1
|
Ai Z, Liu B, Chen J, Zeng X, Wang K, Tao C, Chen J, Yang L, Ding Q, Zhou M. Advances in nano drug delivery systems for enhanced efficacy of emodin in cancer therapy. Int J Pharm X 2025; 9:100314. [PMID: 39834843 PMCID: PMC11743866 DOI: 10.1016/j.ijpx.2024.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/05/2025] Open
Abstract
Cancer remains one of the leading causes of death worldwide, highlighting the urgent need for novel antitumor drugs. Natural products have long been a crucial source of anticancer agents. Among these, emodin (EMO), a multifunctional anthraquinone compound, exhibits significant anticancer effects but is hindered in clinical applications by challenges such as low solubility, rapid metabolism, poor bioavailability, and off-target toxicity. Nano drug delivery systems offer effective strategies to overcome these limitations by enhancing the solubility, stability, bioavailability, and targeting ability of EMO. While substantial progress has been made in developing EMO-loaded nanoformulations, a comprehensive review on this topic is still lacking. This paper aims to fill this gap by providing an overview of recent advancements in nanocarriers for EMO delivery and their anticancer applications. These carriers include liposomes, nanoparticles, polymeric micelles, nanogels, and others, with nanoparticle-based formulations being the most extensively explored. Nanoformulations encapsulating EMO have demonstrated promising therapeutic results against various cancers, particularly breast cancer, followed by liver and lung cancers. We systematically summarize the preparation methods, materials, and physicochemical properties of EMO-loaded nanopreparations, underscoring key findings on how nanotechnology improves the anticancer efficacy of EMO. This review provides valuable insights for researchers engaged in developing nano delivery systems for anticancer drugs.
Collapse
Affiliation(s)
- Zhenghao Ai
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Bingyao Liu
- Department of Radiology, West China Hospital Sichuan University Jintang Hospital, Chengdu, China
| | - Junyan Chen
- Department of Cardiothoracic Surgery, Luzhou People's Hospital, Luzhou, China
| | - Xinhao Zeng
- Department of Pediatric Surgery, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Ke Wang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chao Tao
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jing Chen
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Qian Ding
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Chen M, Xue M, Zhou Y, Xu C, Jiang N, Fan Y, Meng Y. Antiviral effects of rhein on largemouth bass ranavirus (LMBRaV). FISH & SHELLFISH IMMUNOLOGY 2024; 155:110019. [PMID: 39521355 DOI: 10.1016/j.fsi.2024.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Largemouth bass ranavirus (LMBRaV), also known as largemouth bass virus (LMBV), is a highly damaging viral pathogen that causes widespread mortality in cultured largemouth bass and poses a significant threat to the farming industry in China. However, there is a paucity of effective preventive methods for this disease by LMBRaV. Research has established that herbal extracts possess antiviral activity, potentially exerting a controlling effect on viruses in aquaculture. Therefore, the identification of simple and structurally safe herbal extract immunomodulators is critical for largemouth bass health and development. Rhein, an herbal compound, exhibits a broad spectrum of pharmacological effects in herbal medicine. This study aimed to evaluate the properties and effects of rhein against LMBRaV in epithelioma papilloma cyprinid (EPC) and largemouth bass. In vitro CCK-8 assays were performed to determine the highest safe concentrations. Significantly, 50 mg/L rhein effectively inhibited cytopathic effects (CPE) in EPC induced by LMBRaV, resulting in a 97 % reduction in viral replication rates. Furthermore, a six-point dose-response experiment revealed that rhein doses as low as 6.4 mg/L inhibited LMBRaV and suppressed LMBRaV infection with a dose-dependent manner. Subsequent experiments demonstrated that sustained rhein activity effectively alleviated CPE and nuclear damage caused by LMBRaV infection. Additionally, rhein exerted protective effects against declines in LMBRaV-induced mitochondrial membrane potential. In vivo experiments validated that largemouth bass diets supplemented with 0.075 % rhein exerted a protective effect against LMBRaV infection. Moreover, LMBRaV MCP gene expression levels were lower in several organs of fish in the rhein supplementation group. Immunogene analysis determined that rhein upregulated relevant gene expression levels in multiple organs of largemouth bass, with higher activities observed for the Mx, INF-γ, and IRF3 genes. Histopathological results displayed that a supplemental dosage of 0.075 % rhein significantly mitigated LMBRaV infection-induced pathological damage in the liver, spleen, and kidney. Taken together, these in vivo and in vitro results support the effective use of rhein as a promising candidate for the development of antiviral treatment against LMBRaV infection, highlighting its role in aquatic animal husbandry as a wide-spectrum antiviral and immune response booster.
Collapse
Affiliation(s)
- Mengmeng Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China.
| |
Collapse
|
3
|
Saha P, Ahmad F. Neuroprotective, Anti-Inflammatory and Antifibrillogenic Offerings by Emodin against Alzheimer's Dementia: A Systematic Review. ACS OMEGA 2024; 9:7296-7309. [PMID: 38405501 PMCID: PMC10882671 DOI: 10.1021/acsomega.3c07178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 02/27/2024]
Abstract
Background: Alzheimer's disease (AD) is among the major causes of dementia in the elderly and exerts tremendous clinical, psychological and socio-economic constraints. Currently, there are no effective disease-modifying/retarding anti-AD agents. Emodin is a bioactive phytochemical with potent multimodal anti-inflammatory, antioxidant, and antifibrillogenic properties. In particular, emodin may result in significant repression of the pathogenic mechanisms underlying AD. The purpose of this review is to accumulate and summarize all the primary research data evaluating the therapeutic actions of emodin in AD pathogenesis. Methodology: The search, selection, and retrieval of pertinent primary research articles were systematically performed using a methodically designed approach. A variety of keyword combinations were employed on online scholarly web-databases. Strict preset inclusion and exclusion criteria were used to select the retrieved studies. Data from the individual studies were summarized and compiled into different sections, based upon their findings. Results: Cellular and animal research indicates that emodin exerts robust multimodal neuroprotection in AD. While emodin effectively prevents tau and amyloid-beta (Aβ) oligomerization, it also mitigates their neurotoxicity by attenuating neuroinflammatory, oxidative, and bioenergetic defects. Evidences for emodin-mediated enhancements in memory, learning, and cognition were also found in the literature. Conclusion: Emodin is a potential anti-AD dietary supplement; however, further studies are warrantied to thoroughly understand its target players and mechanisms. Moreover, human clinical data on emodin-mediated amelioration of AD phenotype is largely lacking, and must be addressed in the future. Lastly, the safety of exogenously supplemented emodin must be thoroughly evaluated.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
4
|
Balusamy SR, Perumalsamy H, Huq MA, Yoon TH, Mijakovic I, Thangavelu L, Yang DC, Rahimi S. A comprehensive and systemic review of ginseng-based nanomaterials: Synthesis, targeted delivery, and biomedical applications. Med Res Rev 2023; 43:1374-1410. [PMID: 36939049 DOI: 10.1002/med.21953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/22/2022] [Accepted: 02/26/2023] [Indexed: 03/21/2023]
Abstract
Among 17 Panax species identified across the world, Panax ginseng (Korean ginseng), Panax quinquefolius (American ginseng), and Panax notoginseng (Chinese ginseng) are highly recognized for the presence of bioactive compound, ginsenosides and their pharmacological effects. P. ginseng is widely used for synthesis of different types of nanoparticles compared to P. quinquefolius and P. notoginseng. The use of nano-ginseng could increase the oral bioavailability, membrane permeability, and thus provide effective delivery of ginsenosides to the target sites through transport system. In this review, we explore the synthesis of ginseng nanoparticles using plant extracts from various organs, microbes, and polymers, as well as their biomedical applications. Furthermore, we highlight transporters involved in transport of ginsenoside nanoparticles to the target sites. Size, zeta potential, temperature, and pH are also discussed as the critical parameters affecting the quality of ginseng nanoparticles synthesis.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Seoul, Gwangjin-gu, Republic of Korea
| | - Haribalan Perumalsamy
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Md Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Tae Hyun Yoon
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, India
| | - Deok Chun Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
5
|
Haemmerich D, Ramajayam KK, Newton DA. Review of the Delivery Kinetics of Thermosensitive Liposomes. Cancers (Basel) 2023; 15:cancers15020398. [PMID: 36672347 PMCID: PMC9856714 DOI: 10.3390/cancers15020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Thermosensitive liposomes (TSL) are triggered nanoparticles that release the encapsulated drug in response to hyperthermia. Combined with localized hyperthermia, TSL enabled loco-regional drug delivery to tumors with reduced systemic toxicities. More recent TSL formulations are based on intravascular triggered release, where drug release occurs within the microvasculature. Thus, this delivery strategy does not require enhanced permeability and retention (EPR). Compared to traditional nanoparticle drug delivery systems based on EPR with passive or active tumor targeting (typically <5%ID/g tumor), TSL can achieve superior tumor drug uptake (>10%ID/g tumor). Numerous TSL formulations have been combined with various drugs and hyperthermia devices in preclinical and clinical studies over the last four decades. Here, we review how the properties of TSL dictate delivery and discuss the advantages of rapid drug release from TSL. We show the benefits of selecting a drug with rapid extraction by tissue, and with quick cellular uptake. Furthermore, the optimal characteristics of hyperthermia devices are reviewed, and impact of tumor biology and cancer cell characteristics are discussed. Thus, this review provides guidelines on how to improve drug delivery with TSL by optimizing the combination of TSL, drug, and hyperthermia method. Many of the concepts discussed are applicable to a variety of other triggered drug delivery systems.
Collapse
Affiliation(s)
- Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Correspondence:
| | - Krishna K. Ramajayam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Danforth A. Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Gupta DS, Kaur G, Bhushan S, Sak K, Garg VK, Aggarwal D, Joshi H, Kumar P, Yerer MB, Tuli HS. Phyto nanomedicine for cancer therapy. NANOTECHNOLOGY IN HERBAL MEDICINE 2023:313-347. [DOI: 10.1016/b978-0-323-99527-6.00007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
7
|
Mechanism of Emodin in the Treatment of Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9482570. [PMID: 36225183 PMCID: PMC9550445 DOI: 10.1155/2022/9482570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, and autoimmune disease, and its main pathological changes are inflammatory cell infiltration accompanied by the secretion and accumulation of a variety of related cytokines, which induce the destruction of cartilage and bone tissue. Therefore, the modulation of inflammatory cells and cytokines is a key therapeutic target for controlling inflammation in RA. This review details the effects of emodin on the differentiation and maturation of T lymphocytes, dendritic cells, and regulatory T cells. In addition, the systematic introduction of emodin directly or indirectly affects proinflammatory cytokines (TNF-α, IL-6, IL-1, IL-1β, IL-17, IL-19, and M-CSF) and anti-inflammatory cytokines (the secretion of IL-4, IL-10, IL-13, and TGF-β) through the coregulation of a variety of inflammatory cytokines to inhibit inflammation in RA and promote recovery. Understanding the potential mechanism of emodin in the treatment of RA in detail provides a systematic theoretical basis for the clinical application of emodin in the future.
Collapse
|
8
|
Mohapatra P, Singh P, Singh D, Sahoo S, Sahoo SK. Phytochemical based nanomedicine: a panacea for cancer treatment, present status and future prospective. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Jiang H, Tang W, Song Y, Jin W, Du Q. Induction of Apoptosis by Metabolites of Rhei Radix et Rhizoma (Da Huang): A Review of the Potential Mechanism in Hepatocellular Carcinoma. Front Pharmacol 2022; 13:806175. [PMID: 35308206 PMCID: PMC8924367 DOI: 10.3389/fphar.2022.806175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
Liver cancer is a global disease with a high mortality rate and limited treatment options. Alternations in apoptosis of tumor cells and immune cells have become an important method for detailing the underlying mechanisms of hepatocellular carcinoma (HCC). Bcl-2 family, Caspase family, Fas and other apoptosis-related proteins have also become antagonistic targets of HCC. Da Huang (Rhei Radix et Rhizoma, RR), a traditional Chinese herb, has recently demonstrated antitumor behaviors. Multiple active metabolites of RR, including emodin, rhein, physcion, aloe-emodin, gallic acid, and resveratrol, can successfully induce apoptosis and inhibit HCC. However, the underlying mechanisms of these metabolites inhibiting the occurrence and development of HCC by inducing apoptosis is complicated owing to the multi-target and multi-pathway characteristics of traditional Chinese herbs. Accordingly, this article reviews the pathways of apoptosis, the relationship between HCC and apoptosis, the role and mechanism of apoptosis induced by mitochondrial endoplasmic reticulum pathway and death receptor pathway in HCC and the mechanism of six RR metabolites inhibiting HCC by inducing apoptosis.
Collapse
Affiliation(s)
- Huanyu Jiang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuyinuo Tang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Yu SC, Hou YT, Hsu CM, Tsai FJ, Tsai Y. Inclusion complex of emodin and glycyrrhetinic acid-conjugated-β-cyclodextrin to target liver cells: synthesis, characterization, and bioactivity in vitro and in vivo. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01123-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Bakrania A, Zheng G, Bhat M. Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment. Pharmaceutics 2021; 14:41. [PMID: 35056937 PMCID: PMC8779722 DOI: 10.3390/pharmaceutics14010041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death and is associated with a dismal median survival of 2-9 months. The fundamental limitations and ineffectiveness of current HCC treatments have led to the development of a vast range of nanotechnologies with the goal of improving the safety and efficacy of treatment for HCC. Although remarkable success has been achieved in nanomedicine research, there are unique considerations such as molecular heterogeneity and concomitant liver dysfunction that complicate the translation of nanotheranostics in HCC. This review highlights the progress, challenges, and targeting opportunities in HCC nanomedicine based on the growing literature in recent years.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
12
|
Zheng Q, Li S, Li X, Liu R. Advances in the study of emodin: an update on pharmacological properties and mechanistic basis. Chin Med 2021; 16:102. [PMID: 34629100 PMCID: PMC8504117 DOI: 10.1186/s13020-021-00509-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Rhei Radix et Rhizoma, also known as rhubarb or Da Huang, has been widely used as a spice and as traditional herbal medicine for centuries, and is currently marketed in China as the principal herbs in various prescriptions, such as Da-Huang-Zhe-Chong pills and Da-Huang-Qing-Wei pills. Emodin, a major bioactive anthraquinone derivative extracted from rhubarb, represents multiple health benefits in the treatment of a host of diseases, such as immune-inflammatory abnormality, tumor progression, bacterial or viral infections, and metabolic syndrome. Emerging evidence has made great strides in clarifying the multi-targeting therapeutic mechanisms underlying the efficacious therapeutic potential of emodin, including anti-inflammatory, immunomodulatory, anti-fibrosis, anti-tumor, anti-viral, anti-bacterial, and anti-diabetic properties. This comprehensive review aims to provide an updated summary of recent developments on these pharmacological efficacies and molecular mechanisms of emodin, with a focus on the underlying molecular targets and signaling networks. We also reviewed recent attempts to improve the pharmacokinetic properties and biological activities of emodin by structural modification and novel material-based targeted delivery. In conclusion, emodin still has great potential to become promising therapeutic options to immune and inflammation abnormality, organ fibrosis, common malignancy, pathogenic bacteria or virus infections, and endocrine disease or disorder. Scientifically addressing concerns regarding the poor bioavailability and vague molecular targets would significantly contribute to the widespread acceptance of rhubarb not only as a dietary supplement in food flavorings and colorings but also as a health-promoting TCM in the coming years.
Collapse
Affiliation(s)
- Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
13
|
Mintz KJ, Leblanc RM. The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochim Biophys Acta Rev Cancer 2021; 1876:188621. [PMID: 34454983 DOI: 10.1016/j.bbcan.2021.188621] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Liver cancer is one of the most common cancers worldwide and is also one of the most difficult cancers to treat, resulting in almost one million deaths per year, and the danger of this cancer is compounded when the tumor is nonresectable. Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has the third highest mortality rate worldwide. Considering the morbid statistics surrounding this cancer it is a popular research topic to target for better therapy practices. This review summarizes the role of nanotechnology in these endeavors. Nanoparticles (NPs) are a very broad class of material and many different kinds have been used to potentially combat liver cancer. Gold, silver, platinum, metal oxide, calcium, and selenium NPs as well as less common materials are all inorganic NPs that have been used as a therapeutic, carrier, or imaging agent in drug delivery systems (DDS) and these efforts are described. Carbon-based NPs, including polymeric, polysaccharide, and lipid NPs as well as carbon dots, have also been widely studied for this purpose and the role they play in DDS for the treatment of liver cancer is illustrated in this review. The multifunctional nature of many NPs described herein, allows these systems to display high anticancer activity in vitro and in vivo and highlights the advantage of and need for combinatorial therapy in treating this difficult cancer. These works are summarized, and future directions are presented for this promising field.
Collapse
Affiliation(s)
- Keenan J Mintz
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
14
|
Tuli HS, Aggarwal V, Tuorkey M, Aggarwal D, Parashar NC, Varol M, Savla R, Kaur G, Mittal S, Sak K. Emodin: A metabolite that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Toxicol In Vitro 2021; 73:105142. [PMID: 33722736 DOI: 10.1016/j.tiv.2021.105142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
Oncogenic transformation has been the major cause of global mortality since decades. Despite established therapeutic regimes, majority of cancer patients either present with tumor relapse, refractory disease or therapeutic resistance. Numerous drug candidates are being explored to tap the key reason being poor tumor remission rates, from novel chemotherapy agents to immunotherapy to exploring natural compound derivatives with effective anti-cancer potential. One of these natural product metabolites, emodin has present with significant potential to target tumor oncogenic processes: induction of apoptosis and cell cycle arrest, tumor angiogenesis, and metastasis to chemoresistance in malignant cells. Based on the present scientific excerpts on safety and effectiveness of emodin in targeting hallmarks of tumor progression, emodin is being promisingly explored using nanotechnology platforms for long-term sustained treatment and management of cancer patients. In this review, we summarize the up-to-date scientific literature supporting the anti-neoplastic potential of emodin. We also provide an insight into toxicity and safety profile of emodin and how emodin has emerged as an effective therapeutic alternative in synergism with established conventional chemotherapeutic regimes for management and treatment of tumor progression.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India.
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, USA
| | - Muobarak Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla TR48000, Turkey
| | - Raj Savla
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 56, Maharashtra, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 56, Maharashtra, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|
15
|
Is Emodin with Anticancer Effects Completely Innocent? Two Sides of the Coin. Cancers (Basel) 2021; 13:cancers13112733. [PMID: 34073059 PMCID: PMC8198870 DOI: 10.3390/cancers13112733] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Many anticancer active compounds are known to have the capacity to destroy pathologically proliferating cancer cells in the body, as well as to destroy rapidly proliferating normal cells. Despite remarkable advances in cancer research over the past few decades, the inclusion of natural compounds in researches as potential drug candidates is becoming increasingly important. However, the perception that the natural is reliable is an issue that needs to be clarified. Among the various chemical classes of natural products, anthraquinones have many biological activities and have also been proven to exhibit a unique anticancer activity. Emodin, an anthraquinone derivative, is a natural compound found in the roots and rhizomes of many plants. The anticancer property of emodin, a broad-spectrum inhibitory agent of cancer cells, has been detailed in many biological pathways. In cancer cells, these molecular mechanisms consist of suppressing cell growth and proliferation through the attenuation of oncogenic growth signaling, such as protein kinase B (AKT), mitogen-activated protein kinase (MAPK), HER-2 tyrosine kinase, Wnt/-catenin, and phosphatidylinositol 3-kinase (PI3K). However, it is known that emodin, which shows toxicity to cancer cells, may cause kidney toxicity, hepatotoxicity, and reproductive toxicity especially at high doses and long-term use. At the same time, studies of emodin, which has poor oral bioavailability, to transform this disadvantage into an advantage with nano-carrier systems reveal that natural compounds are not always directly usable compounds. Consequently, this review aimed to shed light on the anti-proliferative and anti-carcinogenic properties of emodin, as well as its potential toxicities and the advantages of drug delivery systems on bioavailability.
Collapse
|
16
|
Polymeric Lipid Hybrid Nanoparticles as a Delivery System Enhance the Antitumor Effect of Emodin in Vitro and in Vivo. J Pharm Sci 2021; 110:2986-2996. [PMID: 33864779 DOI: 10.1016/j.xphs.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023]
Abstract
This study aimed to evaluate the therapeutic efficacy of Emodin-loaded polymer lipid hybrid nanoparticles (E-PLNs) for breast cancer. The size, Zeta potential, surface morphology, encapsulation efficiency, stability, in vitro drug release of E-PLNs prepared by the nanoprecipitation method were characterized. The uptake, in-vitro cytotoxicities and apoptosis of free drug, E-PLNs were investigated against MCF-7 cells. The efficacy of E-PLNs in tumor bearing nude mice has also been studied.The average particle size of the experimentally prepared E-PLNs was (122.7±1.79) nm, and the encapsulation rate was 72.8%. Compared with free Emodin (EMO), E-PLNs showed greater toxicity to MCF-7 cells by promoting the uptake of EMO, and can promote the early apoptosis of MCF-7 cells. In addition to the morphological changes of apoptotic cells, the ratio of Bax/Bcl-2 was significantly increased, which indicated that E-PLNs can induce apoptosis in MCF-7 cells to achieve anticancer effect. Finally, E-PLNs significantly inhibited tumor growth by more than 60%, which may be related to its passive targeting effect on tumor site. Our results suggest that E-PLNs have shown good anti-breast cancer effect than free EMO. Moreover, the effect of E-PLNs on MCF-7 cells is mainly related to the induction of apoptosis.
Collapse
|
17
|
Vimala K, Kannan S. Phyto-drug conjugated nanomaterials enhance apoptotic activity in cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:275-305. [PMID: 33931143 DOI: 10.1016/bs.apcsb.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Cancer continues to be one of the leading causes of death worldwide and is a major obstacle to increased life expectancy. However, survival has not improved significantly with average cancer standard treatment strategies over the past few decades; survival rates have remained low, with tumor metastasis, adverse drug reactions, and drug resistance. Therefore, substitute therapies are essential to treat this dreadful disease. Recently, research has shown that natural compounds in plants, such as phytochemicals, are extensively exploited for their anticarcinogenic potential. Phytochemicals may show their anticancer activity different cancer cell markers may alter molecular pathways, which promote in cellular events such as cell cycle arrest and apoptosis, regulate antioxidant status, cell proliferation, migration, invasion and toxicity. Although their outstanding anticancer activity, however, their pharmacological budding is hindered by their low aqueous solubility, poor bioavailability, and poor penetration into cells, hepatic disposition, narrow therapeutic index, and rapid uptake by normal tissues. In this situation, nanotechnology has developed novel inventions to increase the potential use of phytochemicals in anticancer therapy. Nanoparticles can improve the solubility and stability of phytochemicals, specific tumor cell/tissue targeting, enhanced cellular uptake, reduction of phytochemicals. Therapeutic doses of phytochemicals for a long time. Additional benefits include better blood stability, multifunctional design of nanocarriers and improvement in countermeasures. This review summarizes the advances in the use of nanoparticles for the treatment of cancer, as well as various nano-drug deliveries of phytochemicals against cancer. In particular, we are introducing several applications of nanoparticles in combination with phyto-drug for the treatment of cancer.
Collapse
Affiliation(s)
- Karuppaiya Vimala
- Division of Cancer Nanomedicine, Department of Zoology, School of Life Science, Periyar University, Salem, Tamil Nadu, India
| | - Soundarapandian Kannan
- Division of Cancer Nanomedicine, Department of Zoology, School of Life Science, Periyar University, Salem, Tamil Nadu, India.
| |
Collapse
|
18
|
Cui Y, Chen LJ, Huang T, Ying JQ, Li J. The pharmacology, toxicology and therapeutic potential of anthraquinone derivative emodin. Chin J Nat Med 2020; 18:425-435. [PMID: 32503734 DOI: 10.1016/s1875-5364(20)30050-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 02/06/2023]
Abstract
Emodin (1, 3, 8-trihydroxy-6-methylanthraquinone) is a derived anthraquinone compound extracted from roots and barks of pharmaceutical plants, including Rheum palmatum, Aloe vera, Giant knotweed, Polygonum multiflorum and Polygonum cuspidatum. The review aims to provide a scientific summary of emodin in pharmacological activities and toxicity in order to identify the therapeutic potential for its use in human specific organs as a new medicine. Based on the fundamental properties, such as anticancer, anti-inflammatory, antioxidant, antibacterial, antivirs, anti-diabetes, immunosuppressive and osteogenesis promotion, emodin is expected to become an effective preventive and therapeutic drug of cancer, myocardial infarction, atherosclerosis, diabetes, acute pancreatitis, asthma, periodontitis, fatty livers and neurodegenerative diseases. This article intends to provide a novel insight for further development of emodin, hoping to reveal the potential of emodin and necessity of further studies in this field.
Collapse
Affiliation(s)
- Ya Cui
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Liu-Jing Chen
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Tu Huang
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Jian-Qiong Ying
- West China Hospital of Clinical Medicine, Sichuan University, Chengdu 610041, China
| | - Juan Li
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS NANO 2020; 14:3075-3095. [PMID: 32078303 PMCID: PMC7098057 DOI: 10.1021/acsnano.9b08142] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 05/18/2023]
Abstract
Numerous studies have engineered nanoparticles with different physicochemical properties to enhance the delivery efficiency to solid tumors, yet the mean and median delivery efficiencies are only 1.48% and 0.70% of the injected dose (%ID), respectively, according to a study using a nonphysiologically based modeling approach based on published data from 2005 to 2015. In this study, we used physiologically based pharmacokinetic (PBPK) models to analyze 376 data sets covering a wide range of nanomedicines published from 2005 to 2018 and found mean and median delivery efficiencies at the last sampling time point of 2.23% and 0.76%ID, respectively. Also, the mean and median delivery efficiencies were 2.24% and 0.76%ID at 24 h and were decreased to 1.23% and 0.35%ID at 168 h, respectively, after intravenous administration. While these delivery efficiencies appear to be higher than previous findings, they are still quite low and represent a critical barrier in the clinical translation of nanomedicines. We explored the potential causes of this poor delivery efficiency using the more mechanistic PBPK perspective applied to a subset of gold nanoparticles and found that low delivery efficiency was associated with low distribution and permeability coefficients at the tumor site (P < 0.01). We also demonstrate how PBPK modeling and simulation can be used as an effective tool to investigate tumor delivery efficiency of nanomedicines.
Collapse
Affiliation(s)
- Yi-Hsien Cheng
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chunla He
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jim E. Riviere
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- 1Data
Consortium, Kansas State University, Manhattan, Kansas 66506, United States
| | - Nancy A. Monteiro-Riviere
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zhoumeng Lin
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
20
|
Wei W, Meng C, Wang Y, Huang Y, Du W, Li H, Liu Y, Song H, Tang F. The interaction between self - assembling peptides and emodin and the controlled release of emodin from in-situ hydrogel. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3961-3975. [PMID: 31588802 DOI: 10.1080/21691401.2019.1673768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ion-complementary self-assembling peptides have potential in delivering hydrophobic drugs. This study involved two self-assembling peptides, RADA16-I and RVDV16-I, of which RVDV16-I was a novel self-assembling peptide with different hydrophobic side chains designed from RADA16-I. The purpose of this study was to observe the interaction between different self-assembling peptides and emodin through fluorescence spectrophotometry, CD, SEM and AFM; to construct a preliminary suspension in-situ hydrogel delivery system for emodin with the self-assembling peptides; and to investigate the drug-loading and drug-releasing properties of the self-assembling peptides on emodin. The results showed that both peptides can interact with emodin and the interaction was dominated by hydrophobic interaction. The aqueous solutions of both self-assembling peptides can form relatively stable suspensions with emodin under mechanical stirring, and the suspension can form in-situ hydrogel under physiological condition. In vitro release of emodin from the hydrogels showed a manner of sustained release to some extent. Cell viability studies showed inherent proliferation inhibiting effects of emodin on tumor cells was maintained or enhanced through the in-situ hydrogels. The self-assembling peptides RADA16-I and RVDV16-I had showed promising drug-loading and drug-releasing performance for hydrophobic drugs. It is reasonable to exploit self-assembling peptides as drug carriers for their great potential to improve delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University , Zunyi , China.,The Key Laboratory of Clinical Pharmacy in Zunyi City , Zunyi , China
| | - Cui Meng
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University , Zunyi , China.,The Key Laboratory of Clinical Pharmacy in Zunyi City , Zunyi , China.,Pharmacy Department, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Yuhe Wang
- Pharmacy Department, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Yongsheng Huang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences , Beijing , China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing , China
| | - Hongfang Li
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University , Zunyi , China.,The Key Laboratory of Clinical Pharmacy in Zunyi City , Zunyi , China
| | - Yanfei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Hong Song
- College of Basic Medicine, Zunyi Medical University , Zunyi , China
| | - Fushan Tang
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University , Zunyi , China.,The Key Laboratory of Clinical Pharmacy in Zunyi City , Zunyi , China
| |
Collapse
|
21
|
Natural Products Isolated from Oriental Medicinal Herbs Inactivate Zika Virus. Viruses 2019; 11:v11010049. [PMID: 30641880 PMCID: PMC6356660 DOI: 10.3390/v11010049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV) has been associated with serious health conditions, and an intense search to discover different ways to prevent and treat ZIKV infection is underway. Berberine and emodin possess several pharmacological properties and have been shown to be particularly effective against the entry and replication of several viruses. We show that emodin and berberine trigger a virucidal effect on ZIKV. When the virus was exposed to 160 µM of berberine, a reduction of 77.6% in the infectivity was observed; when emodin was used (40 µM), this reduction was approximately 83.3%. Dynamic light scattering data showed that both compounds significantly reduce the hydrodynamic radius of virus particle in solution. We report here that berberine and emodin, two natural compounds, have strong virucidal effect in Zika virus.
Collapse
|
22
|
Su X, Zhang D, Zhang H, Zhao K, Hou W. Preparation and characterization of angiopep-2 functionalized Ginsenoside-Rg3 loaded nanoparticles and the effect on C6 Glioma cells. Pharm Dev Technol 2019; 25:385-395. [PMID: 30601070 DOI: 10.1080/10837450.2018.1551901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of this work was to prepare and characterize Angiopep-2 functionalized ginsenoside-Rg3 loaded nanoparticles (ANG-Rg3-NP) and evaluate the therapeutic effect on C6 glioma cells. Nanoparticles were prepared by the emulsion solvent evaporation method. Angiopep-2 was functionalized to nanoparticles via a maleimide-thiol covalent binding reaction to obtain ANG-Rg3-NP. The prepared nanoparticles were evaluated for size, zeta potential, morphology, stability, encapsulation efficiency, loading capacity, and release properties. The cytotoxicity study and targeting effect of ANG-Rg3-NP were evaluated by MTT assay. The study of cellular uptake in C6 glioma cells was performed by fluorescence microscopy and by using a microplate reader. The prepared ANG-Rg3-NP was observed to be uniformly spherical in shape with a particle size at 147.1 ± 2.7 nm. The encapsulation efficiency and loading capacity reached 80.6 ± 3.0% and 27.2 ± 1.4%, respectively. Additionally, ANG-Rg3-NP exhibited a desirable sustained release behavior. In vitro cytotoxicity study indicated that ANG-Rg3-NP could inhibit the proliferation of C6 glioma cells in a concentration-dependent manner. Also, the functionalization of Angiopep-2 made nanoparticles cross the blood-brain barrier more easily and accelerated the cellular uptake of nanoparticles. The ANG-Rg3-NP was a promising brain drug delivery carrier for the treatment of glioma.
Collapse
Affiliation(s)
- Xiaomei Su
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Danshen Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Haiwei Zhang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Kaiyan Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Wenshu Hou
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| |
Collapse
|
23
|
Dong H, Wu G, Xu H, Zhang C, Wang J, Gao M, Pang Y, Zhang H, Zhang B, Tian Y, Li Q. N-acetylaminogalactosyl-decorated biodegradable PLGA-TPGS copolymer nanoparticles containing emodin for the active targeting therapy of liver cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:260-272. [PMID: 29914275 DOI: 10.1080/21691401.2018.1455055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Primary liver cancer (PLC) is one of the most common malignant tumours and has the third highest mortality rate worldwide. An active liver-targeting drug delivery system via the asialoglycoprotein receptors expressed in the hepatic parenchyma cells of mammals has become a research focus for the treatment of PLC. N-acetylaminogalactosyl-poly(lactide-co-glycolide)-succinyl-D-α-tocopherol polyethylene glycol 1000 succinate (GalNAc-PLGA-sTPGS) was synthesized to achieve active liver-targeting properties. Emodin (EMO)-loaded GalNAc-PLGA-sTPGS nanoparticles (EGPTN) were prepared with EMO which was selected for its potential antitumour efficacy. The in vitro cellular uptake, mechanism, cytotoxicity, and apoptosis of HepG2 cells were analyzed. The in vivo therapeutic effects of EGPTN were assessed in a PLC mouse model. The results showed that GalNAc-PLGA-sTPGS was successfully synthesized. The cellular uptake assay demonstrated that coumarin 6-loaded GalNAc-PLGA-sTPGS nanoparticles had superior active liver-targeting properties. The results of the cytotoxity and apoptosis studies indicated that EGPTN achieved the highest levels of cytotoxicity and cell apoptotic rate among the nanoparticles examined. Furthermore, EGPTN showed better in vivo therapeutic effects and anticancer efficacy in the PLC mice than did the other groups. Therefore, EGPTN enhanced the anticancer effect of EMO both in vitro and in vivo, making it a potential option for the treatment of PLC.
Collapse
Affiliation(s)
- Hao Dong
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Guoyu Wu
- b Department of Pharmaceutics , the First Affiliated Hospital of Dalian Medical University , Dalian China
| | - Hong Xu
- c College of Basic Medical Sciences , Dalian Medical University , Dalian , China
| | - Chenghong Zhang
- c College of Basic Medical Sciences , Dalian Medical University , Dalian , China
| | - Jiao Wang
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Meng Gao
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Yue Pang
- d College of Life Science , Liaoning Normal University , Dalian , China
| | - Houli Zhang
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Baojing Zhang
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Yan Tian
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Qingwei Li
- d College of Life Science , Liaoning Normal University , Dalian , China
| |
Collapse
|
24
|
Ren L, Li Z, Dai C, Zhao D, Wang Y, Ma C, Liu C. Chrysophanol inhibits proliferation and induces apoptosis through NF-κB/cyclin D1 and NF-κB/Bcl-2 signaling cascade in breast cancer cell lines. Mol Med Rep 2018; 17:4376-4382. [PMID: 29344652 PMCID: PMC5802211 DOI: 10.3892/mmr.2018.8443] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022] Open
Abstract
Chrysophanol is an anthraquinone compound, which exhibits anticancer effects on certain types of cancer cells. However, the effects of chrysophanol on human breast cancer remain to be elucidated. The aim of the present study was to clarify the role of chrysophanol on breast cancer cell lines MCF-7 and MDA-MB-231, and to identify the signal transduction pathways regulated by chrysophanol. MTT assay and flow cytometric analysis demonstrated that chrysophanol inhibited cell proliferation, and cell cycle progression in a dose-dependent manner. The expression of cell cycle-associated cyclin D1 and cyclin E were downregulated while p27 expression was upregulated following chrysophanol treatment at the mRNA, and protein levels. The Annexin V/propidium iodide staining assay results revealed that apoptosis levels increased following chrysophanol treatment. Chrysophanol upregulated caspase 3 and poly (ADP-ribose) polymerase cleavage in both cell lines. Furthermore, chrysophanol enhanced the effect of paclitaxel on breast cancer cell apoptosis. In addition, chrysophanol downregulated apoptosis regulator Bcl-2 protein, and transcription factor p65 and IκB phosphorylation. Inhbition of nuclear factor (NF)-κB by ammonium pyrrolidine dithiocarbamate diminished the effect of chrysophanol on apoptosis and associated proteins. In conclusion, the results of the current study demonstrated that chrysophanol effectively suppresses breast cancer cell proliferation and facilitates chemosentivity through modulation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Li Ren
- Department of Biochemistry and Molecular Biology, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Zhouping Li
- Department of Aesthetic and Plastic Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121004, P.R. China
| | - Chunmei Dai
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Danyu Zhao
- Department of Biochemistry and Molecular Biology, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Yanjie Wang
- Department of Biochemistry and Molecular Biology, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Chunyu Ma
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Chun Liu
- Department of Biochemistry and Molecular Biology, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
25
|
Yang C, Wu T, Qi Y, Zhang Z. Recent Advances in the Application of Vitamin E TPGS for Drug Delivery. Theranostics 2018; 8:464-485. [PMID: 29290821 PMCID: PMC5743561 DOI: 10.7150/thno.22711] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022] Open
Abstract
D-ɑ-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) has been approved by FDA as a safe adjuvant and widely used in drug delivery systems. The biological and physicochemical properties of TPGS provide multiple advantages for its applications in drug delivery like high biocompatibility, enhancement of drug solubility, improvement of drug permeation and selective antitumor activity. Notably, TPGS can inhibit the activity of ATP dependent P-glycoprotein and act as a potent excipient for overcoming multi-drug resistance (MDR) in tumor. In this review, we aim to discuss the recent advances of TPGS in drug delivery including TPGS based prodrugs, nitric oxide donor and polymers, and unmodified TPGS based formulations. These potential applications are focused on enhancing delivery efficiency as well as the therapeutic effect of agents, especially on overcoming MDR of tumors. It also demonstrates that the clinical translation of TPGS based nanomedicines is still faced with many challenges, which requires more detailed study on TPGS properties and based delivery system in the future.
Collapse
Affiliation(s)
- Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Tingting Wu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Yan Qi
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
26
|
Rizwanullah M, Amin S, Mir SR, Fakhri KU, Rizvi MMA. Phytochemical based nanomedicines against cancer: current status and future prospects. J Drug Target 2017; 26:731-752. [DOI: 10.1080/1061186x.2017.1408115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Md. Rizwanullah
- Formulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Saima Amin
- Formulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Showkat Rasool Mir
- Phytopharmaceutical Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Khalid Umar Fakhri
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
27
|
Liu H, Xu H, Zhang C, Gao M, Gao X, Ma C, Lv L, Gao D, Deng S, Wang C, Tian Y. Emodin-Loaded PLGA-TPGS Nanoparticles Combined with Heparin Sodium-Loaded PLGA-TPGS Nanoparticles to Enhance Chemotherapeutic Efficacy Against Liver Cancer. Pharm Res 2016; 33:2828-43. [PMID: 27511028 DOI: 10.1007/s11095-016-2010-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/29/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE Heparin sodium (HS)-loaded polylactic-co-glycolic acid-D-α-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) nanoparticles (HPTNs) were prepared as a sustained and targeting delivery carrier and combined with emodin (EMO)-loaded PLGA-TPGS nanoparticles (EPTNs), which were investigated previously to form a combination therapy system for the treatment of liver cancer. METHODS To assess cellular uptake and evaluate the liver-targeting capacity by analyzing the drug concentrations and frozen slices, HS/eosin-loaded PLGA-TPGS nanoparticles, HS/fluorescein- loaded PLGA-TPGS nanoparticles and EMO/C6-loaded PLGA-TPGS nanoparticles, which contained eosin, fluorescein and C6 as fluorescent probes, respectively, were also prepared. All of these nanoparticles were characterized in terms of their size, size distribution, surface charge, drug loading, encapsulation efficiency, in vitro release profile and cellular uptake. The apoptosis of HepG2 cells induced by EPTNs in combination with HPTNs was determined by Annexin V-FITC staining and PI labelling. RESULTS Transmission electron microscopy indicated that these nanoparticles were stably dispersed spheres with sizes ranging from 100 to 200 nm. The results demonstrated that fluorescent nanoparticles were internalized into HepG2 and HCa-F cells efficiently and had improved liver-targeting properties. The combination of EPTNs and HPTNs effectively inhibited cell growth in vitro and had a remarkable synergistic anticancer effect in vivo. EPTNs combined with HPTNs induced HepG2 cell apoptosis with synergistic effects. The liver H&E slice images of a hepatocarcinogenic mouse model indicated that EPTNs in combination with HPTNs significantly suppressed tumour growth in vivo. CONCLUSIONS The research suggests that the combination therapy system of EPTNs and HPTNs could be a new direction for liver cancer therapy.
Collapse
Affiliation(s)
- Hongyan Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Hong Xu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chenghong Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Meng Gao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xiaoguang Gao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Chuchu Ma
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Li Lv
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Dongyan Gao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Sa Deng
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Changyuan Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yan Tian
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
28
|
Nanocarriers based delivery of nutraceuticals for cancer prevention and treatment: A review of recent research developments. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|