1
|
Dacos M, Immordino B, Diroff E, Sicard G, Kosta A, Rodallec A, Giacometti S, Ciccolini J, Fanciullino R. Pegylated liposome encapsulating docetaxel using microfluidic mixing technique: Process optimization and results in breast cancer models. Int J Pharm 2024; 656:124091. [PMID: 38588758 DOI: 10.1016/j.ijpharm.2024.124091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
The development of nanoparticles could help to improve the efficacy/toxicity balance of drugs. This project aimed to develop liposomes and immunoliposomes using microfluidic mixing technology.Various formulation tests were carried out to obtain liposomes that met the established specifications. The liposomes were then characterized in terms of size, polydispersity index (PDI), docetaxel encapsulation rate and lamellarity. Antiproliferative activity was tested in human breast cancer models ranging from near-negative (MDA-MB-231), positive (MDA-MB-453) to HER2 positive. Pharmacokinetic studies were performed in C57BL/6 mice.Numerous batches of liposomes were synthesised using identical molar ratios and by varying the microfluidic parameters TFR, FRR and buffer. All synthesized liposomes have a size < 200 nm, but only Lipo-1, Lipo-6, Lipo-7, Lipo-8 have a PDI < 0.2, which meets our initial requirements. The size of the liposomes was correlated with the total FRR, for a 1:1 FRR the size is 122.2 ± 12.3 nm, whereas for a 1:3 FRR the size obtained is 163.4 ± 34.0 nm (p = 0.019. Three batches of liposomes were obtained with high docetaxel encapsulation rates > 80 %. Furthermore, in vitro studies on breast cancer cell lines demonstrated the efficacy of liposomes obtained by microfluidic mixing technique. These liposomes also showed improved pharmacokinetics compared to free docetaxel, with a longer half-life and higher AUC (3-fold and 3.5-fold increase for the immunoliposome, respectively).This suggests that switching to the microfluidic process will produce batches of liposomes with the same characteristics in terms of in vitro properties and efficacy, as well as the ability to release the encapsulated drug over time in vivo. This time-efficiency of the microfluidic technique is critical, especially in the early stages of development.
Collapse
Affiliation(s)
- Mathilde Dacos
- COMPO, SMARTc. CRCM: UMR Inserm 1068, CNRS UMR 7258, AMU U105, IPC, Marseille, France; Assitance Publique des Hôpitaux de Marseille, Marseille, France.
| | - Benoît Immordino
- Fondazione Pisana per La Scienza, 56017 San Giuliano, Pisa, Italy
| | - Erwan Diroff
- COMPO, SMARTc. CRCM: UMR Inserm 1068, CNRS UMR 7258, AMU U105, IPC, Marseille, France
| | - Guillaume Sicard
- COMPO, SMARTc. CRCM: UMR Inserm 1068, CNRS UMR 7258, AMU U105, IPC, Marseille, France; Assitance Publique des Hôpitaux de Marseille, Marseille, France
| | - Artemis Kosta
- Microscopy Core Facility, Institut de Microbiologie de la Méditerranée (FR3479), CNRS, Aix-Marseille Université, Marseille, France
| | - Anne Rodallec
- COMPO, SMARTc. CRCM: UMR Inserm 1068, CNRS UMR 7258, AMU U105, IPC, Marseille, France
| | - Sarah Giacometti
- COMPO, SMARTc. CRCM: UMR Inserm 1068, CNRS UMR 7258, AMU U105, IPC, Marseille, France
| | - Joseph Ciccolini
- COMPO, SMARTc. CRCM: UMR Inserm 1068, CNRS UMR 7258, AMU U105, IPC, Marseille, France; Assitance Publique des Hôpitaux de Marseille, Marseille, France
| | - Raphaëlle Fanciullino
- COMPO, SMARTc. CRCM: UMR Inserm 1068, CNRS UMR 7258, AMU U105, IPC, Marseille, France; Assitance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
2
|
Verma H, Narendra G, Raju B, Singh PK, Silakari O. Dihydropyrimidine Dehydrogenase-Mediated Resistance to 5-Fluorouracil: Mechanistic Investigation and Solution. ACS Pharmacol Transl Sci 2022; 5:1017-1033. [PMID: 36407958 PMCID: PMC9667542 DOI: 10.1021/acsptsci.2c00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/29/2022]
Abstract
5-Fluorouracil (5-FU) is one of the most widely used chemotherapeutics for the treatment of cancers associated with the aerodigestive tract, breast, and colorectal system. The efficacy of 5-FU is majorly affected by dihydropyrimidine dehydrogenase (DPD) as it degrades more than 80% of administered 5-FU into an inactive metabolite, dihydrofluorouracil. Herein we discuss the molecular mechanism of this inactivation by analyzing the interaction pattern and electrostatic complementarity of the DPD-5-FU complex. The basis of DPD overexpression in cancer cell lines due to significantly distinct levels of the miRNAs (miR-134, miR-27b, and miR-27a) compared to normal cells has also been outlined. Additionally, some kinases including sphingosine kinase 2 (SphK2) have been reported to correlate with DPD expression. Currently, to address this problem various strategies are reported in the literature, including 5-FU analogues (bypass the DPD-mediated inactivation), DPD downregulators (regulate the DPD expression levels in tumors), inhibitors (as promising adjuvants), and formulation development loaded with 5-FU (liposomes, nanoparticles, nanogels, etc.), which are briefly discussed in this Review.
Collapse
Affiliation(s)
- Himanshu Verma
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Gera Narendra
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Baddipadige Raju
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Pankaj Kumar Singh
- Integrative
Physiology and Pharmacology, Institute of Biomedicine, Faculty of
Medicine, University of Turku, FI-20520Turku, Finland
| | - Om Silakari
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| |
Collapse
|
3
|
Bhattacharya S, Saindane D, Prajapati BG. Liposomal Drug Delivery And Its Potential Impact On Cancer Research. Anticancer Agents Med Chem 2022; 22:2671-2683. [PMID: 35440318 DOI: 10.2174/1871520622666220418141640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Liposomes are one of the most versatile drug carriers due to their functional properties, such as higher biocompatibility, the ability to encapsulate hydrophilic and hydrophobic products, and higher biodegradability. Liposomes are a better and more significant nanocarrier for cancer therapy. The key to developing a better cancer-targeted nanocarrier is the development of targeted liposomes using various approaches. Several traditional and novel liposome preparation methods are briefly discussed in this mini-review. The current state of liposome targeting, active and passive liposome targeting in cancer therapy, ligand directed targeting (antibody, aptamer, and protein/peptide-mediated targeting), and other miscellaneous approaches such as stimuli-responsive liposome-based targeting, autophagy inhibition mediated targeting, and curcumin loaded liposomal targeting are all discussed within. All of this gathered and compiled information will shed new light on liposome targeting strategies in cancer treatment and will pique the interest of aspiring researchers and academicians.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405
| | - Dnyanesh Saindane
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405
| | | |
Collapse
|
4
|
Dupertuis YM, Boulens N, Angibaud E, Briod AS, Viglione A, Allémann E, Delie F, Pichard C. Antitumor Effect of 5-Fluorouracil-Loaded Liposomes Containing n-3 Polyunsaturated Fatty Acids in Two Different Colorectal Cancer Cell Lines. AAPS PharmSciTech 2021; 22:36. [PMID: 33404935 PMCID: PMC7788038 DOI: 10.1208/s12249-020-01897-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
It has been shown that long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) could act synergistically with 5-fluorouracil (5-FU) to kill cancer cells. To facilitate their simultaneous transport in the bloodstream, we synthesized, for the first time, liposomes (LIPUFU) containing 5-FU in the aqueous core and docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) at a ratio of 1:2 in the lipid bilayer. LIPUFU werestable with uniform size of 154 ± 4 nm, PDI of 0.19 ± 0.03 and zeta potential of -41 ± 2 mV. They contained 557 ± 210 μmol/l DHA, 1467 ± 362 μmol/l EPA, and 9.8 ± 1.1 μmol/l 5-FU. Control liposomes without (LIP) or with only 5-FU (LIFU) or n-3 PUFAs (LIPU) were produced in a similar way. The effects of these different liposomal formulations on the cell cycle, growth, and apoptosis were evaluated in two human colorectal cancer (CRC) cell lines differing in sensitivity to 5-FU, using fluorescence-activated cell sorting analyses. LIPUFU were more cytotoxic than LIP, LIFU, and LIPU in both LS174T (p53+/+, bax-/-) and HT-29 (p53-/0, bax+/+) cell lines. Similar to LIFU, LIPUFU increased the percentage of cells in S phase, apoptosis, and/or necrosis. The cytotoxic potential of LIPUFU was confirmed in vivo by tumor growth inhibition in the chicken chorioallantoic membrane model. These results suggest that LIPUFU could be considered to facilitate the simultaneous transport of 5-FU and n-3 PUFAs to the tumor site, in particular in case of CRC liver metastases.
Collapse
Affiliation(s)
- Yves Marc Dupertuis
- Clinical Nutrition, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland.
| | - Nathalie Boulens
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Emmanuelle Angibaud
- Clinical Nutrition, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Anna-Sophia Briod
- Clinical Nutrition, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Alexandre Viglione
- Clinical Nutrition, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Florence Delie
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Claude Pichard
- Clinical Nutrition, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| |
Collapse
|
5
|
Krajewska JB, Bartoszek A, Fichna J. New Trends in Liposome-based Drug Delivery in Colorectal Cancer. Mini Rev Med Chem 2018; 19:3-11. [DOI: 10.2174/1389557518666180903150928] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in both men and women. Approximately
one-third of patients do not survive five years from diagnosis, which indicates the need for
treatment improvement, also through new ways of drug delivery. A possible strategy to increase treatment
efficacy is the use of liposomal formulation, which allows delivering both hydrophobic and hydrophilic
compounds with better biocompatibility and reduced side-effects. Liposomal formulations
showed better antitumor activity, longer drug accumulation and no cytotoxic effect on normal cells
when compared to free drugs. In this review, we will present liposomal preparations studied in CRC in
vitro and in vivo. We will focus on the advantages of liposomal delivery over conventional therapy as
well as modifications which increase specificity, drug accumulation and efficacy. Moreover, we will
discuss formulations investigated in clinical trials. Liposomal delivery has a great potential in overcoming
current limitations of cancer therapy and development of this system gives new perspectives in
CRC treatment.
Collapse
Affiliation(s)
- Julia B. Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| |
Collapse
|
6
|
Lollo G, Matha K, Bocchiardo M, Bejaud J, Marigo I, Virgone-Carlotta A, Dehoux T, Rivière C, Rieu JP, Briançon S, Perrier T, Meyer O, Benoit JP. Drug delivery to tumours using a novel 5-FU derivative encapsulated into lipid nanocapsules. J Drug Target 2018; 27:634-645. [PMID: 30461322 DOI: 10.1080/1061186x.2018.1547733] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this work, a novel lipophilic 5-fluorouracil (5-FU) derivative was synthesised and encapsulated into lipid nanocapsules (LNC). 5-FU was modified with lauric acid to give a lipophilic mono-lauroyl-derivative (5-FU-C12, MW of about 342 g/mol, yield of reaction 70%). 5-FU-C12 obtained was efficiently encapsulated into LNC (encapsulation efficiency above 90%) without altering the physico-chemical characteristics of LNC. The encapsulation of 5-FU-C12 led to an increased stability of the drug when in contact with plasma being the drug detectable until 3 h following incubation. Cytotoxicity assay carried out using MTS on 2D cell culture showed that 5-FU-C12-loaded LNC had an enhanced cytotoxic effect on glioma (9L) and human colorectal (HTC-116) cancer cell line in comparison with 5-FU or 5-FU-C12. Then, HCT-116 tumour spheroids were cultivated and the reduction of spheroid volume was measured following treatment with drug-loaded LNC and drugs alone. Similar reduction on spheroids volume was observed following the treatment with drug-loaded LNC, 5-FU-C12 and 5-FU alone, while blank LNC displayed a reduction in cell viability only at high concentration. Globally, our data suggest that the encapsulation increased the activity of the 5-FU-C12. However, in-depth evaluations of LNC permeability into spheroids are needed to disclose the potential of these nanosystems for cancer treatment.
Collapse
Affiliation(s)
- Giovanna Lollo
- a Laboratoire d'Automatique et de Génie des Procédés (LAGEP) , Univ Lyon, Université Claude Bernard Lyon 1 , Villeurbanne , France.,b Institut des Sciences Pharmaceutiques et Biologiques , Lyon , France.,c MINT, INSERM U1066, CNRS UMR 6021 , Université d'Angers , Angers , France
| | - Kevin Matha
- c MINT, INSERM U1066, CNRS UMR 6021 , Université d'Angers , Angers , France.,d Pharmacy Department , Angers University Hospital , Angers , France
| | - Martina Bocchiardo
- c MINT, INSERM U1066, CNRS UMR 6021 , Université d'Angers , Angers , France
| | - Jérôme Bejaud
- c MINT, INSERM U1066, CNRS UMR 6021 , Université d'Angers , Angers , France
| | - Ilaria Marigo
- e Veneto Institute of Oncology IOV-IRCCS , Padova , Italy
| | | | - Thomas Dehoux
- f Institut Lumière Matière , Univ Lyon, Université Claude Bernard Lyon 1, CNRS , Villeurbanne , France
| | - Charlotte Rivière
- f Institut Lumière Matière , Univ Lyon, Université Claude Bernard Lyon 1, CNRS , Villeurbanne , France
| | - Jean-Paul Rieu
- f Institut Lumière Matière , Univ Lyon, Université Claude Bernard Lyon 1, CNRS , Villeurbanne , France
| | - Stephanie Briançon
- a Laboratoire d'Automatique et de Génie des Procédés (LAGEP) , Univ Lyon, Université Claude Bernard Lyon 1 , Villeurbanne , France.,b Institut des Sciences Pharmaceutiques et Biologiques , Lyon , France
| | | | | | - Jean-Pierre Benoit
- a Laboratoire d'Automatique et de Génie des Procédés (LAGEP) , Univ Lyon, Université Claude Bernard Lyon 1 , Villeurbanne , France.,b Institut des Sciences Pharmaceutiques et Biologiques , Lyon , France.,c MINT, INSERM U1066, CNRS UMR 6021 , Université d'Angers , Angers , France
| |
Collapse
|
7
|
Rodallec A, Sicard G, Fanciullino R, Benzekry S, Lacarelle B, Milano G, Ciccolini J. Turning cold tumors into hot tumors: harnessing the potential of tumor immunity using nanoparticles. Expert Opin Drug Metab Toxicol 2018; 14:1139-1147. [PMID: 30354685 DOI: 10.1080/17425255.2018.1540588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors have considerably changed the landscape of oncology. However apart from world-acclaimed success stories limited to melanoma and lung cancer, many solid tumors failed to respond to immune checkpoint inhibitors due to limited immunogenicity, unfavorable tumor micro-environments (TME), lack of infiltrating T lymphocytes or increases in Tregs. Areas covered: Combinatorial strategies are foreseen as the future of immunotherapy and using cytotoxics or modulating agents is expected to boost the efficacy of immune checkpoint inhibitors. In this respect, nanoparticles displaying unique pharmacokinetic features such as tumor targeting properties, optimal payload delivery and long-lasting interferences with TME, are promising candidates for such combinations. This review covers the basis, expectancies, limits and pitfalls of future combination between nanoparticles and immune check point inhibitors. Expert opinion: Nanoparticles allow optimal delivery of variety of payloads in tumors while sparing healthy tissue, thus triggering immunogenic cell death. Depleting tumor stroma could further help immune cells and monoclonal antibodies to better circulate in the TME, plus immune-modulating properties of the charged cytotoxics. Finally, nanoparticles themselves present immunogenicity and antigenicity likely to boost immune response at the tumor level.
Collapse
Affiliation(s)
- Anne Rodallec
- a SMARTc Unit, Centre de Recherche en Cancérologie de Marseille UMR Inserm U1068 , Aix Marseille University , Marseille , France
| | - Guillaume Sicard
- a SMARTc Unit, Centre de Recherche en Cancérologie de Marseille UMR Inserm U1068 , Aix Marseille University , Marseille , France
| | - Raphaelle Fanciullino
- a SMARTc Unit, Centre de Recherche en Cancérologie de Marseille UMR Inserm U1068 , Aix Marseille University , Marseille , France
| | | | - Bruno Lacarelle
- a SMARTc Unit, Centre de Recherche en Cancérologie de Marseille UMR Inserm U1068 , Aix Marseille University , Marseille , France
| | - Gerard Milano
- c EA666 Oncopharmacology Unit , Centre Antoine Lacassagne , Nice , France
| | - Joseph Ciccolini
- a SMARTc Unit, Centre de Recherche en Cancérologie de Marseille UMR Inserm U1068 , Aix Marseille University , Marseille , France
| |
Collapse
|
8
|
Rodallec A, Benzekry S, Lacarelle B, Ciccolini J, Fanciullino R. Pharmacokinetics variability: Why nanoparticles are not just magic-bullets in oncology. Crit Rev Oncol Hematol 2018; 129:1-12. [PMID: 30097227 DOI: 10.1016/j.critrevonc.2018.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/16/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022] Open
Abstract
Developing nanoparticles to improve the specificity of anticancer agents towards tumor tissue and to better control drug delivery is a rising strategy in oncology. An increasing number of forms (e.g., conjugated nanoparticles, liposomes, immunoliposomes…) are now available on the shelves and numerous other scaffolds (e.g., dendrimeres, nanospheres, squalenes …) are currently at various stages of development. However, as of today most nanoparticles made available remain lipidic carriers. Pharmacokinetic variability is a major, yet largely underestimated issue with liposomal nanoparticles. A wide variety of causes (e.g., tumor type and disease staging, comorbidities, patient's immune system) can explain this variability, which can in return negatively impact pharmacodynamic endpoints such as poor efficacy or severe toxicities. This review aims to cover the main causes for erratic pharmacokinetics observed with most nanoparticles, especially liposomes used in oncology. Should the main causes of such variability be identified, specific studies in non-clinical or clinical development stages could be undertaken using dedicated models (i.e., mechanistic or semi-mechanistic mathematical models such as PBPK approaches) to better describe nanoparticles pharmacokinetics and decipher PK/PD relationships. In addition, identifying relevant biomarkers or parameters likely to impact nanoparticles pharmacokinetics would allow for either the modification of their characteristics to reduce the influence of the expected variability during development phases or the development of biomarker-based adaptive dosing strategies to maintain an optimal efficacy/toxicity balance. Broadly, we call for the development of comprehensive distribution studies and state-of-the-art modeling support to better understand and anticipate nanoparticle pharmacokinetics in oncology.
Collapse
Affiliation(s)
- Anne Rodallec
- SMARTc unit, Center for Research on Cancer of Marseille (CRCM): UMR Inserm 1068, CNRS UMR 7258, Aix Marseille Université, Marseille, France
| | | | - Bruno Lacarelle
- SMARTc unit, Center for Research on Cancer of Marseille (CRCM): UMR Inserm 1068, CNRS UMR 7258, Aix Marseille Université, Marseille, France
| | - Joseph Ciccolini
- SMARTc unit, Center for Research on Cancer of Marseille (CRCM): UMR Inserm 1068, CNRS UMR 7258, Aix Marseille Université, Marseille, France
| | - Raphaelle Fanciullino
- SMARTc unit, Center for Research on Cancer of Marseille (CRCM): UMR Inserm 1068, CNRS UMR 7258, Aix Marseille Université, Marseille, France.
| |
Collapse
|
9
|
Rodallec A, Fanciullino R, Lacarelle B, Ciccolini J. Seek and destroy: improving PK/PD profiles of anticancer agents with nanoparticles. Expert Rev Clin Pharmacol 2018; 11:599-610. [PMID: 29768060 DOI: 10.1080/17512433.2018.1477586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The Pharmacokinetics/pharmacodynamics (PK/PD) relationships with cytotoxics are usually based on a steepening concentration-effect relationship; the greater the drug amount, the greater the effect. The Maximum Tolerated Dose paradigm, finding the balance between efficacy, while keeping toxicities at their manageable level, has been the rule of thumb for the last 50-years. Developing nanodrugs is an appealing strategy to help broaden this therapeutic window. The fact that efficacy and toxicity with cytotoxics are intricately linked is primarily due to the complete lack of specificity toward the tumor tissue during their distribution phase. Because nanoparticles are expected to better target tumor tissue while sparing healthy cells, accumulating large amounts of cytotoxics in tumors could be achieved in a safer way. Areas covered: This review aims at presenting how nanodrugs present unique features leading to reconsidering PK/PD relationships of anticancer agents. Expert commentary: The constant interplay between carrier PK, interactions with cancer cells, payload release, payload PK, target expression and target engagement, makes picturing the exact PK/PD relationships of nanodrugs particularly challenging. However, those improved PK/PD relationships now make the once contradictory higher efficacy and lower toxicities requirement an achievable goal in cancer patients.
Collapse
Affiliation(s)
- Anne Rodallec
- a SMARTc Unit, Pharmacokinetics Laboratory, Inserm UMR U1068 Centre de Recherche en Cancérologie de Marseille , Aix-Marseille Universite , Marseille , France
| | - Raphaelle Fanciullino
- a SMARTc Unit, Pharmacokinetics Laboratory, Inserm UMR U1068 Centre de Recherche en Cancérologie de Marseille , Aix-Marseille Universite , Marseille , France
| | - Bruno Lacarelle
- a SMARTc Unit, Pharmacokinetics Laboratory, Inserm UMR U1068 Centre de Recherche en Cancérologie de Marseille , Aix-Marseille Universite , Marseille , France
| | - Joseph Ciccolini
- a SMARTc Unit, Pharmacokinetics Laboratory, Inserm UMR U1068 Centre de Recherche en Cancérologie de Marseille , Aix-Marseille Universite , Marseille , France
| |
Collapse
|
10
|
Zou L, Tao Y, Payne G, Do L, Thomas T, Rodriguez J, Dou H. Targeted delivery of nano-PTX to the brain tumor-associated macrophages. Oncotarget 2018; 8:6564-6578. [PMID: 28036254 PMCID: PMC5351653 DOI: 10.18632/oncotarget.14169] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/02/2016] [Indexed: 11/30/2022] Open
Abstract
Nanoparticles containing mixed lipid monolayer shell, biodegradable polymer core and rabies virus glycoprotein (RVG) peptide as brain targeting ligand, were developed for brain targeted delivery of paclitaxel (PTX) to treat malignant glioma. RVG conjugated PTX loaded NPs (RVG-PTX-NPs) had the desirable size (~140 nm), narrow size distribution and spherical shape. RVG-PTX-NPs showed poor uptake by neurons and selective targeting to the brain tumor associated macrophages (TAMs) with controlled release and tumor specific toxicity. In vivo studies revealed that RVG-PTX-NPs were significant to cross the blood-brain barrier (BBB) and had specific targeting to the brain. Most importantly, RVG-PTX-NPs showed effectiveness for anti-glioma therapy on human glioma of mice model. We concluded that RVG-PTX-NPs provided an effective approach for brain-TAMs targeted delivery for the treatment of glioma.
Collapse
Affiliation(s)
- Lei Zou
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA
| | - Youhua Tao
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA
| | - Gregory Payne
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA
| | - Linh Do
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA
| | - Tima Thomas
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA
| | - Juan Rodriguez
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA
| | - Huanyu Dou
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas 79905, USA
| |
Collapse
|
11
|
Zununi Vahed S, Salehi R, Davaran S, Sharifi S. Liposome-based drug co-delivery systems in cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1327-1341. [DOI: 10.1016/j.msec.2016.11.073] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
|
12
|
Shen M, Xu YY, Sun Y, Han BS, Duan YR. Preparation of a Thermosensitive Gel Composed of a mPEG-PLGA-PLL-cRGD Nanodrug Delivery System for Pancreatic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20530-20537. [PMID: 26366977 DOI: 10.1021/acsami.5b06043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
It is hypothesized that a gel (NP-Gel) composed of thermosensitive gel (Gel) and nanoparticles (NP) can prolong drug release time and overcome the drug resistance of pancreatic tumor cells. Paclitaxel (PTX)-loaded monomethoxy (polyethylene glycol)-poly(d,l-lactide-co-glycolide)-poly(l-lysine)-cyclic peptide (arginine-glycine-aspartic-glutamic-valine acid) (mPEG-PLGA-PLL-cRGD) NP and NP-Gel were designed, optimized, and characterized using dynamic light scattering, transmission electron microscopy, high efficiency liquid chromatography, and rheological analyses. Aspc-1/PTX cell was used in a cell uptake test. A 3D cell model was used to mimic PTX elimination in tissue. The in vivo sustained release and antitumor effects were studied in Aspc-1/PTX-loaded nude mice with xerographic and in situ tumors. The NP were 133.7 ± 28.3 nm with 85.03% entrapped efficiency, 1.612% loaded ratio, and suitable rheological properties. PTX was released as NP from NP-Gel, greatly prolonging the release and elimination times to afford long-term effects. NP-Gel enhanced the uptake of PTX by Aspc-1/PTX cells more than using NP or the Gel alone. Gel and NP-Gel remained solid in the tumor and stayed over 50 days versus the several days of NP in solution. NP-Gel exhibited a much higher inhibition rate in vivo than in solution, NP, or the Gel alone. In conclusion, the antitumor effects of NP-Gel might arise from synergic effects from NP and the Gel. NP primarily reversed drug resistance, while the Gel prolonged release time considerably in situ. This preparation proved effective with a very small PTX dose (250 μg/kg) and exhibited few toxic effects in normal tissue.
Collapse
Affiliation(s)
- Ming Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, P. R. China
| | - Yuan-Yuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, P. R. China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, P. R. China
| | - Bao-Shan Han
- Department of general Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University , Shanghai, 200092, P. R. China
| | - You-Rong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, P. R. China
| |
Collapse
|
13
|
Fanciullino R, Mollard S, Correard F, Giacometti S, Serdjebi C, Iliadis A, Ciccolini J. Biodistribution, tumor uptake and efficacy of 5-FU-loaded liposomes: why size matters. Pharm Res 2014; 31:2677-84. [PMID: 24752479 DOI: 10.1007/s11095-014-1364-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/16/2014] [Indexed: 12/31/2022]
Abstract
PURPOSE We have investigated the impact of particle size on the biodistribution, tumor uptake and antiproliferative efficacy of 5-FU-loaded liposomes. METHODS Three different batches of pegylated liposomes varying in size (i.e., 70, 120 and 250 nm respectively) were tested. The active compounds encapsulated were an equimolar mix of 5-FU, 2'-deoxyinosine and folinic acid. Liposomes were subsequently tested on the human breast cancer model MDA231 cells, a model previously found to be resistant to 5-FU. In vitro, antiproliferative efficacy and microscopy studies of liposomes uptake were carried out. In vivo, comparative biodistribution and efficacy studies were performed in tumor-bearing mice. RESULTS Difference in size did not change in vitro antiproliferative activity. Fluorescence-Microscopy studies showed that liposomes were mainly uptaken by tumor cells through a direct internalization process, regardless of their size. Biodistribution profiles in tumor-bearing mice revealed higher accumulation of small liposomes in tumors throughout time as compared with normal and large liposomes (p < 0.05). Additionally, we observed that the bigger were the tumors, the more vascularised they were and the greater was the difference in accumulation between small and large liposomes. Consequently, in vivo efficacy studies showed at study conclusion that a 68% reduction in tumor size was achieved with small liposomes (p < 0.05), whereas larger liposomes failed to reduce significantly tumor growth. Similarly, at study conclusion a trend towards higher survival-rate in animals treated with smaller liposomes was observed. CONCLUSION This study suggests that particle size is critical to achieve higher selectivity and efficacy in experimental oncology, including in resistant tumors.
Collapse
Affiliation(s)
- Raphaelle Fanciullino
- Pharmacokinetics Unit, UMR S_911, CRO2, Aix Marseille University, Marseille, France,
| | | | | | | | | | | | | |
Collapse
|