1
|
Rajendrakumar S, Beaumal V, Kermarrec A, Lopez C, Novales B, Rabesona H, Simongiovanni A, Demersay TC, Marze S. Release profile of amino acids encapsulated in solid lipid particles during in vitro oro-gastrointestinal digestion. Food Res Int 2024; 190:114605. [PMID: 38945573 DOI: 10.1016/j.foodres.2024.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Some amino acids are known to mediate immune responses through gut microbiota metabolism in both humans and monogastric animals. However, through the diet, most free amino acids are absorbed in the small intestine and only a small quantity reaches the microbiota-rich colon. To enhance microbial metabolism of amino acids and their potential health benefits, encapsulation strategies are developed for their protection and delivery to the colon. So far, the main encapsulation systems for amino acids are based on solid lipid particles, but their fate within the digestive tract has never been fully clarified. In this study, we investigated the release of various amino acids (branched-chain amino acid mixture, or lysine, or tryptophan) loaded in solid lipid particles during in vitro oro-gastrointestinal digestion mimicking the piglet. The loaded solid lipid particles were fully characterized for their composition, thermal behavior, molecular structure, crystalline state, surface morphology, and particle size distribution. Moreover, we investigated the effect of particle size by sieving solid lipid particles into two non-overlapping size fractions. We found that amino acid release was high during the gastric phase of digestion, mainly controlled by physical parameters, namely particle size and crystalline state including surface morphology. Large particle size and/or smooth ordered particle indeed led to slower and lower release. Although lipid hydrolysis was significant during the intestinal phase of digestion, the impact of the crystalline state and surface morphology was also observed in the absence of enzymes, pointing to a dominant water/solute diffusion mechanism through these porous solid lipid particles.
Collapse
|
2
|
Huynh VTT, de Paiva Lacerda S, Espitalier F, Beyssac E, Ré MI. Effect of talc and vitamin E TPGS on manufacturability, stability and release properties of trilaurin-based formulations for hot-melt coating. Int J Pharm 2024; 653:123866. [PMID: 38286194 DOI: 10.1016/j.ijpharm.2024.123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
This study was focused on one particular case of hot-melt coating with trilaurin - a solid medium-chain monoacid triglyceride. The challenge of using trilaurin as coating agent in melting-based processes is linked to its relatively low melting profile: 15.6 °C (Tm,α), 35.1 °C ( [Formula: see text] ) and 45.7 °C (Tm,β). From a process perspective, the only possibility to generate products coated with formulations composed of trilaurin is by setting thermal operational conditions above Tm,α. From a material perspective, this processing possibility depends principally on trilaurin crystallisation which was investigated via a set of analytical techniques including turbidimetry, calorimetry, hot-melt goniometry, and polarised light microscopy. A highly soluble drug model substrate (sodium chloride crystals) was coated with three selected trilaurin-based formulations: (i) trilaurin, (ii) trilaurin plus talc, and (iii) trilaurin plus vitamin E TPGS and talc. Coated salt crystals were then analysed to investigate processing performance, coating quality, stability and release properties under digestion effect. The results show that firstly, talc addition promotes nucleation and crystal growth and, as a consequence, it facilitates the manufacture of trilaurin-based formulations. Secondly, the formulation of a solid triglyceride and a hydrophilic surfactant could potentially cause release instability, but formula (iii) was found to be stabilised by a mechanism whereby trilaurin crystallization enhanced in the presence of talc immobilised vitamin E TPGS in its crystal lattice. Thirdly, talc addition did not significantly influence trilaurin digestion which endows products with an immediate release in lipolytic conditions instead of an extended liberation in pure water. Nor did the addition of one or two additives alter the extent of trilaurin digestion under the conditions studied. These important findings relate to product manufacturability, stability, and release properties. A good understanding of material properties (e.g. crystallisation, polymorphism, digestibility) is essential for melt-processing, lipid coating stabilising and modulation of release profile of solid lipid-coated product, as demonstrated in this case study with trilaurin.
Collapse
Affiliation(s)
- Van-Trung-Tin Huynh
- RAPSODEE - Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement, Albi, France
| | - Suenia de Paiva Lacerda
- RAPSODEE - Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement, Albi, France
| | - Fabienne Espitalier
- RAPSODEE - Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement, Albi, France
| | - Eric Beyssac
- UFR de Pharmacie, Université de Clermont Auvergne, Clermont-Ferrand, France
| | - Maria-Inês Ré
- RAPSODEE - Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement, Albi, France.
| |
Collapse
|
3
|
Minocha N, Sharma N, Verma R, Kaushik D, Pandey P. Solid Lipid Nanoparticles: Peculiar Strategy to Deliver Bio-Proactive Molecules. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:228-242. [PMID: 35301957 DOI: 10.2174/1872210516666220317143351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/07/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Novel Drug Delivery Systems (NDDS) provide numerous benefits compared to conventional dosage forms. Poor aqueous solubility, low bioavailability, frequent dosing, and particular hydrophilic lipophilic character of the drug are the biological factors associated with the traditional systems leading to the development of SLNs. OBJECTIVE For improving the solubility profile, enhancing the bioavailability, and attaining the best possible therapeutic effect of lipid inclined or aqueous inclined drug, formulating solid lipid nanoparticles is the best choice. METHODS Solid Lipid Nanoparticles (SLNs) have been projected as a colloidal carrier system with a size of 50-1,000 nm, collectively combining the benefits of other colloidal systems like liposomes, emulsions, etc., for delivering the drug at the target site. High absorption, high stability, and efficient drug packing enhance the pharmacokinetic and pharmacodynamic properties of the packed drug. RESULT Solid Lipid Nanoparticles can be developed in different dosage forms and administered via routes such as nasal, rectal, oral, topical, vaginal, ocular, and parenteral. They have higher physicochemical stability and the batch size can be easily scaled up at a low cost. Lipophilic as well as hydrophilic drugs can be easily incorporated into solid lipid nanoparticles. CONCLUSION In this manuscript, the authors have reviewed different aspects of solid lipid nanoparticles, major principles behind mechanism methods, recent patents, applications, and therapeutic potentials of solid lipid nanoparticles.
Collapse
Affiliation(s)
- Neha Minocha
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak 124001, Haryana, India
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram 122103, Haryana, India
| | - Nidhi Sharma
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar 201204, Uttar Pradesh, India
| | - Ravinder Verma
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak 124001, Haryana, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram 122018, Haryana, India
| |
Collapse
|
4
|
Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022; 10:biomedicines10092055. [PMID: 36140156 PMCID: PMC9495787 DOI: 10.3390/biomedicines10092055] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The low water solubility of pharmacoactive molecules limits their pharmacological potential, but the solubility parameter cannot compromise, and so different approaches are employed to enhance their bioavailability. Pharmaceutically active molecules with low solubility convey a higher risk of failure for drug innovation and development. Pharmacokinetics, pharmacodynamics, and several other parameters, such as drug distribution, protein binding and absorption, are majorly affected by their solubility. Among all pharmaceutical dosage forms, oral dosage forms cover more than 50%, and the drug molecule should be water-soluble. For good therapeutic activity by the drug molecule on the target site, solubility and bioavailability are crucial factors. The pharmaceutical industry’s screening programs identified that around 40% of new chemical entities (NCEs) face various difficulties at the formulation and development stages. These pharmaceuticals demonstrate less solubility and bioavailability. Enhancement of the bioavailability and solubility of drugs is a significant challenge in the area of pharmaceutical formulations. According to the Classification of Biopharmaceutics, Class II and IV drugs (APIs) exhibit poor solubility, lower bioavailability, and less dissolution. Various technologies are discussed in this article to improve the solubility of poorly water-soluble drugs, for example, the complexation of active molecules, the utilization of emulsion formation, micelles, microemulsions, cosolvents, polymeric micelle preparation, particle size reduction technologies, pharmaceutical salts, prodrugs, the solid-state alternation technique, soft gel technology, drug nanocrystals, solid dispersion methods, crystal engineering techniques and nanomorph technology. This review mainly describes several other advanced methodologies for solubility and bioavailability enhancement, such as crystal engineering, micronization, solid dispersions, nano sizing, the use of cyclodextrins, solid lipid nanoparticles, colloidal drug delivery systems and drug conjugates, referring to a number of appropriate research reports.
Collapse
|
5
|
Amorim-Carmo B, Parente AMS, Souza ES, Silva-Junior AA, Araújo RM, Fernandes-Pedrosa MF. Antimicrobial Peptide Analogs From Scorpions: Modifications and Structure-Activity. Front Mol Biosci 2022; 9:887763. [PMID: 35712354 PMCID: PMC9197468 DOI: 10.3389/fmolb.2022.887763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
The rapid development of multidrug-resistant pathogens against conventional antibiotics is a global public health problem. The irrational use of antibiotics has promoted therapeutic limitations against different infections, making research of new molecules that can be applied to treat infections necessary. Antimicrobial peptides (AMPs) are a class of promising antibiotic molecules as they present broad action spectrum, potent activity, and do not easily induce resistance. Several AMPs from scorpion venoms have been described as a potential source for the development of new drugs; however, some limitations to their application are also observed. Here, we describe strategies used in several approaches to optimize scorpion AMPs, addressing their primary sequence, biotechnological potential, and characteristics that should be considered when developing an AMP derived from scorpion venoms. In addition, this review may contribute towards improving the understanding of rationally designing new molecules, targeting functional AMPs that may have a therapeutic application.
Collapse
Affiliation(s)
- Bruno Amorim-Carmo
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Adriana M. S. Parente
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Eden S. Souza
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Arnóbio A. Silva-Junior
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Renata M. Araújo
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Matheus F. Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| |
Collapse
|
6
|
Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev 2022; 182:114097. [PMID: 34999121 DOI: 10.1016/j.addr.2021.114097] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
The oral administration of therapeutic peptides and proteins is favoured from a patient and commercial point of view. In order to reach the systemic circulation after oral administration, these drugs have to overcome numerous barriers including the enzymatic, sulfhydryl, mucus and epithelial barrier. The development of oral formulations for therapeutic peptides and proteins is therefore necessary. Among the most promising formulation approaches are lipid-based nanocarriers such as oil-in-water nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes and micelles. As the lipophilic character of therapeutic peptides and proteins can be tremendously increased such as by the formation of hydrophobic ion pairs (HIP) with hydrophobic counter ions, they can be incorporated in the lipophilic phase of these carriers. Since gastrointestinal (GI) peptidases as well as sulfhydryl compounds such as glutathione and dietary proteins are too hydrophilic to enter the lipophilic phase of these carriers, the incorporated therapeutic peptide or protein is protected towards enzymatic degradation as well as unintended thiol/disulfide exchange reactions. Stability of lipid-based nanocarriers towards lipases can be provided by the use to excipients that are not or just poorly degraded by these enzymes. Nanocarriers with a size <200 nm and a mucoinert surface such as PEG or zwitterionic surfaces exhibit high mucus permeating properties. Having reached the underlying absorption membrane, lipid-based nanocarriers enable paracellular and lymphatic drug uptake, induce endocytosis and transcytosis or simply fuse with the cell membrane releasing their payload into the systemic circulation. Numerous in vivo studies provide evidence for the potential of these delivery systems. Within this review we provide an overview about the different barriers for oral peptide and protein delivery, highlight the progress made on lipid-based nanocarriers in order to overcome them and discuss strengths and weaknesses of these delivery systems in comparison to other technologies.
Collapse
|
7
|
Preparation and evaluation of charge reversal solid lipid nanoparticles. J Pharm Sci 2022; 111:2270-2279. [DOI: 10.1016/j.xphs.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/23/2022]
|
8
|
Abdel-Mageed HM, Abd El Aziz AE, Mohamed SA, AbuelEzz NZ. The Tiny Big World of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: An Updated Review. J Microencapsul 2021; 39:72-94. [PMID: 34958628 DOI: 10.1080/02652048.2021.2021307] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanotechnology is currently a field of endeavor that has reached a maturation phase beyond the initial hypotheses with an undercurrent challenge to optimize the safety, and scalability for production and clinical trials. Lipid-based nanoparticles (LNP), namely solid lipid nanoparticles (SLN) and nanostructured lipid (NLC), carriers are presently among the most attractive and fast-growing areas of research. SLN and NLC are safe, biocompatible nanotechnology-enabled platforms with ubiquitous applications. This review presents a modern vision that starts with a brief description of characteristics, preparation strategies, and composition ingredients, benefits, and limitations. Next, a discussion of applications and functionalization approaches for the delivery of therapeutics via different routes of delivery. Additionally, the review presents a concise perspective into limitations and future advances. A brief recap on the prospects of molecular dynamics simulations in better understanding NP bio-interface interactions is provided. Finally, the alliance between 3D printing and nanomaterials is presented here as well.
Collapse
Affiliation(s)
| | - Amira E Abd El Aziz
- Centre of Excellence, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Cairo, Dokki, Egypt
| | - Nermeen Z AbuelEzz
- Biochemistry Department, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
9
|
Oral Bioavailability Enhancement of Melanin Concentrating Hormone, Development and In Vitro Pharmaceutical Assessment of Novel Delivery Systems. Pharmaceutics 2021; 14:pharmaceutics14010009. [PMID: 35056908 PMCID: PMC8778866 DOI: 10.3390/pharmaceutics14010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
The rapid progress in biotechnology over the past few decades has accelerated the large-scale production of therapeutic peptides and proteins, making them available in medical practice. However, injections are the most common method of administration; these procedures might lead to inconvenience. Non-invasive medications, such as oral administration of bio-compounds, can reduce or eliminate pain and increase safety. The aim of this project was to develop and characterize novel melanin concentrating hormone (MCH) formulations for oral administration. As a drug delivery system, penetration enhancer combined alginate beads were formulated and characterized. The combination of alginate carriers with amphiphilic surfactants has not been described yet. Due to biosafety having high priority in the case of novel pharmaceutical formulations, the biocompatibility of selected auxiliary materials and their combinations was evaluated using different in vitro methods. Excipients were selected according to the performed toxicity measurements. Besides the cell viability tests, physical properties and complex bioavailability assessments were performed as well. Our results suggest that alginate beads are able to protect melanin concentrating hormones. It has been also demonstrated that penetration enhancer combined alginate beads might play a key role in bioavailability improvement. These formulations were found to be promising tools for oral peptide delivery. Applied excipients and the performed delivery systems are safe and highly tolerable; thus, they can improve patients’ experience and promote adherence.
Collapse
|
10
|
Experimental Design Based Optimization and Ex Vivo Permeation of Desmopressin Acetate Loaded Elastic Liposomes Using Rat Skin. Pharmaceutics 2021; 13:pharmaceutics13071047. [PMID: 34371738 PMCID: PMC8309062 DOI: 10.3390/pharmaceutics13071047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022] Open
Abstract
The study aimed to develop elastic-liposome-based transdermal delivery of desmopressin acetate for enhanced permeation to control enuresis, central diabetes insipidus, and traumatic injury. Elastic liposomes (ELs)-loaded desmopressin acetate was prepared, optimized, and evaluated for improved transdermal permeation profiles using rat skin. Full factorial design with independent factors (X1 for lipid and X2 for surfactant) at three levels was used against four responses (Y1, Y2, Y3, and Y4) (dependent variables). Formulations were characterized for vesicle size, polydispersity index (PDI), zeta potential, % entrapment efficiency (% EE), in vitro drug release, in vitro hemolysis potential, ex vivo drug permeation and drug deposition (DD), and ex vivo vesicle–skin interaction using scanning electron microscopy studies. The optimized formulation ODEL1 based on desirability function was found to have vesicle size, % EE, % DR, and permeation flux values of 118.7 nm, 78.9%, 75.1%, and 5.3 µg/h·cm2, respectively, which were close to predicted values. In vitro release profiles indicated slow and sustained delivery. Permeation flux values of ODEL1 and ODEL2 were 5.3 and 3.1 µg/h·cm2, respectively, which are 7.5- and 4.4-fold higher as compared to DS (0.71 µg/h·cm2). The obtained flux was relatively higher than the clinical target value of the drug for therapeutic efficacy. Moreover, the DD value of ODEL1 was significantly higher than ODEL2 and DS. Hemocompatibility study confirmed safety concerns. Finally, vesicle–skin interaction corroborated mechanistic views of permeation through rat skin. Conclusively, the transdermal delivery may be a suitable alternative to oral and nasal delivery to treat nocturnal enuresis, central diabetes insipidus, hemophilia A and von Willebrand’s disease, and any traumatic injuries.
Collapse
|
11
|
Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021; 174:140-167. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.
Collapse
Affiliation(s)
- Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
12
|
Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm Sin B 2021; 11:871-885. [PMID: 33996404 PMCID: PMC8105777 DOI: 10.1016/j.apsb.2021.02.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The use of lipid nanocarriers for drug delivery applications is an active research area, and a great interest has particularly been shown in the past two decades. Among different lipid nanocarriers, ISAsomes (Internally self-assembled somes or particles), including cubosomes and hexosomes, and solid lipid nanoparticles (SLNs) have unique structural features, making them attractive as nanocarriers for drug delivery. In this contribution, we focus exclusively on recent advances in formation and characterization of ISAsomes, mainly cubosomes and hexosomes, and their use as versatile nanocarriers for different drug delivery applications. Additionally, the advantages of SLNs and their application in oral and pulmonary drug delivery are discussed with focus on the biological fates of these lipid nanocarriers in vivo. Despite the demonstrated advantages in in vitro and in vivo evaluations including preclinical studies, further investigations on improved understanding of the interactions of these nanoparticles with biological fluids and tissues of the target sites is necessary for efficient designing of drug nanocarriers and exploring potential clinical applications.
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| |
Collapse
|
13
|
Bertoni S, Tedesco D, Bartolini M, Prata C, Passerini N, Albertini B. Solid Lipid Microparticles for Oral Delivery of Catalase: Focus on the Protein Structural Integrity and Gastric Protection. Mol Pharm 2020; 17:3609-3621. [PMID: 32786955 PMCID: PMC8009523 DOI: 10.1021/acs.molpharmaceut.0c00666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/22/2023]
Abstract
Protein inactivation either during the production process or along the gastrointestinal tract is the major problem associated with the development of oral delivery systems for biological drugs. This work presents an evaluation of the structural integrity and the biological activity of a model protein, catalase, after its encapsulation in glyceryl trimyristate-based solid lipid microparticles (SLMs) obtained by the spray congealing technology. Circular dichroism and fluorescence spectroscopies were used to assess the integrity of catalase released from SLMs. The results confirmed that no conformational change occurred during the production process and both the secondary and tertiary structures were retained. Catalase is highly sensitive to temperature and undergoes denaturation above 60 °C; nevertheless, spray congealing allowed the retention of most biological activity due to the loading of the drug at the solid state, markedly reducing the risk of denaturation. Catalase activity after exposure to simulated gastric conditions (considering both acidic pH and the presence of gastric digestive hydrolases) ranged from 35 to 95% depending on the carrier: increasing of both the fatty acid chain length and the degree of substitution of the glyceride enhanced residual enzyme activity. SLMs allowed the protein release in a simulated intestinal environment and were not cytotoxic against HT29 cells. In conclusion, the encapsulation of proteins into SLMs by spray congealing might be a promising strategy for the formulation of nontoxic and inexpensive oral biotherapeutic products.
Collapse
Affiliation(s)
- Serena Bertoni
- PharmTech
Lab, Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Daniele Tedesco
- Bio-Pharmaceutical
Analysis Section (Bio-PhASe), Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Manuela Bartolini
- Bio-Pharmaceutical
Analysis Section (Bio-PhASe), Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Cecilia Prata
- Biochemistry
Lab, Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Nadia Passerini
- PharmTech
Lab, Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Beatrice Albertini
- PharmTech
Lab, Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| |
Collapse
|
14
|
Mohammadi A, Rahmandoust M, Mirzajani F, Azadkhah Shalmani A, Raoufi M. Optimization of the interaction of graphene quantum dots with lipase for biological applications. J Biomed Mater Res B Appl Biomater 2020; 108:2471-2483. [PMID: 32083405 DOI: 10.1002/jbm.b.34579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 11/06/2022]
Abstract
Graphene quantum dots (GQDs) are known as emerging sub-10 nm nanoparticles (NPs), which are in fact few-layered pieces of graphene, capable of emitting blue fluorescence, when exposed to 360 nm UV light. Understanding the details of the interaction between GQDs and lipase can serve as a critical step for improving the biological outcome of GQD-derived drug-delivery and diagnosis systems. The interaction occurs in the form of surface adsorption, which can subsequently influence the physicochemical properties of both the NP and the protein. Hence, a systematic approach was taken here to optimize the GQDs' synthesis conditions in order to achieve the highest possible quantum yield (QY). Furthermore, to understands the influence of the interaction of GQDs and lipase, on both the activity of lipase and the emission intensity of GQDs, various incubation conditions were tested to achieve optimized conditions over central composite design algorithm by Design-Expert®, using response surface methodology. The results show that the GQDs fabricated by thermal decomposition of citric acid at 160°C, with a heating duration of 55 min, obtain almost three times higher QY than the highest values reported previously. The best enzymatic activity after the formation of the hard corona, as well as the highest fluorescent emission, were achieved at GQD-to-enzyme ratios within the rage of 23-25%, at temperatures between 41 and 42°C, for 6-8 min. In the aforementioned condition, the enzyme retains 91-95% of its activity and the NP preserves about 80-82% of its fluorescence intensity after incubation.
Collapse
Affiliation(s)
- Asra Mohammadi
- Protein Research Center, Shahid Beheshti University G.C, Tehran, Iran
| | | | - Fateme Mirzajani
- Protein Research Center, Shahid Beheshti University G.C, Tehran, Iran
| | | | - Mohammad Raoufi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Physical Chemistry I and Research Center of Micro- and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen, Germany
| |
Collapse
|
15
|
Ashrafizadeh M, Ahmadi Z, Mohamadi N, Zarrabi A, Abasi S, Dehghannoudeh G, Tamaddondoust RN, Khanbabaei H, Mohammadinejad R, Thakur VK. Chitosan-based advanced materials for docetaxel and paclitaxel delivery: Recent advances and future directions in cancer theranostics. Int J Biol Macromol 2019; 145:282-300. [PMID: 31870872 DOI: 10.1016/j.ijbiomac.2019.12.145] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022]
Abstract
Paclitaxel (PTX) and docetaxel (DTX) are key members of taxanes with high anti-tumor activity against various cancer cells. These chemotherapeutic agents suffer from a number of drawbacks and it seems that low solubility in water is the most important one. Although much effort has been made in improving the bioavailability of PTX and DTX, the low bioavailability and minimal accumulation at tumor sites are still the challenges faced in PTX and DTX therapy. As a consequence, bio-based nanoparticles (NPs) have attracted much attention due to unique properties. Among them, chitosan (CS) is of interest due to its great biocompatibility. CS is a positively charged polysaccharide with the capability of interaction with negatively charged biomolecules. Besides, it can be processed into the sheet, micro/nano-particles, scaffold, and is dissolvable in mildly acidic pH similar to the pH of the tumor microenvironment. Keeping in mind the different applications of CS in the preparation of nanocarriers for delivery of PTX and DTX, in the present review, we demonstrate that how CS functionalized-nanocarriers and CS modification can be beneficial in enhancing the bioavailability of PTX and DTX, targeted delivery at tumor site, image-guided delivery and co-delivery with other anti-tumor drugs or genes.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, Shushtar, Khuzestan, Iran
| | - Neda Mohamadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Zarrabi
- SUNUM, Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey
| | - Sara Abasi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India.
| |
Collapse
|
16
|
Qiu S, Liang D, Guo F, Deng T, Peng T, Gao Y, Zhang X, Zhong H. Solid lipid nanoparticles modified with amphipathic chitosan derivatives for improved stability in the gastrointestinal tract. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Mu H, Holm R. Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opin Drug Deliv 2018; 15:771-785. [DOI: 10.1080/17425247.2018.1504018] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René Holm
- Drug Product Development, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
18
|
Zhang X, Xing H, Zhao Y, Ma Z. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs. Pharmaceutics 2018; 10:E74. [PMID: 29937483 PMCID: PMC6161168 DOI: 10.3390/pharmaceutics10030074] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
Over the past decades, a large number of drugs as well as drug candidates with poor dissolution characteristics have been witnessed, which invokes great interest in enabling formulation of these active ingredients. Poorly water-soluble drugs, especially biopharmaceutical classification system (BCS) II ones, are preferably designed as oral dosage forms if the dissolution limit can be broken through. Minimizing a drug’s size is an effective means to increase its dissolution and hence the bioavailability, which can be achieved by specialized dispersion techniques. This article reviews the most commonly used dispersion techniques for pharmaceutical processing that can practically enhance the dissolution and bioavailability of poorly water-soluble drugs. Major interests focus on solid dispersion, lipid-based dispersion (nanoencapsulation), and liquisolid dispersion (drug solubilized in a non-volatile solvent and dispersed in suitable solid excipients for tableting or capsulizing), covering the formulation development, preparative technique and potential applications for oral drug delivery. Otherwise, some other techniques that can increase the dispersibility of a drug such as co-precipitation, concomitant crystallization and inclusion complexation are also discussed. Various dispersion techniques provide a productive platform for addressing the formulation challenge of poorly water-soluble drugs. Solid dispersion and liquisolid dispersion are most likely to be successful in developing oral dosage forms. Lipid-based dispersion represents a promising approach to surmounting the bioavailability of low-permeable drugs, though the technique needs to traverse the obstacle from liquid to solid transformation. Novel dispersion techniques are highly encouraged to develop for formulation of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Huijie Xing
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Yue Zhao
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Zhiguo Ma
- Department of Pharmaceutics, College of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| |
Collapse
|
19
|
Development of a Novel Backbone Cyclic Peptide Inhibitor of the Innate Immune TLR/IL1R Signaling Protein MyD88. Sci Rep 2018; 8:9476. [PMID: 29930295 PMCID: PMC6013495 DOI: 10.1038/s41598-018-27773-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022] Open
Abstract
MyD88 is a cytoplasmic adaptor protein that plays a central role in signaling downstream of the TLRs and the IL1R superfamily. We previously demonstrated that MyD88 plays a critical role in EAE, the murine model of multiple sclerosis, and showed that the MyD88 BB-loop decoy peptide RDVLPGT ameliorates EAE. We now designed and screened a library of backbone cyclized peptides based on the linear BB loop peptide, to identify a metabolically stable inhibitor of MyD88 that retains the binding properties of the linear peptide. We identified a novel cyclic peptide protein mimetic that inhibits inflammatory responses to TLR ligands, and NFκB activation in response to IL-1 activation. The inhibitor, c(MyD 4-4), is metabolically stable in comparison to the linear peptide, blocks MyD88 in a specific manner, and inhibits MyD88 function by preventing MyD88 dimerization. Finally, treatment of mice with c(MyD 4-4) reduced the severity of clinical disease in the murine EAE model of multiple sclerosis. Thus, modulation of MyD88-dependent signaling using c(MyD 4-4) is a potential therapeutic strategy to lower innate immune inflammation in autoimmune CNS disease.
Collapse
|
20
|
Wolska E, Sznitowska M, Chorążewicz J, Szerkus O, Radwańska A, Markuszewski MJ, Kaliszan R, Raczyńska K. Ocular irritation and cyclosporine A distribution in the eye tissues after administration of Solid Lipid Microparticles in the rabbit model. Eur J Pharm Sci 2018; 121:95-105. [PMID: 29777856 DOI: 10.1016/j.ejps.2018.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 04/23/2018] [Accepted: 05/15/2018] [Indexed: 12/25/2022]
Abstract
The aim of this study was to investigate the in vivo effect of Solid Lipid Microparticles (SLM), proposed for topical ocular administration of cyclosporine, on the rabbit eye. SLM carrier is an aqueous dispersion of lipid microparticles (20% w/w) with a size up to 15 μm. Cyclosporine was dissolved in the formulation in the concentration of 0.5 or 2.0% (w/w). Ocular tolerance of microsphere dispersion was assessed in rabbit model by the Draize eye test (SLM was compared with emulsion and oily solution), and cyclosporine distribution in ocular tissues was evaluated after multiple application of tested formulations (SLM dispersions, emulsions and oily solution) for 7 days. Good tolerance of cyclosporine-SLM formulation was demonstrated in the rabbit model. Concentration of cyclosporine in the precorneal tissues, such as cornea and conjunctiva, was much higher than the therapeutic value (8.4 ng/mg and 3.2 ng/mg, respectively). After SLM administration, the cyclosporine concentrations determined in the anterior ocular tissues, were also significantly higher compared to those obtained after the application of other tested carriers (emulsions and oily solution). The obtained results prove that the recognized SLM dispersions are safe formulations for ophthalmic use. It can be concluded that lipid microparticles are highly promising for an efficient ophthalmic drug delivery, when compared to other conventional dosage forms.
Collapse
Affiliation(s)
- Eliza Wolska
- Department of Pharmaceutical Technology, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland.
| | - Małgorzata Sznitowska
- Department of Pharmaceutical Technology, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Juliusz Chorążewicz
- Department of Ophthalmology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Oliwia Szerkus
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Aleksandra Radwańska
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Michał J Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Roman Kaliszan
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Krystyna Raczyńska
- Department of Ophthalmology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| |
Collapse
|
21
|
Wu C, Baldursdottir S, Yang M, Mu H. Lipid and PLGA hybrid microparticles as carriers for protein delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Khatri P, Shao J. Impact of digestion on the transport of dextran-loaded self-emulsified nanoemulsion through MDCK epithelial cell monolayer and rat intestines. Int J Pharm 2017; 536:353-359. [PMID: 29217473 DOI: 10.1016/j.ijpharm.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/15/2017] [Accepted: 12/03/2017] [Indexed: 01/03/2023]
Abstract
Many of the lipids and surfactants used to prepare the self-emulsified nanoemulsion (SEN) are subjected to the gastro-intestinal enzymatic digestion, which may affect the absorption of the loaded drug. The present study was to investigate the impact of such digestion on the transport of hydrophilic macromolecules (10-kDa dextran as the model compound) loaded in SEN through the MDCK cell monolayer and ex-vivo rat intestines. FITC-labeled dextran (FD) was loaded inside the inner oil phase of SEN by the formation of FD-phospholipid solid dispersion (FDPS). After digestion, the droplet size increased from 31.06 ± 2.10 nm to 494.6 ± 22.1 nm, and the FD content in the external aqueous phase increased from 41.6 ± 4.2% to 61.1 ± 4.4%. Compared to the FD solution, SEN without digestion enhanced the transport of FD through MDCK cell monolayer 4.1 times and through rat intestines 3.0-7.4 times. However, the digestion reduced the transport of FD 3.5 times through MDCK cell monolayer and 1.3-2.0 times through rat intestines, compared to that without digestion. This reduction was due to the destruction of lipid nano-droplets and release of FD to the external aqueous phase of SEN. This finding should be considered when SEN is used as a delivery system for hydrophilic macromolecules.
Collapse
Affiliation(s)
- Pulkit Khatri
- AmbioPharm, Inc., 1024 Dittman Court, North Augusta, SC, 29842, USA
| | - Jun Shao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
23
|
Liu J, Christophersen PC, Yang M, Nielsen HM, Mu H. The impact of particle preparation methods and polymorphic stability of lipid excipients on protein distribution in microparticles. Drug Dev Ind Pharm 2017; 43:2032-2042. [DOI: 10.1080/03639045.2017.1361967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jingying Liu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philip C. Christophersen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mingshi Yang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Hanne M. Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Zupančič O, Bernkop-Schnürch A. Lipophilic peptide character – What oral barriers fear the most. J Control Release 2017; 255:242-257. [DOI: 10.1016/j.jconrel.2017.04.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
|
25
|
Karamanidou T, Bourganis V, Kammona O, Kiparissides C. Lipid-based nanocarriers for the oral administration of biopharmaceutics. Nanomedicine (Lond) 2016; 11:3009-3032. [DOI: 10.2217/nnm-2016-0265] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biopharmaceutics have been recognized as the drugs of choice for the treatment of several diseases, mainly due to their high selectivity and potent action. Nonetheless, their oral administration is a rather challenging problem, since their bioavailability is significantly hindered by various physiological barriers along the GI tract, including their acid-induced hydrolysis in the stomach, their enzymatic degradation throughout the GI tract and their poor mucosa permeability. Lipid-based nanocarriers represent a viable means for enhancing the oral bioavailability of biomolecules while diminishing toxicity-related issues. The present review describes the main physiological barriers limiting the oral bioavailability of macromolecules and highlights recent advances in the field of lipid-based carriers as well as the respective lipid intestinal absorption mechanisms.
Collapse
Affiliation(s)
- Theodora Karamanidou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece
| | - Vassilis Bourganis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece
| | - Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, PO Box 60361, 57001 Thessaloniki, Greece
| | - Costas Kiparissides
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, PO Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
26
|
Qi J, Zhuang J, Lu Y, Dong X, Zhao W, Wu W. In vivo fate of lipid-based nanoparticles. Drug Discov Today 2016; 22:166-172. [PMID: 27713035 DOI: 10.1016/j.drudis.2016.09.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/28/2016] [Accepted: 09/27/2016] [Indexed: 01/10/2023]
Abstract
The in vivo fate of lipid-based nanoparticles (LBNs) is essentially determined by the properties of their lipid compositions. LBNs are rapidly degraded via lipolysis wherever lipases are abundant, especially in the gastrointestinal tract. LBNs that survive lipolysis can be translocated through the circulation to reach terminal organs or tissues. Lipid composition, particle size, and surface decoration, as well as the formation of protein corona, are the main factors influencing the in vivo fate of LBNs. As we discuss here, elucidation of the in vivo fate of LBNs helps weigh the balance between lipolysis and biorecognition, and is emerging as a new field of research.
Collapse
Affiliation(s)
- Jianping Qi
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China
| | - Jie Zhuang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yi Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China
| | - Weili Zhao
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China; Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, China
| | - Wei Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China.
| |
Collapse
|
27
|
Shi LL, Lu J, Cao Y, Liu JY, Zhang XX, Zhang H, Cui JH, Cao QR. Gastrointestinal stability, physicochemical characterization and oral bioavailability of chitosan or its derivative-modified solid lipid nanoparticles loading docetaxel. Drug Dev Ind Pharm 2016; 43:839-846. [DOI: 10.1080/03639045.2016.1220571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Shi LL, Xie H, Lu J, Cao Y, Liu JY, Zhang XX, Zhang H, Cui JH, Cao QR. Positively Charged Surface-Modified Solid Lipid Nanoparticles Promote the Intestinal Transport of Docetaxel through Multifunctional Mechanisms in Rats. Mol Pharm 2016; 13:2667-76. [DOI: 10.1021/acs.molpharmaceut.6b00226] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Li-Li Shi
- College
of Pharmaceutical Sciences, Soochow University, Suzhou, People’s Republic of China
- College
of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Hongjuan Xie
- Tongren
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jia Lu
- College
of Pharmaceutical Sciences, Soochow University, Suzhou, People’s Republic of China
| | - Yue Cao
- College
of Pharmaceutical Sciences, Soochow University, Suzhou, People’s Republic of China
| | - Jiang-Yan Liu
- College
of Pharmaceutical Sciences, Soochow University, Suzhou, People’s Republic of China
| | - Xiao-Xue Zhang
- College
of Pharmaceutical Sciences, Soochow University, Suzhou, People’s Republic of China
| | - Hongjian Zhang
- College
of Pharmaceutical Sciences, Soochow University, Suzhou, People’s Republic of China
| | - Jing-Hao Cui
- College
of Pharmaceutical Sciences, Soochow University, Suzhou, People’s Republic of China
| | - Qing-Ri Cao
- College
of Pharmaceutical Sciences, Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
29
|
Zupančič O, Leonaviciute G, Lam HT, Partenhauser A, Podričnik S, Bernkop-Schnürch A. Development andin vitroevaluation of an oral SEDDS for desmopressin. Drug Deliv 2016; 23:2074-83. [DOI: 10.3109/10717544.2016.1143056] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Rasekh M, Young C, Roldo M, Lancien F, Le Mével JC, Hafizi S, Ahmad Z, Barbu E, Gorecki D. Hollow-layered nanoparticles for therapeutic delivery of peptide prepared using electrospraying. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:256. [PMID: 26449446 DOI: 10.1007/s10856-015-5588-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
The viability of single and coaxial electrospray techniques to encapsulate model peptide-angiotensin II into near mono-dispersed spherical, nanocarriers comprising N-octyl-O-sulphate chitosan and tristearin, respectively, was explored. The stability of peptide under controlled electric fields (during particle generation) was evaluated. Resulting nanocarriers were analysed using dynamic light scattering and electron microscopy. Cell toxicity assays were used to determine optimal peptide loading concentration (~1 mg/ml). A trout model was used to assess particle behaviour in vivo. A processing limit of 20 kV was determined. A range of electrosprayed nanoparticles were formed (between 100 and 300 nm) and these demonstrated encapsulation efficiencies of ~92 ± 1.8%. For the single needle process, particles were in matrix form and for the coaxial format particles demonstrated a clear core-shell encapsulation of peptide. The outcomes of in vitro experiments demonstrated triphasic activity. This included an initial slow activity period, followed by a rapid and finally a conventional diffusive phase. This was in contrast to results from in vivo cardiovascular activity in the trout model. The results are indicative of the substantial potential for single/coaxial electrospray techniques. The results also clearly indicate the need to investigate both in vitro and in vivo models for emerging drug delivery systems.
Collapse
Affiliation(s)
- Manoochehr Rasekh
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| | - Christopher Young
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Frédéric Lancien
- Neurophysiology Laboratory, LaTIM UMR 1101, University of Brest, 29238, Brest Cedex 3, France
| | - Jean-Claude Le Mével
- Neurophysiology Laboratory, LaTIM UMR 1101, University of Brest, 29238, Brest Cedex 3, France
| | - Sassan Hafizi
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Eugen Barbu
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Darek Gorecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| |
Collapse
|
31
|
Shi LL, Cao Y, Zhu XY, Cui JH, Cao QR. Optimization of process variables of zanamivir-loaded solid lipid nanoparticles and the prediction of their cellular transport in Caco-2 cell model. Int J Pharm 2015; 478:60-69. [DOI: 10.1016/j.ijpharm.2014.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/17/2014] [Accepted: 11/09/2014] [Indexed: 10/24/2022]
|
32
|
Christophersen PC, Birch D, Saarinen J, Isomäki A, Nielsen HM, Yang M, Strachan CJ, Mu H. Investigation of protein distribution in solid lipid particles and its impact on protein release using coherent anti-Stokes Raman scattering microscopy. J Control Release 2015; 197:111-20. [DOI: 10.1016/j.jconrel.2014.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 11/16/2022]
|
33
|
Abstract
As the development of nanotechnology has extended to the world of biomolecules, a revolution has occurred in the design and assembly of nanomaterials for drug delivery with a significant potential to impact drug efficacy and patient outcomes. Currently a number of nanomaterials are under investigation for their suitability as sustained, controlled and targeted drug carriers. Leading edge of the rapidly developing nanosciences is the development and assessment of these nanomaterials, with specific physicochemical properties different from their larger/ bulk counterparts, as vehicles for transport of small and large drug molecules. The characteristics such as size, shape, chemical composition, surface structure and charge, aggregation and agglomeration, and solubility, can greatly influence interactions of these nanostructured systems or carriers with biomembranes and cells. The selectivity and reactivity achieved due to the very small size assigns these systems with a wide spectrum of applications. In this review, nanomaterials are considered in terms of the physical attributes or pharmaceutical effects allocated by them to the all-inclusive carrier or vehicle system (s). However we will limit our discussion to lipidic and polymeric nanomaterials, the two most commonly promoted, and safe nanosystems for delivery of both, the chemical or small molecular entities (SME) and the macromolecules including genes and siRNA.Contents of Paper
Collapse
|
34
|
Christophersen PC, Vaghela D, Müllertz A, Yang M, Nielsen HM, Mu H. Solid lipid particles for oral delivery of peptide and protein drugs III - the effect of fed state conditions on the in vitro release and degradation of desmopressin. AAPS JOURNAL 2014; 16:875-83. [PMID: 24875052 DOI: 10.1208/s12248-014-9619-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/12/2014] [Indexed: 11/30/2022]
Abstract
The effect of food intake on the release and degradation of peptide drugs from solid lipid particles is unknown and was therefore investigated in vitro using different fed state media in a lipolysis model. Desmopressin was used as a model peptide and incorporated into solid lipid particles consisting of trimyristin (TG14), tripalmitin (TG16), and tristearin (TG18), respectively. Fasted state and fed state media with varying phospholipid and bile salt concentrations, as well as fed state media with milk and oleic acid glycerides, respectively, were used as the release media. The presence of oleic acid glycerides accelerated the release of desmopressin significantly from all solid lipid particles both in the presence and absence of lipase. The presence of oleic acid glycerides also reduced the degradation rate of desmopressin, probably due to the interactions between the lipids and the protease or desmopressin. Addition of a medium chain triglyceride, trilaurin, in combination with drug-loaded lipid particles diminished the food effect on the TG18 particles, and trilaurin is therefore proposed to be a suitable excipient for reduction of the food effect. Overall, the present study shows that strategies to reduce food effect, such as adding trilaurin, for lipid particle formulations should be considered as drug release from such formulations might be influenced by the presence of food in the gastrointestinal tract.
Collapse
Affiliation(s)
- Philip C Christophersen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|