12070664. [PMID: 32679745 PMCID: PMC7407395 DOI: 10.3390/pharmaceutics12070664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Solid lipid microparticles (SLM) can be presented as liquid suspension or spray-dried powder. The main challenge in SLM technology is to precisely determine the location of the active substance (API) in the different compartments of the formulation and its changes during SLM processing. Therefore, the purpose of the research was to assess the distribution of the API and to investigate the nature of the API-lipid interaction when the formulation was subjected to spray drying, with an indication of the most suitable techniques for this purpose. SLM were prepared with two various lipids (Compritol or stearic acid) and two model APIs: cyclosporine (0.1% and 1% w/w) and spironolactone (0.1% and 0.5% w/w). Physicochemical characterizations of the formulations, before and after spray drying, were performed by differential scanning calorimetry (DSC), atomic force microscopy (AFM), Raman spectroscopy and nuclear magnetic resonance (NMR). The API distribution between the SLM matrix, SLM surface and the aqueous phase was determined, and the release study was performed. It was demonstrated that, in general, the spray drying did not affect the drug release and drug distribution; however, some changes were observed in the SLM with Compritol and when the API concentration was lower. Only in the SLM with stearic acid was a change in the DSC curves noted. Measurements with the AFM technique proved to be a useful method for detecting differences in the surface properties between the placebo and API-loaded SLM, while the Raman spectroscopy did not show such evident differences.
Collapse
Affiliation(s)
- Eliza Wolska
- Department of Pharmaceutical Technology, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (M.S.); (K.K.)
- Correspondence: ; Tel.: +48-58-349-1085
| | - Małgorzata Sznitowska
- Department of Pharmaceutical Technology, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (M.S.); (K.K.)
| | - Katarzyna Krzemińska
- Department of Pharmaceutical Technology, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (M.S.); (K.K.)
| | | |
Collapse
|
13
|
Fonseca-Santos B, Silva PB, Rigon RB, Sato MR, Chorilli M. Formulating SLN and NLC as Innovative Drug Delivery Systems for Non-Invasive Routes of Drug Administration. Curr Med Chem 2020; 27:3623-3656. [PMID: 31232233 DOI: 10.2174/0929867326666190624155938] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 01/18/2023]
Abstract
Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- Sao Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, Sao Paulo 14801-903, Brazil
| | - Patrícia Bento Silva
- University of Brasilia (UnB), Department of Genetics and Morphology, Brasilia, Federal District 70910-970, Brazil
| | - Roberta Balansin Rigon
- University of Campinas (UNICAMP), Faculty of Pharmaceutical Sciences, Campinas, Sao Paulo 13083-871, Brazil
| | - Mariana Rillo Sato
- Sao Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, Sao Paulo 14801-903, Brazil
| | - Marlus Chorilli
- Sao Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, Sao Paulo 14801-903, Brazil
| |
Collapse
|
14
|
Kelly SA, Rodgers AM, O'Brien SC, Donnelly RF, Gilmore BF. Gut Check Time: Antibiotic Delivery Strategies to Reduce Antimicrobial Resistance. Trends Biotechnol 2020; 38:447-462. [PMID: 31757410 DOI: 10.1016/j.tibtech.2019.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) has developed into a huge threat to global health, and reducing it is an urgent priority for public health authorities. The importance of a healthy and balanced gut microbiome has been identified as a key protective factor against AMR development, but this can be significantly affected by antibiotic therapy, resulting in dysbiosis and reduction of taxonomic richness. The way in which antibiotics are administered could form an important part of future antimicrobial stewardship strategies, where drug delivery is ideally placed to play a key role in the fight against AMR. This review focuses on drug delivery strategies for antibiotic administration, including avoidance of the gut microbiome and targeted delivery approaches, which may reduce AMR.
Collapse
Affiliation(s)
- Stephen A Kelly
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Aoife M Rodgers
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland; Department of Biology, Maynooth University, Maynooth, Kildare, Ireland
| | - Séamus C O'Brien
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
15
|
Kamel NM, Helmy MW, Samaha MW, Ragab D, Elzoghby AO. Multicompartmental lipid–protein nanohybrids for combined tretinoin/herbal lung cancer therapy. Nanomedicine (Lond) 2019; 14:2461-2479. [DOI: 10.2217/nnm-2019-0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Multicompartmental lipid–protein nanohybrids (MLPNs) were developed for combined delivery of the anticancer drugs tretinoin (TRE) and genistein (GEN) as synergistic therapy of lung cancer. Materials & methods: The GEN-loaded lipid core was first prepared and then coated with TRE-loaded zein shell via nanoprecipitation. Results: TRE/GEN-MLPNs demonstrated a size of 154.5 nm. In situ ion pair formation between anionic TRE and the cationic stearyl amine improved the drug encapsulation with enhanced stability of MLPNs. TRE/GEN-coloaded MLPNs were more cytotoxic against A549 cancer cells compared with combined free GEN/TRE. In vivo, lung cancer bearing mice treated with TRE/GEN-MLPNs displayed higher apoptotic caspase activation compared with mice-treated free combined GEN/TRE. Conclusion: TRE/GEN-MLPNs might serve as a promising parenteral nanovehicles for lung cancer therapy.
Collapse
Affiliation(s)
- Nayra M Kamel
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Maged W Helmy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhur University, Damanhur, 22516, Egypt
| | - Magda W Samaha
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Doaa Ragab
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Department of Medicine, Division of Engineering in Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences & Technology (HST), Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Rashid M, Malik MY, Singh SK, Chaturvedi S, Gayen JR, Wahajuddin M. Bioavailability Enhancement of Poorly Soluble Drugs: The Holy Grail in Pharma Industry. Curr Pharm Des 2019; 25:987-1020. [DOI: 10.2174/1381612825666190130110653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Background:
Bioavailability, one of the prime pharmacokinetic properties of a drug, is defined as the
fraction of an administered dose of unchanged drug that reaches the systemic circulation and is used to describe
the systemic availability of a drug. Bioavailability assessment is imperative in order to demonstrate whether the
drug attains the desirable systemic exposure for effective therapy. In recent years, bioavailability has become
the subject of importance in drug discovery and development studies.
Methods:
A systematic literature review in the field of bioavailability and the approaches towards its enhancement
have been comprehensively done, purely focusing upon recent papers. The data mining was performed
using databases like PubMed, Science Direct and general Google searches and the collected data was exhaustively
studied and summarized in a generalized manner.
Results:
The main prospect of this review was to generate a comprehensive one-stop summary of the numerous
available approaches and their pharmaceutical applications in improving the stability concerns, physicochemical
and mechanical properties of the poorly water-soluble drugs which directly or indirectly augment their bioavailability.
Conclusion:
The use of novel methods, including but not limited to, nano-based formulations, bio-enhancers,
solid dispersions, lipid-and polymer-based formulations which provide a wide range of applications not only
increases the solubility and permeability of the poorly bioavailable drugs but also improves their stability, and
targeting efficacy. Although, these methods have drastically changed the pharmaceutical industry demand for the
newer potential methods with better outcomes in the field of pharmaceutical science to formulate various dosage
forms with adequate systemic availability and improved patient compliance, further research is required.
Collapse
Affiliation(s)
- Mamunur Rashid
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Mohd Yaseen Malik
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Sandeep K. Singh
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Swati Chaturvedi
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Jiaur R Gayen
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | | |
Collapse
|
17
|
Farhangi M, Mahboubi A, Kobarfard F, Vatanara A, Mortazavi SA. Optimization of a dry powder inhaler of ciprofloxacin-loaded polymeric nanomicelles by spray drying process. Pharm Dev Technol 2019; 24:584-592. [DOI: 10.1080/10837450.2018.1545237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mahdieh Farhangi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Zhang T, Qin XY, Cao X, Li WH, Gong T, Zhang ZR. Thymopentin-loaded phospholipid-based phase separation gel with long-lasting immunomodulatory effects: in vitro and in vivo studies. Acta Pharmacol Sin 2019; 40:514-521. [PMID: 30002492 DOI: 10.1038/s41401-018-0085-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/20/2018] [Indexed: 02/05/2023]
Abstract
Thymopentin (TP5) is an effective immunomodulatory agent for autoimmune disease that has been used clinically for decades. However, its application is greatly limited by its extremely short half-life in vivo, poor membrane permeability and extensive metabolism in gastrointestinal tract, resulting in repeated injection and poor patient compliance. In the present study, we developed a TP5-loaded, phospholipid-based phase separation gel (PPSG) to achieve sustained drug release profile and long-lasting therapeutic effects. We firstly demonstrated the physiochemical characteristics of PPSG before and after phase transition by examining the viscosity and morphology change caused by the phase transition. Moreover, the PPSG exerted a low cytotoxicity in L929 cells and HUVECs, suggesting the biocompatibility of PPSG. A month-long drug release profile of TP5 PPSG was observed both in vitro and in vivo, revealing its sustained and controlled drug release property. Most importantly, in cyclophosphamide-induced immunosuppressive rats, a single dose of TP5 PPSG (15 mg/kg, sc) injected could normalize their T-SOD levels and CD4+/CD8+ ratio; such an immunoregulatory effect was comparable to that produced by repeated injection of TP5 solution (0.6 mg/kg per day, sc) for 14 consecutive days. Thus, TP5 PPSG has a great potential for sustained delivery of TP5 in clinical use because of its simple manufacture process, good biocompatibility and long-lasting immunomodulatory efficacy, which could greatly improve patient compliance.
Collapse
|
19
|
Kamel NM, Helmy MW, Abdelfattah EZ, Khattab SN, Ragab D, Samaha MW, Fang JY, Elzoghby AO. Inhalable Dual-Targeted Hybrid Lipid Nanocore–Protein Shell Composites for Combined Delivery of Genistein and All-Trans Retinoic Acid to Lung Cancer Cells. ACS Biomater Sci Eng 2019; 6:71-87. [DOI: 10.1021/acsbiomaterials.8b01374] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nayra M. Kamel
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Maged W. Helmy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | | | - Sherine N. Khattab
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Doaa Ragab
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Magda W. Samaha
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan
| | - Ahmed O. Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Kankala RK, Lin XF, Song HF, Wang SB, Yang DY, Zhang YS, Chen AZ. Supercritical Fluid-Assisted Decoration of Nanoparticles on Porous Microcontainers for Codelivery of Therapeutics and Inhalation Therapy of Diabetes. ACS Biomater Sci Eng 2018; 4:4225-4235. [PMID: 33418821 DOI: 10.1021/acsbiomaterials.8b00992] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The impact of nanotechnology and its advancements have allowed us to explore new therapeutic modalities. To this end, we designed nanoparticles-inlaid porous microparticles (NIPMs) coloaded with small interfering RNA (siRNA) and glucagon-like peptide-1 (GLP-1) using the supercritical carbon dioxide (SC-CO2) technology as an inhalation delivery system for diabetes therapy. siRNA-encapsulating chitosan (CS) nanoparticles were first synthesized by an ionic gelation method, which resulted in particles with small sizes (100-150 nm), high encapsulation efficiency (∼94.8%), and sustained release performance (∼60% in 32 h). These CS nanoparticles were then loaded with GLP-1-dispersed poly-l-lactide (PLLA) porous microparticles (PMs) by SC-CO2-assisted precipitation with the compressed antisolvent (PCA) process. The hypoglycemic efficacy of NIPMs administered via pulmonary route in mice persisted longer due to sustained release of siRNA from CS nanoparticles and the synergistic effects of GLP-1 in PMs, which significantly inhibited the expression of dipeptidyl peptidase-4 mRNA (DPP-4-mRNA). This ecofriendly technology provides a convenient way to fabricate nanoparticle-microparticle composites for codelivery of a gene and a therapeutic peptide, which will potentially find widespread applications in the field of pharmaceutics.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Xiao-Fen Lin
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Hu-Fan Song
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Da-Yun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
21
|
Nanostructured lipid carriers versus solid lipid nanoparticles for the potential treatment of pulmonary hypertension via nebulization. Eur J Pharm Sci 2018; 125:151-162. [PMID: 30292750 DOI: 10.1016/j.ejps.2018.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 01/15/2023]
Abstract
With the non-selective vasodilating action, short half-life and first-pass metabolism of sildenafil (SC), local application in the lung for pulmonary arterial hypertension is of high demand. Although several nanosystems have been lately investigated, nanostructured lipid carriers (NLCs) give promises of potential safety, biodegradability and controlled drug release. In the current study, NLCs comprising either precirol, stearic acid or beeswax as solid lipid in presence of oleic acid as liquid lipid and PVA or poloxamer as emulsifier were prepared. Optimized NLCs (200-268 nm in size) were appraised versus SLNs both in vitro and in vivo. Precirol/PVA-based SLNs and NLCs ensued high entrapment efficiencies (EE > 95%) and controlled release behaviour over 6 h even though NLCs showed higher release profile. Stability studies at 4 °C indicated potential colloidal and entrapment stability over 3 months. Interestingly, NLCs demonstrated efficient nebulization, low interaction with mucin and higher viability of A549 cells (3-fold increase in IC50 relative to SLNs) providing good aptitudes for pulmonary application. In vivo administration of free SC in rats revealed localized intra-alveolar bleeding, presumably related to excessive vasodilatation. Meanwhile, the nanoencapsulated drug confirmed normal lung parenchyma with minimal incidence of bleeding. Inspiring results highlight the potential of sildenafil-laden nanostructured lipid carriers as pulmonary drug delivery system.
Collapse
|
22
|
Mu H, Holm R. Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opin Drug Deliv 2018; 15:771-785. [DOI: 10.1080/17425247.2018.1504018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René Holm
- Drug Product Development, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
23
|
The effect of l -leucine on the stabilization and inhalability of spray-dried solid lipid nanoparticles for pulmonary drug delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Ngan CL, Asmawi AA. Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations. Drug Deliv Transl Res 2018; 8:1527-1544. [DOI: 10.1007/s13346-018-0550-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev 2018; 127:46-57. [PMID: 28939377 PMCID: PMC5860926 DOI: 10.1016/j.addr.2017.09.015] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/09/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
Abstract
Despite the wide success of antibiotics in modern medicine, the treatment of bacterial infections still faces critical challenges, especially due to the rapid emergence of antibiotic resistance. As a result, local antimicrobial treatment aimed at enhancing drug concentration at the site of infection while avoiding systemic exposure is becoming increasingly attractive, as it may alleviate resistance development. Meanwhile, therapeutic nanoparticles, especially liposomes, polymeric nanoparticles, dendrimers, and inorganic nanoparticles, are gaining traction to improve the therapeutic efficacy with many applications specifically focused on local antimicrobial treatment. This review highlights topics where nanoparticle-based strategies hold significant potential to advance treatment against local bacterial infections, including (1) promoting antibiotic localization to the pathogen, (2) modulating drug-pathogen interaction against antibiotic resistance, and (3) enabling novel anti-virulence approaches for 'drug-free' antimicrobial activity. In each area, we highlight the innovative antimicrobial strategies tailored for local applications and review the progress made for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yijie Chen
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yue Zhang
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qiangzhe Zhang
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Haque S, Whittaker M, McIntosh MP, Pouton CW, Phipps S, Kaminskas LM. A comparison of the lung clearance kinetics of solid lipid nanoparticles and liposomes by following the 3H-labelled structural lipids after pulmonary delivery in rats. Eur J Pharm Biopharm 2018; 125:1-12. [PMID: 29309835 DOI: 10.1016/j.ejpb.2018.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/16/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
Abstract
The utility of biodegradable nanosized drug carriers for the local and controlled delivery of therapeutics to the lungs has prompted significant interest in the development of inhalable nanomedicines. Still, little is known about how these systems are cleared from the lungs, including the kinetics of the structural lipids. Most preclinical and clinical studies to date have evaluated the lung clearance of loaded drugs, which in many cases poorly reflects the kinetics of the nanocarrier, or the bulk-labelled particles. This study therefore aimed to describe and compare the pulmonary pharmacokinetic behaviour and patterns of lung clearance of two commonly explored inhalable nanocarriers (anionic ∼150 nm liposomes and solid lipid nanoparticles [SLNs]) in rats by following the 3H-labelled structural lipids (phosphatidylcholine and tristearin respectively). The data showed that SLNs and liposomes were cleared from the lungs at similar rates, despite SLNs being deposited after intratracheal instillation in the upper respiratory track, and primarily via the mucociliary escalator, but this process was more pronounced for SLNs. Structural lipids were mainly associated with plasma proteins rather than nanocarrier in plasma. The lipids also exhibit prolonged lung exposure and are associated with the lung tissue (rather than BALF) over 2 weeks.
Collapse
Affiliation(s)
- Shadabul Haque
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne, VIC 3052, Australia
| | - Michael Whittaker
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne, VIC 3052, Australia
| | - Michelle P McIntosh
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia
| | - Colin W Pouton
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia
| | - Simon Phipps
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lisa M Kaminskas
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia; School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
27
|
Xu Y, Li G, Zhuang W, Yu H, Hu Y, Wang Y. Micelles prepared from poly(N-isopropylacrylamide-co-tetraphenylethene acrylate)-b-poly[oligo(ethylene glycol) methacrylate] double hydrophilic block copolymer as hydrophilic drug carrier. J Mater Chem B 2018; 6:7495-7502. [DOI: 10.1039/c8tb02247j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thermal-induced micelles prepared with P(NIPAAm-co-TPE)-b-POEGMA double hydrophilic block copolymers for hydrophilic drug release. Hydrogen bonds are formed between PNIPAAm and thymopentin.
Collapse
Affiliation(s)
- YangYang Xu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Weihua Zhuang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - HongChi Yu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yanfei Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| |
Collapse
|
28
|
Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release 2018; 269:374-392. [DOI: 10.1016/j.jconrel.2017.11.036] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
|
29
|
Wang Z, Meenach SA. Optimization of Acetalated Dextran–Based Nanocomposite Microparticles for Deep Lung Delivery of Therapeutics via Spray-Drying. J Pharm Sci 2017; 106:3539-3547. [DOI: 10.1016/j.xphs.2017.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/16/2017] [Accepted: 07/18/2017] [Indexed: 11/30/2022]
|
30
|
Huang Z, Wu H, Yang B, Chen L, Huang Y, Quan G, Zhu C, Li X, Pan X, Wu C. Anhydrous reverse micelle nanoparticles: new strategy to overcome sedimentation instability of peptide-containing pressurized metered-dose inhalers. Drug Deliv 2017; 24:527-538. [PMID: 28181839 PMCID: PMC8241067 DOI: 10.1080/10717544.2016.1269850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to develop a novel anhydrous reverse micelle nanoparticles (ARM-NPs) system to overcome the sedimentation instability of peptide-containing pressurized metered-dose inhalers (pMDIs). A bottom-up method was utilized to fabricate ARM-NPs. Tertiary butyl alcohol (TBA)/water system, freeze-drying and lipid inversion method were successively used to produce the ARM-NPs for pMDI. Various characteristics of ARM-NPs were investigated including particle size, morphology, secondary structure of the peptide drug, aerosolization properties and storage stability. As revealed by the results, ARM-NPs with spherical shape possessed 147.7 ± 2.0 nm of particle size with 0.152 ± 0.021 PdI. The ARM-NPs for pMDI had satisfactory fine particle fraction (FPF) value of 46.99 ± 1.33%, while the secondary structure of the peptide drug was unchanged. Stability tests showed no pronounced sedimentation instability for over 12 weeks at 4-6 °C. Furthermore, a hypothesis was raised to explain the formation mechanism of ARM-NPs, which was verified by the differential scanning calorimetry analysis. The lecithin employed in the reverse micelle vesicles could serve as a steric barrier between peptide drugs and bulk propellant, which prevented the instability of peptide drugs in hydrophobic environment. Homogenous particle size could avoid Ostwald ripening phenomenon of particles in pMDIs. It was concluded that the ARM-NPs for pMDI could successfully overcome sedimentation instability by the steric barrier effect and homogeneous particle size.
Collapse
Affiliation(s)
- Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Han Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Beibei Yang
- School of Pharmaceutical Sciences, School Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Longkai Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Guilan Quan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Chune Zhu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Xing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| |
Collapse
|
31
|
Dabbagh A, Abu Kasim NH, Yeong CH, Wong TW, Abdul Rahman N. Critical Parameters for Particle-Based Pulmonary Delivery of Chemotherapeutics. J Aerosol Med Pulm Drug Deliv 2017; 31:139-154. [PMID: 29022837 DOI: 10.1089/jamp.2017.1382] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Targeted delivery of chemotherapeutics through the respiratory system is a potential approach to improve drug accumulation in the lung tumor, while decreasing their negative side effects. However, elimination by the pulmonary clearance mechanisms, including the mucociliary transport system, and ingestion by the alveolar macrophages, rapid absorption into the blood, enzymatic degradation, and low control over the deposition rate and location remain the main complications for achieving an effective pulmonary drug delivery. Therefore, particle-based delivery systems have emerged to minimize pulmonary clearance mechanisms, enhance drug therapeutic efficacy, and control the release behavior. A successful implementation of a particle-based delivery system requires understanding the influential parameters in terms of drug carrier, inhalation technology, and health status of the patient's respiratory system. This review aims at investigating the parameters that significantly drive the clinical outcomes of various particle-based pulmonary delivery systems. This should aid clinicians in appropriate selection of a delivery system according to their clinical setting. It will also guide researchers in addressing the remaining challenges that need to be overcome to enhance the efficiency of current pulmonary delivery systems for aerosols.
Collapse
Affiliation(s)
- Ali Dabbagh
- 1 Wellness Research Cluster, Institute of Research Management and Services, University of Malaya , Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- 1 Wellness Research Cluster, Institute of Research Management and Services, University of Malaya , Kuala Lumpur, Malaysia
| | - Chai Hong Yeong
- 2 Department of Biomedical Imaging, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- 3 Department of Pharmaceutics and Pharmaceutical Biotechnology, Faculty of Pharmacy, Universiti Teknologi MARA , Puncak Alam, Malaysia
| | - Noorsaadah Abdul Rahman
- 4 Department of Chemistry, Faculty of Science, University of Malaya , Kuala Lumpur, Malaysia .,5 Drug Design and Development Research Group (DDDRG), University of Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Amoabediny G, Haghiralsadat F, Naderinezhad S, Helder MN, Akhoundi Kharanaghi E, Mohammadnejad Arough J, Zandieh-Doulabi B. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1332623] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ghasem Amoabediny
- Department of Nano Biotechnology, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
- Department of Biotechnology and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fateme Haghiralsadat
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- Department of Nano Biotechnology, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Samira Naderinezhad
- Department of Biotechnology and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Marco N. Helder
- Department of Oral & Maxillofacial Surgery, VU University Medical Center, MOVE Research Institute Amsterdam
| | - Elham Akhoundi Kharanaghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies, University of Isfahan, Isfahan, Iran
| | - Javad Mohammadnejad Arough
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- Department of Nano Biotechnology, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Behrouz Zandieh-Doulabi
- Department of Oral & Maxillofacial Surgery, VU University Medical Center, MOVE Research Institute Amsterdam
| |
Collapse
|
33
|
Tan Y, Wang W, Wu C, Pan Z, Yao G, Fang L, Su W. Myristic acid-modified thymopentin for enhanced plasma stability and immune-modulating activity. Int Immunopharmacol 2017; 47:88-94. [DOI: 10.1016/j.intimp.2017.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
|
34
|
Bakhtiary Z, Barar J, Aghanejad A, Saei AA, Nemati E, Ezzati Nazhad Dolatabadi J, Omidi Y. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev Ind Pharm 2017; 43:1244-1253. [PMID: 28323493 DOI: 10.1080/03639045.2017.1310223] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Non-small cell lung cancer (NSCLC) patients with sensitizing mutations in the exons 18-21 of the epithelial growth factor receptor (EGFR) gene show increased kinase activity of EGFR. Hence, tyrosine kinase inhibitors (TKIs) such as erlotinib (ETB) have commonly been used as the second line therapeutic option for the treatment of metastatic NSCLC. While the ETB is available as an oral dosage form, the local delivery of this TKI to the diseased cells of the lung may ameliorate its therapeutic impacts. In the current study, we report on the development of ETB-loaded solid lipid nanoparticle (SLN) based formulation of dry powder inhaler (ETB-SLN DPI). ETB-SLNs were formulated using designated amount of compritol/poloxamer 407. The engineered ETB-SLNs showed sub-100 nm spherical shape with an encapsulation efficiency of 78.21%. MTT assay and DAPI staining revealed that the ETB-SLNs enhanced the cytotoxicity of cargo drug molecules in the human alveolar adenocarcinoma epithelial A549 cells as a model for NSCLC. To attain the ETB-SLN DPI, the ETB-SLNs were efficiently spray dried into microparticles (1-5 μm) along with mannitol. The ETB-SLN DPI powder displayed suitable flowability and aerodynamic traits. The Carr's Index, Hausner ratio and Next Generation Impactor (NGI) analyses confirmed deep inhalation pattern of the formulation. Based on these findings, we propose the ETB-SLN DPI as a promising treatment modality for the NSCLC patients.
Collapse
Affiliation(s)
- Zahra Bakhtiary
- a Student Research Committee, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Jaleh Barar
- b Research Center for Pharmaceutical Nanotechnology , Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Pharmaceutics, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ayuob Aghanejad
- b Research Center for Pharmaceutical Nanotechnology , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Amir Ata Saei
- d Division of Physiological Chemistry, Department of Medical Biochemistry and Biophysics , KarolinskaInstitutet , Stockholm , Sweden
| | - Elhameh Nemati
- b Research Center for Pharmaceutical Nanotechnology , Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Yadollah Omidi
- b Research Center for Pharmaceutical Nanotechnology , Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Pharmaceutics, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
35
|
Silva AS, Sousa AM, Cabral RP, Silva MC, Costa C, Miguel SP, Bonifácio VD, Casimiro T, Correia IJ, Aguiar-Ricardo A. Aerosolizable gold nano-in-micro dry powder formulations for theragnosis and lung delivery. Int J Pharm 2017; 519:240-249. [DOI: 10.1016/j.ijpharm.2017.01.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/19/2022]
|
36
|
Varshosaz J, Taymouri S, Hamishehkar H, Vatankhah R, Yaghubi S. Development of dry powder inhaler containing tadalafil-loaded PLGA nanoparticles. Res Pharm Sci 2017. [PMID: 28626480 PMCID: PMC5465831 DOI: 10.4103/1735-5362.207203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inhalable dry powders containing poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) were developed for the delivery of tadalafil (TAD) for treatment of life-treating pulmonary arterial hypertension. Taguchi design was employed to evaluate the effects of different formulation variables on the physicochemical characteristics of PLGA-NPs prepared using emulsion solvent evaporation method. Inhalable PLGA-NPs of TAD were successfully prepared by co-spray drying the PLGA-NPs with inert carriers. Physicochemical characteristics and in vitro deposition of the aerosolized drug were also evaluated. The optimized formulation was prepared using 7.5 mg of PLGA, 2.5 mg of TAD, sonication time of 6 min and 2% polyvinyl alcohol (PVA) as the stabilizer. The optimized aqueous/oil phase ratio for PLGA-NPs preparation was 10:1. Polymer/drug ratio was the most effective parameter on the release efficiency. Encapsulation efficiency, zeta potential and particle size of PLGA-NPs were more affected by aqueous/organic phase ratio. The spray dried powders containing PLGA-NPs had a mass median aerodynamic diameter (MMAD) in the range of 1.4–2.8 μm that was suitable for TAD delivery to the deep region of lung. The presence of L- leucine in mannitol containing formulations decreased the interparticulate forces between particles and increased significantly the process yield and fine particle fraction (FPF). The results indicated that prepared dry powders containing TAD-loaded PLGA-NPs were suitable for inhalation and has the potential for the treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Department of Pharmaceutics and Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Somayeh Taymouri
- Department of Pharmaceutics and Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Razieh Vatankhah
- Department of Pharmaceutics and Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Shadi Yaghubi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| |
Collapse
|
37
|
Mehta P. Dry Powder Inhalers: A Focus on Advancements in Novel Drug Delivery Systems. JOURNAL OF DRUG DELIVERY 2016; 2016:8290963. [PMID: 27867663 PMCID: PMC5102732 DOI: 10.1155/2016/8290963] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/25/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022]
Abstract
Administration of drug molecules by inhalation route for treatment of respiratory diseases has the ability to deliver drugs, hormones, nucleic acids, steroids, proteins, and peptides, particularly to the site of action, improving the efficacy of the treatment and consequently lessening adverse effects of the treatment. Numerous inhalation delivery systems have been developed and studied to treat respiratory diseases such as asthma, COPD, and other pulmonary infections. The progress of disciplines such as biomaterials science, nanotechnology, particle engineering, molecular biology, and cell biology permits further improvement of the treatment capability. The present review analyzes modern therapeutic approaches of inhaled drugs with special emphasis on novel drug delivery system for treatment of various respiratory diseases.
Collapse
Affiliation(s)
- Piyush Mehta
- Dry Powder Inhaler Lab, Respiratory Formulations, Cipla R & D, LBS Road, Vikhroli (W), Mumbai, Maharashtra 400079, India
| |
Collapse
|
38
|
Biological voyage of solid lipid nanoparticles: a proficient carrier in nanomedicine. Ther Deliv 2016; 7:691-709. [DOI: 10.4155/tde-2016-0038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review projects the prospects and issues faced by solid lipid nanoparticles (SLNs) in current scenarios, specially related to its clinical implementation and effectiveness. We re-examine the basic concept of biobehavior and movement of SLNs as a nanomedicine carrier. The extensive survey of the uptake and absorption mechanism from different routes, distribution pattern, targeting efficiency, effect of surface functionalization on biodistribution, elimination pathways and toxic effects have been documented. In general, the objective of this review is to boost our knowledge about the interaction of SLNs with the bioenvironment, their movement in, and effect on, a living system and future prospects.
Collapse
|
39
|
Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:982-994. [PMID: 27524099 DOI: 10.1016/j.msec.2016.05.119] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/24/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
This work briefly reviews up-to-date developments in solid lipid nanoparticles (SLNs) as effective nanocolloidal system for drug delivery. It summarizes SLNs in terms of their preparation, surface modification and properties. The application of SLNs as a carrier system enables to improve the therapeutic efficacy of drugs from various therapeutic groups. Present uses of SLNs include cancer therapy, dermatology, bacterial infections, brain targeting and eye disorders among others. The usage of SLNs provides enhanced pharmacokinetic properties and modulated release of drugs. SLN ubiquitous application results from their specific features such as possibility of surface modification, increased permeation through biological barriers, resistance to chemical degradation, possibility of co-delivery of various therapeutic agents or stimuli-responsiveness. This paper will be useful to the scientists working in the domain of SLN-based drug delivery systems.
Collapse
Affiliation(s)
| | - Michał Moritz
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań, Poland.
| |
Collapse
|
40
|
Ma G, Zhao Z, Liu H. Yeast Cells Encapsulating Polymer Nanoparticles as Trojan Particles via in Situ Polymerization inside Cells. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guanglei Ma
- Key Laboratory of Soft Matter
Chemistry, Chinese Academy of Sciences; Department of Polymer Science
and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Zhongqiang Zhao
- Key Laboratory of Soft Matter
Chemistry, Chinese Academy of Sciences; Department of Polymer Science
and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Hewen Liu
- Key Laboratory of Soft Matter
Chemistry, Chinese Academy of Sciences; Department of Polymer Science
and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| |
Collapse
|
41
|
Zhang Y, Feng J, Cui L, Zhang Y, Li W, Li C, Shi N, Chen Y, Kong W. Investigation Into Efficiency of a Novel Glycol Chitosan-Bestatin Conjugate to Protect Thymopoietin Oligopeptides From Enzymatic Degradation. J Pharm Sci 2016; 105:828-837. [PMID: 26173563 DOI: 10.1002/jps.24567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/21/2015] [Accepted: 06/05/2015] [Indexed: 11/09/2022]
Abstract
In this study, a novel glycol chitosan (GCS)-bestatin conjugate was synthesized and evaluated to demonstrate its efficacy in protecting thymopoietin oligopeptides from aminopeptidase-mediated degradation. Moreover, the mechanism and relative susceptibility of three thymopoietin oligopeptides, thymocartin (TP4), thymopentin (TP5), and thymotrinan (TP3), to enzymatic degradation were investigated and compared at the molecular level. Initial investigations indicated that formation of the GCS-bestatin conjugate, with a substitution degree of 7.0% (moles of bestatin per mole of glycol glucosamine unit), could significantly protect all 3 peptides from aminopeptidase-mediated degradation in a concentration-dependent manner. The space hindrance and loss of one pair of hydrogen bonds, resulting from the covalent conjugation of chitosan with bestatin, did not affect the specific interaction between bestatin and aminopeptidase. Moreover, TP4 displayed a higher degradation clearance compared with those of TP5 and TP3 under the same experimental conditions. The varying levels of susceptibility of these 3 peptides to aminopeptidase (TP4 > TP5 > TP3) were closely related to differences in their binding energies to enzyme, which mainly involved Van der Waals forces and electrostatic interactions, as supported by the results of molecular dynamics simulations. These results suggest that GCS-bestatin conjugate might be useful in the delivery of thymopoietin oligopeptides by mucosal routes, and that TP3 and TP5 are better alternatives to TP4 for delivery because of their robust resistance against enzymatic degradation.
Collapse
Affiliation(s)
- Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, China Shijiazhuang Pharmaceutical Group Co., Ltd., Shijiazhuang 050051, China.
| | - Jiao Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lili Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenzhao Li
- Key Laboratory for Molecular Enzymology and Engineering the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunlei Li
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, China Shijiazhuang Pharmaceutical Group Co., Ltd., Shijiazhuang 050051, China
| | - Nianqiu Shi
- Key Laboratory for Molecular Enzymology and Engineering the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; Department of Pharmaceutics, School of Pharmacy, Jilin Medical College, Jilin 132013, China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
42
|
El-Sherbiny IM, El-Baz NM, Yacoub MH. Inhaled nano- and microparticles for drug delivery. Glob Cardiol Sci Pract 2015; 2015:2. [PMID: 26779496 PMCID: PMC4386009 DOI: 10.5339/gcsp.2015.2] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/28/2015] [Indexed: 12/23/2022] Open
Abstract
The 21st century has seen a paradigm shift to inhaled therapy, for both systemic and local drug delivery, due to the lung's favourable properties of a large surface area and high permeability. Pulmonary drug delivery possesses many advantages, including non-invasive route of administration, low metabolic activity, control environment for systemic absorption and avoids first bypass metabolism. However, because the lung is one of the major ports of entry, it has multiple clearance mechanisms, which prevent foreign particles from entering the body. Although these clearance mechanisms maintain the sterility of the lung, clearance mechanisms can also act as barriers to the therapeutic effectiveness of inhaled drugs. This effectiveness is also influenced by the deposition site and delivered dose. Particulate-based drug delivery systems have emerged as an innovative and promising alternative to conventional inhaled drugs to circumvent pulmonary clearance mechanisms and provide enhanced therapeutic efficiency and controlled drug release. The principle of multiple pulmonary clearance mechanisms is reviewed, including mucociliary, alveolar macrophages, absorptive, and metabolic degradation. This review also discusses the current approaches and formulations developed to achieve optimal pulmonary drug delivery systems.
Collapse
Affiliation(s)
- Ibrahim M El-Sherbiny
- Zewail City of Science and Technology, Center for Materials Science, 6 October City, 12588 Giza, Egypt
| | - Nancy M El-Baz
- Zewail City of Science and Technology, Center for Materials Science, 6 October City, 12588 Giza, Egypt
| | - Magdi H Yacoub
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
43
|
Rodrigues S, Cordeiro C, Seijo B, Remuñán-López C, Grenha A. Hybrid nanosystems based on natural polymers as protein carriers for respiratory delivery: Stability and toxicological evaluation. Carbohydr Polym 2015; 123:369-80. [PMID: 25843870 DOI: 10.1016/j.carbpol.2015.01.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/27/2014] [Accepted: 01/21/2015] [Indexed: 12/15/2022]
Abstract
Chitosan/carrageenan/tripolyphosphate nanoparticles were previously presented as holding potential for an application in transmucosal delivery of macromolecules, with tripolyphosphate demonstrating to contribute for both size reduction and stabilisation of the nanoparticles. This work was aimed at evaluating the capacity of the nanoparticles as protein carriers for pulmonary and nasal transmucosal delivery, further assessing their biocompatibility pattern regarding that application. Nanoparticles demonstrated stability in presence of lysozyme, while freeze-drying was shown to preserve their characteristics when glucose or sucrose were used as cryoprotectants. Bovine serum albumin was associated to the nanoparticles, which were successfully microencapsulated by spray-drying to meet the aerodynamic requirements inherent to pulmonary delivery. Finally, a satisfactory biocompatibility profile was demonstrated upon exposure of two respiratory cell lines (Calu-3 and A549 cells) to the carriers. A negligible effect on cell viability along with no alterations on transepithelial electrical resistance and no induction of inflammatory response were observed.
Collapse
Affiliation(s)
- Susana Rodrigues
- CBME - Centre for Molecular and Structural Biomedicine/IBB - Institute for Biotechnology and Bioengineering, University of Algarve, Faculty of Sciences and Technology, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Clara Cordeiro
- Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; CEAUL - Center of Statistics and Applications, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal; CESUAlg - Centre for Research and Development in Health, University of Algarve, Portugal.
| | - Begoña Seijo
- NanoBioFar Group, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain.
| | - Carmen Remuñán-López
- NanoBioFar Group, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain.
| | - Ana Grenha
- CBME - Centre for Molecular and Structural Biomedicine/IBB - Institute for Biotechnology and Bioengineering, University of Algarve, Faculty of Sciences and Technology, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
44
|
Wu C, Zhang M, Zhang Z, Wan KW, Ahmed W, Phoenix DA, Elhissi AMA, Sun X. Thymopentin nanoparticles engineered with high loading efficiency, improved pharmacokinetic properties, and enhanced immunostimulating effect using soybean phospholipid and PHBHHx polymer. Mol Pharm 2014; 11:3371-7. [PMID: 24641274 DOI: 10.1021/mp400722r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formulation of protein and peptide drugs with sustained release properties is crucial to enhance their therapeutic effect and minimize administration frequency. In this study, immunomodulating polymeric systems were designed by manufacturing PHBHHx nanoparticles (NPs) containing thymopentin (TP5). The release profile of the drug was studied over a period of 7 days. The PHBHHx NPs containing TP5-phospholipid (PLC) complex (TP5-PLC) displayed a spherical shape with a mean size, zeta potential, and encapsulation efficiency of 238.9 nm, -32.0 mV, and 72.81%, respectively. The cytotoxicity results showed the PHBHHx NPs had a relatively low toxicity in vitro. TP5 entrapped in the NPs could hardly release in vitro, while the NPs had longer than 7 days release duration after a single subcutaneous injection in Wistar rats. The immunodepression rat model was built to evaluate the immunomodulating effects of TP5-PLC-NPs in vivo. The results of T-lymphocyte subsets (CD3(+), CD4(+), CD8(+), and CD4(+)/CD8(+) ratio) analysis and superoxide dismutase (SOD) values suggested that TP5-PLC-NPs had stronger immunoregulation effects than TP5 solution. In conclusion, an applicable approach to markedly enhancing the loading of a water-soluble peptide into a hydrophobic polymer matrix has been introduced. Thus, TP5-PLC-NPs are promising nanomedicine systems for sustained release effects of TP5.
Collapse
Affiliation(s)
- Chengyu Wu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Cai C, Wang L, Dong W, Tang X. Influence of potential inhalation carriers on stability of thymopentin in rat bronchoalveolar lavage fluid. Drug Deliv 2014; 21:495-500. [DOI: 10.3109/10717544.2013.878002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev 2014; 75:81-91. [PMID: 24915637 DOI: 10.1016/j.addr.2014.05.017] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 01/09/2023]
Abstract
Drug delivery to the lungs by inhalation offers a targeted drug therapy for respiratory diseases. However, the therapeutic efficacy of inhaled drugs is limited by their rapid clearance in the lungs. Carriers providing sustained drug release in the lungs can improve therapeutic outcomes of inhaled medicines because they can retain the drug load within the lungs and progressively release the drug locally at therapeutic levels. This review presents the different formulation strategies developed to control drug release in the lungs including microparticles and the wide array of nanomedicines. Large and porous microparticles offer excellent aerodynamic properties. Their large geometric size reduces their uptake by alveolar macrophages, making them a suitable carrier for sustained drug release in the lungs. Similarly, nanocarriers present significant potential for prolonged drug release in the lungs because they largely escape uptake by lung-surface macrophages and can remain in the pulmonary tissue for weeks. They can be embedded in large and porous microparticles in order to facilitate their delivery to the lungs. Conjugation of drugs to polymers as polyethylene glycol can be particularly beneficial to sustain the release of proteins in the lungs as it allows high protein loading. Drug conjugates can be readily delivered to respiratory airways by any current nebulizer device. Nonetheless, liposomes represent the formulation most advanced in clinical development. Liposomes can be prepared with lipids endogenous to the lungs and are particularly safe. Their composition can be adjusted to modulate drug release and they can encapsulate both hydrophilic and lipophilic compounds with high drug loading.
Collapse
Affiliation(s)
- Cristina Loira-Pastoriza
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Todoroff
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Rita Vanbever
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
47
|
Cipolla D, Shekunov B, Blanchard J, Hickey A. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv Drug Deliv Rev 2014; 75:53-80. [PMID: 24819218 DOI: 10.1016/j.addr.2014.05.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 12/31/2022]
Abstract
A number of lipid-based technologies have been applied to pharmaceuticals to modify their drug release characteristics, and additionally, to improve the drug loading for poorly soluble drugs. These technologies, including solid-state lipid microparticles, many of which are porous in nature, liposomes, solid lipid nanoparticles and nanostructured lipid carriers, are increasingly being developed for inhalation applications. This article provides a review of the rationale for the use of these technologies in the pulmonary delivery of drugs, and summarizes the manufacturing processes and their limitations, the in vitro and in vivo performance of these systems, the safety of these lipid-based systems in the lung, and their promise for commercialization.
Collapse
Affiliation(s)
- David Cipolla
- Aradigm Corporation, 3929 Point Eden Way, Hayward, CA 94545, USA.
| | - Boris Shekunov
- Shire Corporation, 725 Chesterbrook Blvd, Wayne, PA 19087, USA
| | - Jim Blanchard
- Aradigm Corporation, 3929 Point Eden Way, Hayward, CA 94545, USA
| | - Anthony Hickey
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
48
|
d'Angelo I, Conte C, La Rotonda MI, Miro A, Quaglia F, Ungaro F. Improving the efficacy of inhaled drugs in cystic fibrosis: challenges and emerging drug delivery strategies. Adv Drug Deliv Rev 2014; 75:92-111. [PMID: 24842473 DOI: 10.1016/j.addr.2014.05.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/23/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023]
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease in Caucasians associated with early death. Although the faulty gene is expressed in epithelia throughout the body, lung disease is still responsible for most of the morbidity and mortality of CF patients. As a local delivery route, pulmonary administration represents an ideal way to treat respiratory infections, excessive inflammation and other manifestations typical of CF lung disease. Nonetheless, important determinants of the clinical outcomes of inhaled drugs are the concentration/permanence at the lungs as well as the ability of the drug to overcome local extracellular and cellular barriers. This review focuses on emerging delivery strategies used for local treatment of CF pulmonary disease. After a brief description of the disease and formulation rules dictated by CF lung barriers, it describes current and future trends in inhaled drugs for CF. The most promising advanced formulations are discussed, highlighting the advantages along with the major challenges for researchers working in this field.
Collapse
Affiliation(s)
- Ivana d'Angelo
- Di.S.T.A.B.i.F., Second University of Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Claudia Conte
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Maria Immacolata La Rotonda
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Agnese Miro
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Fabiana Quaglia
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Francesca Ungaro
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
49
|
Affiliation(s)
- Nathalie Wauthoz
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy; Université Libre de Bruxelles (ULB); Brussels Belgium
| | - Karim Amighi
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy; Université Libre de Bruxelles (ULB); Brussels Belgium
| |
Collapse
|
50
|
Mehanna MM, Mohyeldin SM, Elgindy NA. Respirable nanocarriers as a promising strategy for antitubercular drug delivery. J Control Release 2014; 187:183-97. [PMID: 24878180 DOI: 10.1016/j.jconrel.2014.05.038] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/16/2023]
Abstract
Tuberculosis is considered a fatal respiratory infectious disease that represents a global threat, which must be faced. Despite the availability of oral conventional anti-tuberculosis therapy, the disease is characterized by high progression. The leading causes are poor patient compliance and failure to adhere to the drug regimen primarily due to systemic toxicity. In this context, inhalation therapy as a non-invasive route of administration is capable of increasing local drug concentrations in lung tissues, the primary infection side, by passive targeting as well as reducing the risk of systemic toxicity and hence improving the patient compliance. Nanotechnology represents a promising strategy in the development of inhaled drug delivery systems. Nanocarriers can improve the drug effectiveness and decrease the expected side effects as consequences of their ability to target the drug to the infected area as well as sustain its release in a prolonged manner. The current review summarizes the state-of-the-art in the development of inhaled nanotechnological carriers confined currently available anti-tuberculosis drugs (anti TB) for local and targeting drug delivery specifically, polymeric nanoparticles, solid lipid nanoparticles, nanoliposomes and nanomicelles. Moreover, complexes and ion pairs are also reported. The impact and progress of nanotechnology on the therapeutic effectiveness and patient adherence to anti TB regimen are addressed.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Salma M Mohyeldin
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nazik A Elgindy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|