1
|
Kozakiewicz-Latała M, Dyba AJ, Marciniak D, Szymczyk-Ziółkowska P, Cieszko M, Nartowski KP, Nowak M, Karolewicz B. PVA-based formulations as a design-technology platform for orally disintegrating film matrices. Int J Pharm 2024; 665:124666. [PMID: 39265848 DOI: 10.1016/j.ijpharm.2024.124666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
In the majority of pharmaceutical applications, polymers are employed extensively in a diverse range of pharmaceutical products, serving as indispensable components of contemporary solid oral dosage forms. A comprehensive understanding of the properties of polymers and selection the appropriate methods of characterization is essential for the design and development of novel drug delivery systems and manufacturing processes. Orally disintegrating film (ODF) formulations are considered to be a potential substitute to traditional oral dosage forms and an alternative method of drug administration for children and uncooperative adult patients, including those with swallowing difficulties. A multitude of pharmaceutical formulations with varying mechanical and biopharmaceutical properties have emerged from the modification of the original polymeric bulk. Here we propose different formulation approaches, i.e. solvent casting (SC), 3D printing (3DP), electrospinning (ES), and lyophilization (LP) that enabled us to adjust the disintegration time and the release profile of poorly water soluble haloperidol (HAL, BCS class II) from PVA (polyvinyl alcohol) based polymer films while maintaining similar hydrogel composition. In this study, the solubility of haloperidol in aqueous solution was improved by the addition of lactic acid. The prepared films were evaluated for their morphology (SEM, micro-CT), physicochemical and biopharmaceutical properties. TMDSC, TGA and PXRD were employed for extensive thermal and structural analysis of fabricated materials and their stability. These results allowed us to establish correlations between preparation technology, structural characteristics and properties of PVA films and to adapt the suitable manufacturing technique of the ODFs to achieve appropriate HAL dissolution behaviour.
Collapse
Affiliation(s)
- Marta Kozakiewicz-Latała
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Aleksandra J Dyba
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Dominik Marciniak
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies (CAMT/FPC), Wroclaw University of Science and Technology, Lukasiewicza 5, 50-371 Wroclaw, Poland
| | - Mieczysław Cieszko
- Department of Mechanics of Porous Materials, Faculty of Mechatronics, Kazimierz Wielki University, Kopernika 1, 85-074 Bydgoszcz, Poland
| | - Karol P Nartowski
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Maciej Nowak
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Bożena Karolewicz
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland.
| |
Collapse
|
2
|
Corrie L, Ajjarapu S, Banda S, Parvathaneni M, Bolla PK, Kommineni N. HPMCAS-Based Amorphous Solid Dispersions in Clinic: A Review on Manufacturing Techniques (Hot Melt Extrusion and Spray Drying), Marketed Products and Patents. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6616. [PMID: 37895598 PMCID: PMC10608006 DOI: 10.3390/ma16206616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Today, therapeutic candidates with low solubility have become increasingly common in pharmaceutical research pipelines. Several techniques such as hot melt extrusion, spray drying, supercritical fluid technology, electrospinning, KinetiSol, etc., have been devised to improve either or both the solubility and dissolution to enhance the bioavailability of these active substances belonging to BCS Class II and IV. The principle involved in all these preparation techniques is similar, where the crystal lattice of the drug is disrupted by either the application of heat or dissolving it in a solvent and the movement of the fine drug particles is arrested with the help of a polymer by either cooling or drying to remove the solvent. The dispersed drug particles in the polymer matrix have higher entropy and enthalpy and, thereby, higher free energy in comparison to the crystalline drug. Povidone, polymethaacrylate derivatives, hydroxypropyl methyl cellulose (HPMC) and hydroxypropyl methylcellulose acetate succinate derivatives are commonly used as polymers in the preparation of ASDs. Specifically, hydroxypropylmethylcellulose acetate succinate (HPMCAS)-based ASDs have become well established in commercially available products and are widely explored to improve the solubility of poorly soluble drugs. This article provides an analysis of two widely used manufacturing techniques for HPMCAS ASDs, namely, hot melt extrusion and spray drying. Additionally, details of HPMCAS-based ASD marketed products and patents have been discussed to emphasize the commercial aspect.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | | | - Srikanth Banda
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
| | - Madhukiran Parvathaneni
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA;
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | | |
Collapse
|
3
|
Chougule M, Sirvi A, Saini V, Kashyap M, Sangamwar AT. Enhanced biopharmaceutical performance of brick dust molecule nilotinib via stabilized amorphous nanosuspension using a facile acid-base neutralization approach. Drug Deliv Transl Res 2023; 13:2503-2519. [PMID: 37024611 DOI: 10.1007/s13346-023-01334-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
"Brick dust" compounds have high lattice energy as manifested by the poor aqueous solubility and suboptimal bioavailability. Nilotinib being a weakly basic brick dust molecule exhibits erratic and limited absorption during gastrointestinal transit, attributed to pre-absorptive factors like pH-dependent solubility, poor dissolution kinetics, and post-absorptive factors including P-gp-mediated drug efflux. In our study, these problems are addressed holistically by the successful fabrication of amorphous nanosuspension by an acid-base neutralization approach. The nanosuspension was obtained via rapid precipitation of nilotinib in an amorphous form and the generated in situ sodium chloride salt assisted in stabilizing the drug-loaded nanosuspension in a cage of salt and micellar stabilizer. Soluplus® and hypromellose acetate succinate (HPMCAS) were employed as a novel combination of stabilizers. Systematic optimization was carried out by employing the I-optimal method using Design Expert® software with a concentration of HPMCAS and Soluplus® as independent variables and evaluating them for responses viz particle size, polydispersity index (PDI), and zeta potential. The resultant nanosuspension showed a mean particle size of 130.5 ± 1.22 nm with a PDI value of 0.27 ± 0.01, and a zeta potential of - 5.21 ± 0.91 mV. The nanosuspension was further characterized for morphology, dissolution, and in vivo pharmacokinetics study. X-ray powder diffraction study of the nano-formulation displayed a halo pattern revealing the amorphous form. Stability studies showed that the nanosuspension remained stable at 40 °C ± 2 °C and 75% RH ± 5% RH for a period of three months. In vitro drug release and solubility study showed threefold and 36-fold enhancement in dissolution and solubility of the nanosuspension. Furthermore, an in vivo pharmacokinetic study in Sprague-Dawley rats following oral administration displayed a 1.46-fold enhancement in the relative bioavailability of the nanosuspension in contrast to neat nilotinib.
Collapse
Affiliation(s)
- Mahendra Chougule
- Department of Pharmaceutical Technology and Formulations, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Vanshul Saini
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Mahesh Kashyap
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
4
|
Bio-enabling strategies to mitigate the pharmaceutical food effect: a mini review. Int J Pharm 2022; 619:121695. [PMID: 35339633 DOI: 10.1016/j.ijpharm.2022.121695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/02/2022] [Accepted: 03/19/2022] [Indexed: 12/27/2022]
Abstract
The concomitant administration of oral drugs with food can result in significant changes in bioavailability, leading to variable pharmacokinetics and considerable clinical implications, such as over- or under-dosing. Consequently, there is increasing demand for bio-enabling formulation strategies to reduce variability in exposure between the fasted and fed state and/or mitigate the pharmaceutical food effect. The current review critically evaluates technologies that have been implemented to overcome the positive food effects of pharmaceutical drugs, including, lipid-based formulations, nanosized drug preparations, cyclodextrins, amorphisation and solid dispersions, prodrugs and salts. Additionally, improved insight into preclinical models for predicting the food effect is provided. Despite the wealth of research, this review demonstrates that application of optimal formulation strategies to mitigate the positive food effects and the evaluation in preclinical models is not a universal approach, and improved standardisation of models to predict the food effects would be desirable. Ultimately, the successful reformulation of specific drugs to eliminate the food effect provides a panoply of advantages for patients with regard to clinical efficacy and compliance.
Collapse
|
5
|
Meola TR, Joyce P, Wignall A, Bremmell KE, Prestidge CA. Harnessing the potential of nanostructured formulations to mimic the food effect of lurasidone. Int J Pharm 2021; 608:121098. [PMID: 34534629 DOI: 10.1016/j.ijpharm.2021.121098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023]
Abstract
Lurasidone is an important antipsychotic drug indicated for the treatment of schizophrenia and bipolar disorder, with an oral bioavailability of 9-19% owing to its poor aqueous solubility. Additionally, lurasidone exhibits a 2-fold positive food effect, such that patients must administer their medication with a meal, leading to significant non-compliance. The aim of this research was to evaluate the in vitro and in vivo performance of lurasidone when engineered as nanostructured systems. Specifically, a nanosuspension, nano-emulsion and silica-lipid hybrid (SLH) microparticles were formulated and the influence of composition and nanostructure on the mechanism of solubilisation was compared. Formulations were shown to enhance fasted state solubilisation levels in vitro by up to 5.9-fold, compared to pure drug. Fed- and fasted-state solubilisation profiles revealed that in contrast to the nanosuspension and nano-emulsion, lurasidone SLH mitigated the positive pharmaceutical effect of lurasidone. In vivo pharmacokinetic evaluations revealed that the nanosuspension, nano-emulsion and SLH enhanced the bioavailability of lurasidone by 3-fold, 2.4-fold and 8.8-fold, respectively, compared to pure drug after oral administration. For lurasidone, the combination of lipid-based nanostructure and porous silica nanostructure (SLH) led to optimal fasted state bioavailability which can ultimately result in enhanced treatment efficacy, easier dosing regimens and improved patient outcomes.
Collapse
Affiliation(s)
- Tahlia R Meola
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, South Australia 5000, Australia
| | - Paul Joyce
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, South Australia 5000, Australia
| | - Anthony Wignall
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, South Australia 5000, Australia
| | - Kristen E Bremmell
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, South Australia 5000, Australia
| | - Clive A Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
6
|
Liu W, Wang S, Lu W, Cheng Z, Jiang N. Sustained Release Ziprasidone Microparticles Prepared by Spray Drying with Soluplus® and Ethyl Cellulose to Eliminate Food Effect and Enhance Bioavailability. AAPS PharmSciTech 2019; 21:27. [PMID: 31858315 DOI: 10.1208/s12249-019-1592-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/25/2019] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to develop and evaluate a new formulation of ziprasidone (ZIP) for improved fasted state absorption and sustained drug release. ZIP solid dispersions were produced via spray drying using Soluplus®, an amphiphilic polymer, as the solubility enhancer. Physicochemical analysis proved that ZIP presented at amorphous state in the spray-dried microparticles and the dissolution rate of ZIP from the Soluplus®-ZIP composite microparticles was significantly increased compared with that of the physical mixtures. Commonly used encapsulation materials including Eudragit® RL, Eudragit® S100 and Ethyl Cellulose were incorporated into the solid dispersions to regulate the drug release kinetics. The formulation containing ethyl cellulose provided the most sustained release behaviors. Pharmacokinetic studies in beagle dogs confirmed that there was no significant difference in oral bioavailability of the microparticles under fasted and fed states, and a prolonged Tmax value was simultaneously achieved compared with the commercial ZIP capsules.
Collapse
|
7
|
Biesdorf C, Martins FS, Sy SKB, Diniz A. Physiologically-based pharmacokinetics of ziprasidone in pregnant women. Br J Clin Pharmacol 2019; 85:914-923. [PMID: 30669177 DOI: 10.1111/bcp.13872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/29/2018] [Accepted: 01/06/2019] [Indexed: 01/19/2023] Open
Abstract
AIMS Pregnancy is associated with physiological changes that alter the pharmacokinetics (PK) of drugs. The aim of this study was to predict the PK of ziprasidone in pregnant women. METHODS A full physiologically-based pharmacokinetic (PBPK) model of ziprasidone was developed and validated for the non-pregnant population (healthy adults, paediatrics, geriatrics), and this was extended to the pregnant state to assess the change in PK profile of ziprasidone throughout pregnancy. RESULTS The PBPK model successfully predicted the ziprasidone disposition in healthy adult volunteers, wherein the predicted and observed AUC, Cmax and tmax were within the fold-difference of 0.94-1.09, 0.89-1.40 and 0.80-1.08, respectively. The paediatric and geriatric population, also showed predicted AUC, Cmax and tmax within a two-fold range of the observed values. The simulated exposure in pregnant women using a p-PBPK model showed no significant difference when compared to non-pregnant women. CONCLUSIONS The PBPK model predicted the impact of physiological changes during pregnancy on PK and exposure of ziprasidone, suggesting that dose adjustment is not necessary in this special population.
Collapse
Affiliation(s)
- Carla Biesdorf
- Department of Pharmacy, State University of Maringá, Maringá, Brazil
| | | | - Sherwin K B Sy
- Department of Statistics, State University of Maringá, Maringá, Brazil
| | - Andrea Diniz
- Department of Pharmacy, State University of Maringá, Maringá, Brazil
| |
Collapse
|
8
|
Xue X, Chen G, Xu X, Wang J, Wang J, Ren L. A Combined Utilization of Plasdone-S630 and HPMCAS-HF in Ziprasidone Hydrochloride Solid Dispersion by Hot-Melt Extrusion to Enhance the Oral Bioavailability and No Food Effect. AAPS PharmSciTech 2019; 20:37. [PMID: 30604142 DOI: 10.1208/s12249-018-1216-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/08/2018] [Indexed: 01/28/2023] Open
Abstract
The purpose of this study was to research a novel combination of Plasdone-S630 and HPMCAS-HF as hot-melt carrier used in ziprasidone hydrochloride for enhanced oral bioavailability and dismissed food effect. Ziprasidone hydrochloride solid dispersion (ZH-SD) was prepared by hot-melt extrusion technique, and its optimized formulation was selected by the central composite design (CCD), which was characterized for powder X-ray diffraction (PXRD), fourier transform infrared spectroscopy (FTIR), in vitro dissolution study, and stability study. Finally, the in vivo study in fasted/fed state was carried out in beagle dogs. Based on PXRD analysis, HME technique successfully dispersed ziprasidone with a low crystallinity hydrochloride form in the polymers. According to the analysis of FTIR, hydrogen bonds were formed between drug and polymers during the process of HME. Without any noticeable bulk, crystalline could be found from the micrograph of ZH-SD when analyzed the result of scanning electron microscope (SEM). Pharmacokinetics studies indicated that the bioavailability of ZH-SD formulation had no significant difference in fasted and fed state, and the Cmax and AUC of ZH-SD were two fold higher than Zeldox® in fasted state. This result indicated that ziprasidone has achieved a desired oral bioavailability in fasted state and no food effect.
Collapse
|
9
|
Meola TR, Dening TJ, Prestidge CA. Nanocrystal-silica-lipid hybrid particles for the improved oral delivery of ziprasidone in vitro. Eur J Pharm Biopharm 2018; 129:145-153. [DOI: 10.1016/j.ejpb.2018.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 01/21/2023]
|
10
|
O'Shea JP, Holm R, O'Driscoll CM, Griffin BT. Food for thought: formulating away the food effect - a PEARRL review. ACTA ACUST UNITED AC 2018; 71:510-535. [PMID: 29956330 DOI: 10.1111/jphp.12957] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/03/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Co-ingestion of oral dosage forms with meals can cause substantial changes in bioavailability relative to the fasted state. Food-mediated effects on bioavailability can have significant consequences in drug development, regulatory and clinical settings. To date, the primary focus of research has focused on the ability to mechanistically understand the causes and predict the occurrence of these effects. KEY FINDINGS The current review describes the mechanisms underpinning the occurrence of food effects, sheds new insights on the relative frequency for newly licensed medicines and describes the various methods by which they can be overcome. Analysis of oral medicines licensed by either the EMA or FDA since 2010 revealed that over 40% display significant food effects. Due to altered bioavailability, these medicines are often required to be dosed, rather restrictively, in either the fed or the fasted state, which can hinder clinical usefulness. SUMMARY There are clinical and commercial advantages to predicting the presence of food effects early in the drug development process, in order to mitigate this risk of variable food effect bioavailability. Formulation approaches aimed at reducing variable food-dependent bioavailability, through the use of bio-enabling formulations, are an essential tool in addressing this challenge and the latest state of the art in this field are summarised here.
Collapse
Affiliation(s)
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson and Johnson, Beerse, Belgium
| | | | | |
Collapse
|
11
|
Ziprasidone nanocrystals by wet media milling followed by spray drying and lyophilization: Formulation and process parameter optimization. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Jermain SV, Brough C, Williams RO. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery – An update. Int J Pharm 2018; 535:379-392. [DOI: 10.1016/j.ijpharm.2017.10.051] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 11/29/2022]
|
13
|
Basalious EB, Abdallah Ahmed M. Phospholipid based self-nanoemulsifying self-nanosuspension (p-SNESNS) as a dual solubilization approach for development of formulation with diminished food effect: Fast/fed in vivo pharmacokinetics study in human. Eur J Pharm Sci 2017; 109:244-252. [PMID: 28823855 DOI: 10.1016/j.ejps.2017.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 11/30/2022]
Abstract
The novel self- nanoemulsifying self-nanosuspension (SNESNS) combines the advantages of two efficient solubilization technologies; the nanoemulsion and the nanosuspension. The aim of this study is to test the efficiency of phospholipid based self-nanoemulsifying self-nanosuspension (p-SNESNS) formulation as a powerful tool to diminish the food effect on bioavailability of lurasidone hydrochloride as BCS Class II model drug. Phospholipid was incorporated into SNESNS to increase the solubilization power of the in-situ formed nanoemulsion and facilitate the dispersion of the in-situ formed nanosized drug particles. P-SNESNS was evaluated for particle size, Polydispersity index, in vitro dissolution and transmission electron microscopy (TEM). The drug amount dissolved after water dilution of LSD p-SNESNS was ~2 folds that dissolved after dilution of non-phospholipid SNESNS. The self-nanosuspension obtained by aqueous dilution of p-SNESNS kept the cubic morphology of LSD macroparticles. The high in vitro dissolution of LSD in the non-sink dissolution media (water and Phosphate buffer pH6.8) indicated that the p-SNESNS formulation had successfully increased the drug solubility irrespective of pH of the medium. The pharmacokinetics parameters of LSD p-SNESNS in humans were the same in both the fasted and fed states and were similar to those of LSD capsules in the fed state. Our results propose that p-SNESNS could be promising to increase patient compliance and drug efficiency of BCS class II antipsychotics by diminishing the food effect on their oral absorption and preventing the necessity to administer them with food.
Collapse
Affiliation(s)
- Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - M Abdallah Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
14
|
Sutton SC, Nause R, Gandelman K. The impact of gastric pH, volume, and emptying on the food effect of ziprasidone oral absorption. AAPS JOURNAL 2017; 19:1084-1090. [PMID: 28321831 DOI: 10.1208/s12248-017-0065-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/23/2017] [Indexed: 11/30/2022]
Abstract
In a recent food effect clinical study, the authors concluded that a meal consisting of ≥500 kcal, regardless of fat content, produced the maximal bioavailability for ziprasidone. Using GastroPlus™, a commercially available pharmacokinetic simulation software, a semiphysiological model-a kind of physiologically based pharmacokinetic (PBPK) absorption model-was developed that could predict the concentration-time profiles when ziprasidone was administered with any one of the five test meals or fasting. Ziprasidone intravenous pharmacokinetics and oral absorption permeability were determined from clinical studies following the intravenous and duodenal infusion of ziprasidone to volunteers. From the detailed dietary information of each meal provided in the previously published food effect study, the stomach pH, volume, and gastric emptying could be predicted. Incorporating these meal-specific parameters into the model improved the predictions beyond the default fed/fasted parameters commonly used in the software. Compared to the default models, the improved models resulted in an improved prediction of the average ziprasidone concentration-time profile for each meal. Using this type of semiphysiological absorption model, we have shown that the dietary contents of the meals should be taken into account to predict food effects for ziprasidone and perhaps other BCS class I or II compounds.
Collapse
Affiliation(s)
- Steven C Sutton
- College of Pharmacy, University of New England, Portland, Maine, 04103, USA.
| | | | | |
Collapse
|
15
|
Caldwell WB, Kaushal AM. Multiparticulate Technologies for Fixed-Dose Combinations. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1007/978-1-4939-7012-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Silica encapsulated lipid-based drug delivery systems for reducing the fed/fasted variations of ziprasidone in vitro. Eur J Pharm Biopharm 2016; 101:33-42. [DOI: 10.1016/j.ejpb.2016.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 12/23/2022]
|
17
|
Miao Y, Chen G, Ren L, Ouyang P. Preparation and evaluation of ziprasidone–phospholipid complex from sustained-release pellet formulation with enhanced bioavailability and no food effect. J Pharm Pharmacol 2016; 68:185-94. [DOI: 10.1111/jphp.12510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/29/2015] [Indexed: 12/20/2022]
Abstract
Abstract
Objectives
The purpose of this work was to develop ziprasidone–phospholipid complex (ZIP-PLC) in sustained-release pellets to enhance the oral bioavailability and overcome the food effect of ziprasidone.
Methods
Ziprasidone–phospholipid complex was formulated by solvent-evaporation method. The complexes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and solubility testing. The optimized ZIP-PLC was used to prepare ZIP-PLC sustained-release pellets via extrusion–spheronization method. The pellets were characterized by in vitro drug-release studies and administered to fasted and fed beagle dogs, and their pharmacokinetics were compared with commercial formulation Zeldox capsule as a control.
Key findings
The results of FTIR, SEM, DSC and PXRD studies confirmed the formation of phospholipid complex. Solubility studies showed there was a higher solubility in water for ZIP-PLC than monohydrate ziprasidoe. The in vitro release rate of ziprasidone from the ZIP-PLC sustained-release pellet exhibited controlled-release characteristics with over 95% total release in 12 h. Pharmacokinetic studies in beagle dogs showed ziprasidone with prolong actions, and no food effect was achieved simultaneously in ZIP-PLC sustained-release pellet compared with Zeldox capsule.
Conclusions
The results indicated a sustained release with prolonged actions of schizophrenia and bipolar disorder treatment.
Collapse
Affiliation(s)
- Yanfei Miao
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Guoguang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Lili Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Pingkai Ouyang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
18
|
Dening TJ, Rao S, Thomas N, Prestidge CA. Oral nanomedicine approaches for the treatment of psychiatric illnesses. J Control Release 2015; 223:137-156. [PMID: 26739547 DOI: 10.1016/j.jconrel.2015.12.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/12/2023]
Abstract
Psychiatric illnesses are a leading cause of disability and morbidity globally. However, the preferred orally dosed pharmacological treatment options available for depression, anxiety and schizophrenia are often limited by factors such as low drug aqueous solubility, food effects, high hepatic first-pass metabolism effects and short half-lives. Furthermore, the discovery and development of more effective psychotropic agents has stalled in recent times, with the majority of new drugs reaching the market offering similar efficacy, but suffering from the same oral delivery concerns. As such, the application of nanomedicine formulation approaches to currently available drugs is a viable option for optimizing oral drug delivery and maximizing treatment efficacy. This review focuses on the various delivery challenges encountered by psychotropic drugs, and the ability of nanomedicine formulation strategies to overcome these. Specifically, we critically review proof of concept in vitro and in vivo studies of nanoemulsions/microemulsions, solid lipid nanoparticles, dendrimers, polymeric micelles, nanoparticles of biodegradable polymers and nanosuspensions, and provide new insight into the various mechanisms for improved drug performance. The advantages and limitations of current oral nanomedicine approaches for psychotropic drugs are discussed, which will provide guidance for future research directions and assist in fostering the translation of such delivery systems to the clinical setting. Accordingly, emphasis has been placed on correlating the in vitro/in vivo performance of these nanomedicine approaches with their potential clinical outcomes and benefits for patients.
Collapse
Affiliation(s)
- Tahnee J Dening
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Shasha Rao
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Nicky Thomas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
19
|
Abstract
In this work, we discuss leveraging the Biopharmaceutics Classification System (BCS) in the development of edivoxetine HCl, a selective norepinephrine reuptake inhibitor. First, the biopharmaceutical and in vivo data are presented and discussed. Solubility studies indicate that edivoxetine HCl meets the BCS "highly soluble" criteria. To determine permeability classifications, in vitro intestinal Caco-2 epithelial cell model with and without cyclosporin A (CsA), a common P-glycoprotein (P-gp) inhibitor, were conducted. Pharmacokinetic (PK) data obtained across phase 1 and 2 clinical studies where single and multiple doses range from the lowest to the highest strength are presented. Neither the Caco-2 nor the in vivo data on their own were sufficient to conclusively classify edivoxetine as highly permeable. However, collectively the data were utilized to support high permeability and consequently BCS1 classification of edivoxetine HCl. BCS1 classification was leveraged throughout development to assess the risk associated with not conducting relative bioavailability (RBA) studies and avoiding bioequivalence (BE) studies. Examples are presented where formulation changes were made between phase I (drug in capsule/drug in bottle formulations) and phase II (tablet) trials in addition to phase III (tablet) and commercial (smaller tablet) without having to conduct any in vivo comparability studies. For the first change, BCS was leveraged to avoid conducting a RBA study even before obtaining official BCS classification. For the later change, official BCS1 classification was relied upon to avoid conducting a BE study.
Collapse
Affiliation(s)
- Cherokee Sue Hoaglund Hyzer
- Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 46285, United States
| | - Hala M Fadda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University , Indianapolis, Indiana 46208, United States
| | - Jole O Rodriguez
- Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 46285, United States
| | - Aktham Aburub
- Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 46285, United States
| |
Collapse
|
20
|
Thombre AG, Shamblin SL, Malhotra BK, Connor AL, Wilding IR, Caldwell WB. Pharmacoscintigraphy studies to assess the feasibility of a controlled release formulation of ziprasidone. J Control Release 2015; 213:10-17. [DOI: 10.1016/j.jconrel.2015.06.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/08/2015] [Accepted: 06/23/2015] [Indexed: 11/25/2022]
|
21
|
Abstract
Drug-drug interactions (DDI) are a major topic in programs for continuous medical education (CME). Many physicians are afraid of being trapped into charges of malpractice; however, DDI cannot be avoided in many cases. They belong to routine medical practice and it is often impossible to avoid them. Moreover, they do not just occur between drugs but between any kind of foreign substance (xenobiotica), such as food (e.g. grapefruit juice, broccoli, barbecue) as well as legal (e.g. tobacco smoke, caffeine and alcohol) and illegal drugs. Therefore, the medical challenge is not just to avoid any interaction. Instead the physician faces the question of how to proceed with drug treatment in the presence of such interactions. Based on the medical education a physician has to judge first of all whether there is a risk for interactions in the prescription being planned for an individual patient. The classification of interactions proposed in this article (PD1-PD4, PK1-PK3) might help as a sort of check list. For more detailed information the physician can then consult one of the many databases available on the internet, such as PSIAConline (http://www.psiac.de) and MediQ (http://www.mediq.ch). Pharmacokinetic interactions can be easily assessed, monitored and controlled by therapeutic drug monitoring (TDM). Besides these tools it is important to keep in mind that nobody knows everything; even physicians do not know everything. So take pride in asking someone who might help and for this purpose AGATE offers a drug information service AID (http://www.amuep-agate.de). Just good for nothing, without being based on any kind of medical approach are computer programs that judge prescriptions without taking into account a patient's individual peculiarities. In case these types of programs produce red exclamation marks or traffic lights to underline their judgment, they might even work in a contrapuntal way by just eliciting insecurity and fear.
Collapse
Affiliation(s)
- E Haen
- Klinische Pharmakologie am Lehrstuhl mit Poliklinik für Psychiatrie und Psychotherapie, Universität Regensburg, Universitätsstr. 84, 93053, Regensburg, Deutschland,
| |
Collapse
|
22
|
Miao Y, Chen G, Ren L, Pingkai O. Characterization and evaluation of self-nanoemulsifying sustained-release pellet formulation of ziprasidone with enhanced bioavailability and no food effect. Drug Deliv 2014; 23:2163-2172. [DOI: 10.3109/10717544.2014.950768] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yanfei Miao
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China and
| | - Guoguang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Lili Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Ouyang Pingkai
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China and
| |
Collapse
|
23
|
Yanfei M, Guoguang C, Lili R, Pingkai O. Controlled release of ziprasidone solid dispersion systems from osmotic pump tablets with enhanced bioavailability in the fasted state. Drug Dev Ind Pharm 2014; 41:1353-62. [DOI: 10.3109/03639045.2014.950273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Koziolek M, Grimm M, Garbacz G, Kühn JP, Weitschies W. Intragastric volume changes after intake of a high-caloric, high-fat standard breakfast in healthy human subjects investigated by MRI. Mol Pharm 2014; 11:1632-9. [PMID: 24697247 DOI: 10.1021/mp500022u] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this magnetic resonance imaging (MRI) study was to investigate gastric emptying after intake of a high-caloric and high-fat standard meal as recommended by FDA and EMA for food-effect bioavailability and fed bioequivalence studies. Twelve healthy human subjects (7 male, 5 female) received the standard meal after an overnight fast. MRI was performed before as well as 15, 25, 35, 45, 55, 65, 105, 195, 275, and 375 min after meal intake using strong T2-weighted sequences and chemical shift imaging. In addition, 30 min after the beginning of meal intake subjects ingested 240 mL of water representing the recommended coadministration of water during drug intake. Gastric content volume was assessed using T2-weighted images, and fat fraction was estimated using a calculation of fat fraction in chemical shift imaging. In addition, the existence of a mechanism allowing fast gastric emptying of water in the fed state was investigated. After a lag phase of 50-90 min, gastric content volume decreased constantly with a rate of 1.7 mL/min. The water ingested 30 min after the start of the meal intake directly reached the antrum and subsequently was emptied quickly from the human stomach. Complete gastric emptying within 6 h was observed in only one out of 12 subjects. The fat fraction of the intragastric chyme decreased from 9.5% directly after meal intake to 6.3% at the end of the experiments. Moreover, the fat fraction in fundus was significantly higher compared to the antrum. This study contributes fundamental data for the assessment of food effects of solid oral dosage forms.
Collapse
Affiliation(s)
- Mirko Koziolek
- Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), Ernst Moritz Arndt University of Greifswald , Felix-Hausdorff-Straße 3, D-17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
25
|
Supersolubilization by Using Nonsalt-Forming Acid-Base Interaction. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4939-1598-9_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Brough C, Williams RO. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm 2013; 453:157-66. [PMID: 23751341 DOI: 10.1016/j.ijpharm.2013.05.061] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
Poor water-solubility is a common characteristic of drug candidates in pharmaceutical development pipelines today. Various processes have been developed to increase the solubility, dissolution rate and bioavailability of these active ingredients belonging to BCS II and IV classifications. Over the last decade, nano-crystal delivery forms and amorphous solid dispersions have become well established in commercially available products and industry literature. This article is a comparative analysis of these two methodologies primarily for orally delivered medicaments. The thermodynamic and kinetic theories relative to these technologies are presented along with marketed product evaluations and a survey of commercial relevant scientific literature.
Collapse
Affiliation(s)
- Chris Brough
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, 1 University Station, Campus Mail Code A1902, Austin, TX 78712, United States.
| | | |
Collapse
|
27
|
Abstract
Pediatric behavioral and affective disorders often require antipsychotic therapy, in combination with psychotherapeutic interventions, for their treatment and stabilization. Although pharmacotherapy can include either typical or atypical antipsychotics, the latter are generally preferred because of their apparently lower risk of adverse effects. Recent controlled trials have demonstrated the efficacy of some of these agents (including aripiprazole, clozapine, olanzapine, paliperidone, quetiapine, risperidone, ziprasidone) in adolescent schizophrenia and children or adolescent bipolar mania, or to treat severe aggression and self-injury in the context of autism in children and adolescents. Although few studies have systematically monitored their short- and, more importantly, long-term safety, current evidence indicates that sedation, hyperprolactinemia, and metabolic abnormalities such as excess weight gain, diabetes, and related cardiovascular effects were clinically relevant adverse effects in young patients, with the individual agents differing in their propensity to induce these effects. When prescribing antipsychotics for children and adolescents, physicians should therefore be aware of the specific adverse effect profiles and patients should be closely monitored for the short- and long-term development of adverse events. In pediatric patients, the starting dose, titration plan, and maintenance dose of antipsychotics must be based on their pharmacokinetics and metabolism, as in adults. Because there are significant individual differences in drug and active metabolite(s) pharmacokinetics and metabolism, which may be further affected by a number of confounding factors (including demographic variables, phenotype and drug interactions), therapeutic drug monitoring may be a valid tool for individualizing dosage, but its interpretation should also take account of changes in pharmacodynamic sensitivity with the development during childhood and adolescence.
Collapse
Affiliation(s)
- Silvio Caccia
- Istituto di Ricerche Farmacologiche IRCCS-Mario Negri, via Giuseppe La Masa 19, 20156 Milan, Italy.
| |
Collapse
|
28
|
Singh S, Parikh T, Sandhu HK, Shah NH, Malick AW, Singhal D, Serajuddin ATM. Supersolubilization and Amorphization of a Model Basic Drug, Haloperidol, by Interaction with Weak Acids. Pharm Res 2013; 30:1561-73. [DOI: 10.1007/s11095-013-0994-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
|
29
|
Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJH. Strategies to address low drug solubility in discovery and development. Pharmacol Rev 2013; 65:315-499. [PMID: 23383426 DOI: 10.1124/pr.112.005660] [Citation(s) in RCA: 1031] [Impact Index Per Article: 85.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drugs with low water solubility are predisposed to low and variable oral bioavailability and, therefore, to variability in clinical response. Despite significant efforts to "design in" acceptable developability properties (including aqueous solubility) during lead optimization, approximately 40% of currently marketed compounds and most current drug development candidates remain poorly water-soluble. The fact that so many drug candidates of this type are advanced into development and clinical assessment is testament to an increasingly sophisticated understanding of the approaches that can be taken to promote apparent solubility in the gastrointestinal tract and to support drug exposure after oral administration. Here we provide a detailed commentary on the major challenges to the progression of a poorly water-soluble lead or development candidate and review the approaches and strategies that can be taken to facilitate compound progression. In particular, we address the fundamental principles that underpin the use of strategies, including pH adjustment and salt-form selection, polymorphs, cocrystals, cosolvents, surfactants, cyclodextrins, particle size reduction, amorphous solid dispersions, and lipid-based formulations. In each case, the theoretical basis for utility is described along with a detailed review of recent advances in the field. The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology (e.g., solid dispersions, lipid-based formulations, or salt forms) where required.
Collapse
Affiliation(s)
- Hywel D Williams
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Thombre AG, Caldwell WB, Friesen DT, McCray SB, Sutton SC. Solid Nanocrystalline Dispersions of Ziprasidone with Enhanced Bioavailability in the Fasted State. Mol Pharm 2012; 9:3526-34. [DOI: 10.1021/mp3003607] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Avinash G. Thombre
- Pfizer Inc., Center for Discovery
and Development Sciences, Groton, Connecticut 06340, United States
| | | | | | | | - Steven C. Sutton
- Pfizer Inc., Center for Discovery
and Development Sciences, Groton, Connecticut 06340, United States
| |
Collapse
|
31
|
Thombre AG, Shah JC, Sagawa K, Caldwell WB. In vitro and in vivo characterization of amorphous, nanocrystalline, and crystalline ziprasidone formulations. Int J Pharm 2012; 428:8-17. [PMID: 22349051 DOI: 10.1016/j.ijpharm.2012.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/27/2012] [Accepted: 02/05/2012] [Indexed: 11/30/2022]
Abstract
Ziprasidone, commercially available as Geodon capsules, is an atypical antipsychotic used in the treatment of schizophrenia and bipolar disorder. It is a BCS Class II drug that shows up to a 2-fold increase in absorption in the presence of food. Because compliance is a major issue in this patient population, we developed and characterized solubilized formulations of ziprasidone in an effort to improve absorption in the fasted state, thereby resulting in a reduced food effect. Three formulations utilizing solubilization technologies were studied: (1) an amorphous inclusion complex of ziprasidone mesylate and a cyclodextrin, (2) a nanosuspension of crystalline ziprasidone free base, and (3) jet-milled ziprasidone HCl coated crystals made by spray drying (CCSD) the drug with hypromellose acetate succinate. The formulations were characterized by in vitro methods appropriate to each particular solubilization technology. These studies confirmed that ziprasidone mesylate - cyclodextrin was an amorphous inclusion complex with enhanced dissolution rates. The ziprasidone free base crystalline nanosuspension showed a mean particle size of 274 nm and a monomodal particle size distribution. In a membrane permeation test, the CCSD showed a 1.5-fold higher initial flux compared to crystalline ziprasidone HCl. The three formulations were administered to fasted beagle dogs and their pharmacokinetics compared to Geodon capsules administered in the fed state. The amorphous complex and the nanosuspension showed increased absorption in the fasted state, indicating that solubilized formulations of ziprasidone have the potential to reduce the food effect in humans.
Collapse
Affiliation(s)
- Avinash G Thombre
- Pharmaceutical R&D, Worldwide Research & Development, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | |
Collapse
|