1
|
Robertson JN, Diep H, Pinto AR, Sobey CG, Drummond GR, Vinh A, Jelinic M. Optimization of mouse kidney digestion protocols for single-cell applications. Physiol Genomics 2024; 56:469-482. [PMID: 38525531 PMCID: PMC11368571 DOI: 10.1152/physiolgenomics.00002.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
Single-cell technologies such as flow cytometry and single-cell RNA sequencing have allowed for comprehensive characterization of the kidney cellulome. However, there is a disparity in the various protocols for preparing kidney single-cell suspensions. We aimed to address this limitation by characterizing kidney cellular heterogeneity using three previously published single-cell preparation protocols. Single-cell suspensions were prepared from male and female C57BL/6 kidneys using the following kidney tissue dissociation protocols: a scRNAseq protocol (P1), a multi-tissue digestion kit from Miltenyi Biotec (P2), and a protocol established in our laboratory (P3). Following dissociation, flow cytometry was used to identify known major cell types including leukocytes (myeloid and lymphoid), vascular cells (smooth muscle and endothelial), nephron epithelial cells (intercalating, principal, proximal, and distal tubule cells), podocytes, and fibroblasts. Of the protocols tested, P2 yielded significantly less leukocytes and type B intercalating cells compared with the other techniques. P1 and P3 produced similar yields for most cell types; however, endothelial and myeloid-derived cells were significantly enriched using P1. Significant sex differences were detected in only two cell types: granulocytes (increased in males) and smooth muscle cells (increased in females). Future single-cell studies that aim to enrich specific kidney cell types may benefit from this comparative analysis.NEW & NOTEWORTHY This study is the first to evaluate published single-cell suspension preparation protocols and their ability to produce high-quality cellular yields from the mouse kidney. Three single-cell digestion protocols were compared and each produced significant differences in kidney cellular heterogeneity. These findings highlight the importance of the digestion protocol when using single-cell technologies. This study may help future single-cell science research by guiding researchers to choose protocols that enrich certain cell types of interest.
Collapse
Affiliation(s)
- Jake N Robertson
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Henry Diep
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Alexander R Pinto
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
2
|
Dong L, Li Y, Cong H, Yu B, Shen Y. A review of chitosan in gene therapy: Developments and challenges. Carbohydr Polym 2024; 324:121562. [PMID: 37985064 DOI: 10.1016/j.carbpol.2023.121562] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Gene therapy, as a revolutionary treatment, has been gaining more and more attention. The key to gene therapy is the selection of suitable vectors for protection of exogenous nucleic acid molecules and enabling their specific release in target cells. While viral vectors have been widely used in researches, non-viral vectors are receiving more attention due to its advantages. Chitosan (CS) has been widely used as non-viral organic gene carrier because of its good biocompatibility and its ability to load large amounts of nucleic acids. This paper summarizes and evaluates the potential of chitosan and its derivatives as gene delivery vector materials, along with factors influencing transfection efficiency, performance evaluation, ways to optimize infectious efficiency, and the current main research development directions. Additionally, it provides an outlook on its future prospects.
Collapse
Affiliation(s)
- Liang Dong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Kazempour S, Naeimi H. Design, fabrication and characterization of mesoporous yolk-shell nanocomposites as a sustainable heterogeneous nanocatalyst for synthesis of ortho-aminocarbonitrile tetrahydronaphthalenes. Sci Rep 2023; 13:22464. [PMID: 38105317 PMCID: PMC10725875 DOI: 10.1038/s41598-023-50021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023] Open
Abstract
A new structure of mesoporous spherical nanocomposites was designed and easily prepared from the reaction between NiCuFe2O4 nanoparticles and mesoporous silica in three steps. The prepared multi-yolk@shell NiCuFe2O4@mSiO2 mesoporous sphere was characterized by using FT-IR, XRD, VSM, EDX, BET, FE-SEM and HR-TEM techniques. This unique mesoporous nanocomposite sphere as a heterogeneous nanocatalyst has demonstrated highly catalytic activity for the green synthesis of tetrahydronaphthalene derivatives in 92-98% yields at reaction times of 60-75 min. This process was carried out through multi-component reaction of the cyclic ketone, malononitrile and aromatic aldehyde under solvent-free conditions. Furthermore, the procedure was optimized on the basis of catalyst loading amounts, various solvents and temperature conditions. This novel methodology exposes obvious benefits such as; catalyst reusability, easy reaction procedure, simplicity of work-up, excellent product yields and short reaction times.
Collapse
Affiliation(s)
- Somayeh Kazempour
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317-51167, Islamic Republic of Iran
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317-51167, Islamic Republic of Iran.
| |
Collapse
|
4
|
Dudchenko N, Pawar S, Perelshtein I, Fixler D. Magnetite Nanoparticles: Synthesis and Applications in Optics and Nanophotonics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2601. [PMID: 35407934 PMCID: PMC9000335 DOI: 10.3390/ma15072601] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023]
Abstract
Magnetite nanoparticles with different surface coverages are of great interest for many applications due to their intrinsic magnetic properties, nanometer size, and definite surface morphology. Magnetite nanoparticles are widely used for different medical-biological applications while their usage in optics is not as widespread. In recent years, nanomagnetite suspensions, so-called magnetic ferrofluids, are applied in optics due to their magneto-optical properties. This review gives an overview of nanomagnetite synthesis and its properties. In addition, the preparation and application of magnetic nanofluids in optics, nanophotonics, and magnetic imaging are described.
Collapse
Affiliation(s)
- Nataliia Dudchenko
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel; (N.D.); (I.P.)
| | - Shweta Pawar
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Ilana Perelshtein
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel; (N.D.); (I.P.)
| | - Dror Fixler
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel; (N.D.); (I.P.)
| |
Collapse
|
5
|
Kumar N, Chamoli P, Misra M, Manoj MK, Sharma A. Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. NANOSCALE 2022; 14:3987-4017. [PMID: 35244647 DOI: 10.1039/d1nr07643d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoparticles (NPs) offer great promise for biomedical, environmental, and clinical applications due to their several unique properties as compared to their bulk counterparts. In this review article, we overview various types of metal NPs and magnetic nanoparticles (MNPs) in monolithic form as well as embedded into polymer matrices for specific drug delivery and bio-imaging fields. The second part of this review covers important carbon nanostructures that have gained tremendous attention recently in such medical applications due to their ease of fabrication, excellent biocompatibility, and biodegradability at both cellular and molecular levels for phototherapy, radio-therapeutics, gene-delivery, and biotherapeutics. Furthermore, various applications and challenges involved in the use of NPs as biomaterials are also discussed following the future perspectives of the use of NPs in biomedicine. This review aims to contribute to the applications of different NPs in medicine and healthcare that may open up new avenues to encourage wider research opportunities across various disciplines.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Metallurgical Engineering, SOE, O.P. Jindal University, Raigarh 496109, India
- Department of Metallurgical and Materials Engineering, NIT Raipur, Raipur, 492010, India
| | - Pankaj Chamoli
- School of Basic & Applied Sciences, Department of Physics, Shri Guru Ram Rai University, Dehradun-248001, Uttarakhand, India
| | - Mrinmoy Misra
- Department of Mechatronics, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, 303007 Rajasthan, India
| | - M K Manoj
- Department of Metallurgical and Materials Engineering, NIT Raipur, Raipur, 492010, India
| | - Ashutosh Sharma
- Department of Materials Science and Engineering, Ajou University, Suwon-16499, South Korea.
| |
Collapse
|
6
|
Kucharski M, Mrowiec P, Ocłoń E. Current standards and pitfalls associated with the transfection of primary fibroblast cells. Biotechnol Prog 2021; 37:e3152. [PMID: 33774920 DOI: 10.1002/btpr.3152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022]
Abstract
Cultured fibroblast cells, especially dermal cells, are used for various types of scientific research, particularly within the medical field. Desirable features of the cells include their ease of isolation, rapid cellular growth, and high degree of robustness. Currently, fibroblasts are mainly used to obtain pluripotent cells via a reprogramming process. Dermal fibroblasts, are particularly useful for gene therapies used for promoting wound healing or minimizing skin aging. In recent years, fibroblast transfection efficiencies have significantly improved. In order to introduce molecules (most often DNA or RNA) into cells, viral-based systems (transduction) or non-viral methods (transfection) that include physical/mechanical processes or lipid reagents may be used. In this article, we describe critical points that should be considered when selecting a method for transfecting fibroblasts. The most effective methods used for the transfection of fibroblasts include both viral-based and non-viral nucleofection systems. These methods result in a high level of transgene expression and are superior in terms of transfection efficacy and viability.
Collapse
Affiliation(s)
- Mirosław Kucharski
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Patrycja Mrowiec
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Krakow, Poland
| | - Ewa Ocłoń
- Centre for Experimental and Innovative Medicine, Laboratory of Recombinant Proteins Production, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
7
|
Anik MI, Hossain MK, Hossain I, Mahfuz AMUB, Rahman MT, Ahmed I. Recent progress of magnetic nanoparticles in biomedical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202000162] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Muzahidul I. Anik
- Chemical Engineering University of Rhode Island Kingston Rhode Island 02881 USA
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science Kyushu University Fukuoka 816–8580 Japan
- Atomic Energy Research Establishment Bangladesh Atomic Energy Commission Dhaka 1349 Bangladesh
| | - Imran Hossain
- Institute for Micromanufacturing Louisiana Tech University Ruston Louisiana 71270 USA
| | - A. M. U. B. Mahfuz
- Biotechnology and Genetic Engineering University of Development Alternative Dhaka 1209 Bangladesh
| | - M. Tayebur Rahman
- Materials Science and Engineering University of Rajshahi Rajshahi 6205 Bangladesh
| | - Isteaque Ahmed
- Chemical Engineering University of Cincinnati Cincinnati Ohio 45221 USA
| |
Collapse
|
8
|
Battig MR, Alferiev IS, Guerrero DT, Fishbein I, Pressly BB, Levy RJ, Chorny M. Experimental Single-Platform Approach to Enhance the Functionalization of Magnetically Targetable Cells. ACS APPLIED BIO MATERIALS 2020; 3:3914-3922. [PMID: 33251488 DOI: 10.1021/acsabm.0c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnetic guidance shows promise as a strategy for improving the delivery and performance of cell therapeutics. However, clinical translation of magnetically guided cell therapy requires cell functionalization protocols that provide adequate magnetic properties in balance with unaltered cell viability and biological function. Existing methodologies for characterizing cells functionalized with magnetic nanoparticles (MNP) produce aggregate results, both distorted and unable to reflect variability in either magnetic or biological properties within a preparation. In the present study, we developed an inverted-plate assay allowing determination of these characteristics using a single-platform approach, and applied this method for a comparative analysis of two loading protocols providing highly uniform vs. uneven MNP distribution across cells. MNP uptake patterns remarkably different between the two protocols were first shown by fluorimetry carried out in a well-scan mode on endothelial cells (EC) loaded with BODIPY558/568-labeled MNP. Using the inverted-plate assay we next demonstrated that, in stark contrast to unevenly loaded cells, more than 50% of uniformly functionalized EC were captured within 5 min over a broad range of MNP doses. Furthermore, magnetically captured cells exhibited unaltered viability, substrate attachment, and proliferation rates. Conducted in parallel, magnetophoretic mobility studies corroborated the markedly superior guidance capacity of uniformly functionalized cells, confirming substantially faster cell capture kinetics on a clinically relevant time scale. Taken together, these results emphasize the importance of optimizing cell preparation protocols with regard to loading uniformity as key to efficient site-specific delivery, engraftment, and expansion of the functionalized cells, essential for both improving performance and facilitating translation of targeted cell therapeutics.
Collapse
Affiliation(s)
- Mark R Battig
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ivan S Alferiev
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David T Guerrero
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ilia Fishbein
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin B Pressly
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert J Levy
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael Chorny
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Rohiwal SS, Dvorakova N, Klima J, Vaskovicova M, Senigl F, Slouf M, Pavlova E, Stepanek P, Babuka D, Benes H, Ellederova Z, Stieger K. Polyethylenimine based magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome editing. Sci Rep 2020; 10:4619. [PMID: 32165679 PMCID: PMC7067791 DOI: 10.1038/s41598-020-61465-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/17/2020] [Indexed: 01/09/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR/Cas9) system has become a revolutionary tool for gene editing. Since viral delivery systems have significant side effects, and naked DNA delivery is not an option, the nontoxic, non-viral delivery of CRISPR/Cas9 components would significantly improve future therapeutic delivery. In this study, we aim at characterizing nanoparticles to deliver plasmid DNA encoding for the CRISPR-Cas system in eukaryotic cells in vitro. CRISPR/Cas9 complexed polyethylenimine (PEI) magnetic nanoparticles (MNPs) were generated. We used a stable HEK293 cell line expressing the traffic light reporter (TLR-3) system to evaluate efficient homology- directed repair (HDR) and non-homologous end joining (NHEJ) events following transfection with NPs. MNPs have been synthesized by co-precipitation with the average particle size around 20 nm in diameter. The dynamic light scattering and zeta potential measurements showed that NPs exhibited narrow size distribution and sufficient colloidal stability. Genome editing events were as efficient as compared to standard lipofectamine transfection. Our approach tested non-viral delivery of CRISPR/Cas9 and DNA template to perform HDR and NHEJ in the same assay. We demonstrated that PEI-MNPs is a promising delivery system for plasmids encoding CRISPR/Cas9 and template DNA and thus can improve safety and utility of gene editing.
Collapse
Affiliation(s)
- S S Rohiwal
- The PIGMOD center, Institute of Animal Physiology and Genetics, v. v. i., The Czech Academy of Sciences, Libechov, Czech Republic
| | - N Dvorakova
- The PIGMOD center, Institute of Animal Physiology and Genetics, v. v. i., The Czech Academy of Sciences, Libechov, Czech Republic
| | - J Klima
- The PIGMOD center, Institute of Animal Physiology and Genetics, v. v. i., The Czech Academy of Sciences, Libechov, Czech Republic
| | - M Vaskovicova
- The PIGMOD center, Institute of Animal Physiology and Genetics, v. v. i., The Czech Academy of Sciences, Libechov, Czech Republic
| | - F Senigl
- Institute of Molecular Genetics, The Czech Academy of Sciences, Praha 4, Czech Republic
| | - M Slouf
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - E Pavlova
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - P Stepanek
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - D Babuka
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - H Benes
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Z Ellederova
- The PIGMOD center, Institute of Animal Physiology and Genetics, v. v. i., The Czech Academy of Sciences, Libechov, Czech Republic.
| | - K Stieger
- Department of Ophthalmology, Justus-Liebig-University, 35392, Giessen, Germany.
| |
Collapse
|
10
|
Improved Delivery of CRISPR/Cas9 System Using Magnetic Nanoparticles into Porcine Fibroblast. Mol Biotechnol 2019; 61:173-180. [PMID: 30560399 DOI: 10.1007/s12033-018-0145-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetically modified pigs play an important role in agriculture and biomedical research; hence, new efficient methods are needed to obtain genetically engineered cells and animals. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas (CRISPR-associated) system represents an effective genome editing tool. It consists of two key molecules: single guide RNA (sgRNA) and the Cas9 endonuclease that can be introduced into the cells as one plasmid. Typical delivery methods for CRISPR/Cas9 components are limited by low transfection efficiency or toxic effects on cells. Here, we describe the use of magnetic nanoparticles and gradient magnetic field to improve delivery of CRISPR/Cas9 constructs into porcine fetal fibroblasts. Polyethylenimine-coated nanoparticles with magnetic iron oxide core were used to form magnetic plasmid DNA lipoplexes. CRISPR/Cas9 construct was prepared to induce site-specific cutting at the porcine H11 locus. Quantitative assessment of genomic cleavage by sequence trace decomposition demonstrated that the magnetofection efficiency was more than 3.5 times higher compared to the classic lipofection method. The Tracking of Indels by Decomposition web tool precisely determined the spectrum of indels that occurred. Simultaneously, no additional cytotoxicity associated with the utilization of magnetic nanoparticles was observed. Our results indicate that magnetofection enables effective delivery of the CRISPR/Cas9 construct into porcine fetal fibroblasts with low cell toxicity.
Collapse
|
11
|
Grabowska M, Grześkowiak BF, Szutkowski K, Wawrzyniak D, Głodowicz P, Barciszewski J, Jurga S, Rolle K, Mrówczyński R. Nano-mediated delivery of double-stranded RNA for gene therapy of glioblastoma multiforme. PLoS One 2019; 14:e0213852. [PMID: 30889203 PMCID: PMC6424419 DOI: 10.1371/journal.pone.0213852] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/03/2019] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of malignant gliomas, characterized by genetic instability, intratumoral histopathological variability and unpredictable clinical behavior. Disappointing results in the treatment of gliomas with surgery, radiation and chemotherapy have fueled a search for new therapeutic targets and treatment modalities. Here we report new approach towards RNA interference therapy of glioblastoma multiforme based on the magnetic nanoparticles delivery of the double-stranded RNA (dsRNA) with homological sequences to mRNA of tenascin-C (TN-C), named ATN-RNA. The obtained nanocomposite consisted of polyethyleneimine (PEI) coated magnetic nanoparticles conjugated to the dsRNA show high efficiency in ATN-RNA delivery, resulting not only in significant TN-C expression level suppressesion, but also impairing the tumor cells migration. Moreover, synthesized nanomaterials show high contrast properties in magnetic resonance imaging (MRI) and low cytotoxicity combining with lack of induction of interferon response. We believe that the present work is a successful combination of effective, functional, non-immunostimulatory dsRNA delivery system based on magnetic nanoparticles with high potential for further application in GBM therapy.
Collapse
Affiliation(s)
- Małgorzata Grabowska
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Science, Poznan, Poland
| | | | - Kosma Szutkowski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Dariusz Wawrzyniak
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Science, Poznan, Poland
| | - Paweł Głodowicz
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Science, Poznan, Poland
| | - Jan Barciszewski
- Department of Epigenetics, Institute of Bioorganic Chemistry Polish Academy of Science, Poznan, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Katarzyna Rolle
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Science, Poznan, Poland
- Centre for Advanced Technologies, Poznan, Poland
- * E-mail: (RM); (KR)
| | - Radosław Mrówczyński
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan, Poland
- * E-mail: (RM); (KR)
| |
Collapse
|
12
|
Smolková B, Uzhytchak M, Lynnyk A, Kubinová Š, Dejneka A, Lunov O. A Critical Review on Selected External Physical Cues and Modulation of Cell Behavior: Magnetic Nanoparticles, Non-thermal Plasma and Lasers. J Funct Biomater 2018; 10:jfb10010002. [PMID: 30586923 PMCID: PMC6463085 DOI: 10.3390/jfb10010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Physics-based biomedical approaches have proved their importance for the advancement of medical sciences and especially in medical diagnostics and treatments. Thus, the expectations regarding development of novel promising physics-based technologies and tools are very high. This review describes the latest research advances in biomedical applications of external physical cues. We overview three distinct topics: using high-gradient magnetic fields in nanoparticle-mediated cell responses; non-thermal plasma as a novel bactericidal agent; highlights in understanding of cellular mechanisms of laser irradiation. Furthermore, we summarize the progress, challenges and opportunities in those directions. We also discuss some of the fundamental physical principles involved in the application of each cue. Considerable technological success has been achieved in those fields. However, for the successful clinical translation we have to understand the limitations of technologies. Importantly, we identify the misconceptions pervasive in the discussed fields.
Collapse
Affiliation(s)
- Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Anna Lynnyk
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
13
|
Lee M, Chea K, Pyda R, Chua M, Dominguez I. Comparative Analysis of Non-viral Transfection Methods in Mouse Embryonic Fibroblast Cells. J Biomol Tech 2017; 28:67-74. [PMID: 28507462 DOI: 10.7171/jbt.17-2802-003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mouse embryonic fibroblast (MEF) cells are an important in vitro model for developmental biology, disease, and reprogramming studies. However, as with other primary cells, they are challenging to transfect. Although viral gene-delivery methods achieve high gene-delivery efficiency, challenges with cell mutagenesis and safety among others have led to the use and improvement of non-viral gene-delivery methods in MEF cells. Despite the importance of gene delivery in MEF cells, there is limited comparison of method/reagent efficacy. In this study, we compared the effectiveness of different gene-delivery methods and several reagents currently available in MEF cells by introducing a plasmid containing enhanced green fluorescent protein (EGFP). We analyze transfection efficiency by EGFP fluorescence. Our results suggest that two gene-delivery methods-electroporation and magnetofection in combination with a lipid reagent, are the most efficient transfection methods in MEF cells. This study provides a foundation for the selection of transfection methods or reagents when using MEF cells.
Collapse
Affiliation(s)
- Migi Lee
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Kathleen Chea
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Rajyalakshmi Pyda
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Melissa Chua
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
14
|
Abstract
The transgenic process allows for obtaining genetically modified animals for divers biomedical applications. A number of transgenic animals for xenotransplantation have been generated with the somatic cell nuclear transfer (SCNT) method. Thereby, efficient nucleic acid delivery to donor cells such as fibroblasts is of particular importance. The objective of this study was to establish stable transgene expressing porcine fetal fibroblast cell lines using magnetic nanoparticle-based gene delivery vectors under a gradient magnetic field. Magnetic transfection complexes prepared by self-assembly of suitable magnetic nanoparticles, plasmid DNA, and an enhancer under an inhomogeneous magnetic field enabled the rapid and efficient delivery of a gene construct (pCD59-GFPBsd) into porcine fetal fibroblasts. The applied vector dose was magnetically sedimented on the cell surface within 30 min as visualized by fluorescence microscopy. The PCR and RT-PCR analysis confirmed not only the presence but also the expression of transgene in all magnetofected transgenic fibroblast cell lines which survived antibiotic selection. The cells were characterized by high survival rates and proliferative activities as well as correct chromosome number. The developed nanomagnetic gene delivery formulation proved to be an effective tool for the production of genetically engineered fibroblasts and may be used in future in SCNT techniques for breeding new transgenic animals for the purpose of xenotransplantation.
Collapse
|
15
|
Mrówczyński R, Jurga-Stopa J, Markiewicz R, Coy EL, Jurga S, Woźniak A. Assessment of polydopamine coated magnetic nanoparticles in doxorubicin delivery. RSC Adv 2016. [DOI: 10.1039/c5ra24222c] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnetic nanoparticles coated with bioinspired polydopamine were obtained via a co-precipitation method and oxidative polymerization of dopamine. Obtained particle were used for carrying doxorubicin to HeLa cells.
Collapse
Affiliation(s)
| | - Justyna Jurga-Stopa
- Department of Biomaterials and Experimental Dentistry
- Poznan University of Medical Sciences
- Poznań
- Poland
| | | | - Emerson L. Coy
- NanoBioMedical Centre at Adam Mickiewicz University
- 61-614 Poznań
- Poland
| | - Stefan Jurga
- NanoBioMedical Centre at Adam Mickiewicz University
- 61-614 Poznań
- Poland
- Department of Macromolecular Physics
- Faculty of Physics
| | - Anna Woźniak
- NanoBioMedical Centre at Adam Mickiewicz University
- 61-614 Poznań
- Poland
| |
Collapse
|
16
|
Magnetic iron oxide nanoparticles: Recent trends in design and synthesis of magnetoresponsive nanosystems. Biochem Biophys Res Commun 2015; 468:442-53. [DOI: 10.1016/j.bbrc.2015.08.030] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 01/01/2023]
|
17
|
Kim YK, Zhang M, Lu JJ, Xu F, Chen BA, Xing L, Jiang HL. PK11195-chitosan-graft-polyethylenimine-modified SPION as a mitochondria-targeting gene carrier. J Drug Target 2015; 24:457-67. [PMID: 26390926 DOI: 10.3109/1061186x.2015.1087527] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Superparamagnetic iron oxide nanoparticle (SPION) holds great potential as a gene delivery system due to its unique properties, such as good biocompatibility and non-invasive targeting ability. In this study, we modified SPION with chitosan-graft-PEI (CHI-g-PEI) and PK11195, to fabricate a mitochondria-targeting gene carrier, PK-CP-SPION. PK-CP-SPION manifested prominent physicochemical properties for magnetic guided gene delivery, and it could effectively condense and protect DNA at proper weight ratios. The in vitro cytotoxicity of PK-CP-SPIONs was mild. Under an external magnetic field, the transfection efficiency of PK-CP-SPIONs was comparable to PEI 25 K with shorter transfection time. PK11195 facilitated the specific accumulation of PK-CP-SPIONs in mitochondria, leading to the leakage of cytochrome c, the dissipation of mitochondrial membrane potential and subsequently the activation of mitochondria apoptosis pathway. These results indicated that with further development, PK-CP-SPIONs could serve as a multifunctional nanoplatform for magnetic targeting gene delivery and mitochondria-targeting therapy, leading enhanced therapeutic effect towards tumor cells.
Collapse
Affiliation(s)
- You-Kyoung Kim
- a State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| | - Mei Zhang
- b Department of Pharmaceutics , China Pharmaceutical University , Nanjing , PR China
| | - Jin-Jian Lu
- c State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Fengguo Xu
- d Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) , China Pharmaceutical University , Nanjing , PR China
| | - Bao-An Chen
- e Department of Hematology , The Affiliated Zhongda Hospital of Southeast University , Nanjing , PR China , and
| | - Lei Xing
- a State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China .,b Department of Pharmaceutics , China Pharmaceutical University , Nanjing , PR China
| | - Hu-Lin Jiang
- a State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China .,b Department of Pharmaceutics , China Pharmaceutical University , Nanjing , PR China .,f Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|