1
|
Lippold S, Knaupp A, de Ru AH, Tjokrodirijo RTN, van Veelen PA, van Puijenbroek E, de Taeye SW, Reusch D, Vidarsson G, Wuhrer M, Schlothauer T, Falck D. Fc gamma receptor IIIb binding of individual antibody proteoforms resolved by affinity chromatography-mass spectrometry. MAbs 2021; 13:1982847. [PMID: 34674601 PMCID: PMC8726612 DOI: 10.1080/19420862.2021.1982847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The crystallizable fragment (Fc) of immunoglobulin G (IgG) activates key immunological responses by interacting with Fc gamma receptors (FcɣR). FcɣRIIIb contributes to neutrophil activation and is involved in antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). These processes present important mechanisms-of-actions of therapeutic antibodies. The very low affinity of IgG toward FcɣRIIIb (KD ~ 10 µM) is a technical challenge for interaction studies. Additionally, the interaction is strongly dependent on IgG glycosylation, a major contributor to proteoform heterogeneity. We developed an affinity chromatography–mass spectrometry (AC-MS) assay for analyzing IgG-FcɣRIIIb interactions in a proteoform-resolved manner. This proved to be well suited to study low-affinity interactions. The applicability and selectivity of the method were demonstrated on a panel of nine different IgG monoclonal antibodies (mAbs), including no-affinity, low-affinity and high-affinity Fc-engineered or glycoengineered mAbs. Thereby, we could reproduce reported affinity rankings of different IgG glycosylation features and IgG subclasses. Additional post-translational modifications (IgG1 Met252 oxidation, IgG3 hinge-region O-glycosylation) showed no effect on FcɣRIIIb binding. Interestingly, we observed indications of an effect of the variable domain sequence on the Fc-binding that deserves further attention. Our new AC-MS method is a powerful tool for expanding knowledge on structure–function relationships of the IgG-FcɣRIIIb interaction. Hence, this assay may substantially improve the efficiency of assessing critical quality attributes of therapeutic mAbs with respect to an important aspect of neutrophil activation.
Collapse
Affiliation(s)
- Steffen Lippold
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander Knaupp
- Pharma Research and Early Development, Roche Innovation Center, Munich, Germany
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rayman T N Tjokrodirijo
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam Umc, University of Amsterdam, Amsterdam, The Netherlands
| | - Dietmar Reusch
- Pharma Technical Development, Roche Innovation Center, Munich, Germany
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam Umc, University of Amsterdam, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tilman Schlothauer
- Pharma Research and Early Development, Roche Innovation Center, Munich, Germany.,Biological Technologies, Genentech Inc, South San Francisco, USA
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Liu L, Yu Y, Hu LL, Dong QB, Hu F, Zhu LJ, Liang Q, Yu LL, Bao HH, Cheng XS. Potential Target Genes in the Development of Atrial Fibrillation: A Comprehensive Bioinformatics Analysis. Med Sci Monit 2021; 27:e928366. [PMID: 33741890 PMCID: PMC7989062 DOI: 10.12659/msm.928366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Atrial fibrillation (AF) is the most prevalent arrhythmia worldwide. Although it is not life-threatening, the accompanying rapid and irregular ventricular rate can lead to hemodynamic deterioration and obvious symptoms, especially the risk of cerebrovascular embolism. Our study aimed to identify novel and promising genes that could explain the underlying mechanism of AF development. Material/Methods Expression profiles GSE41177, GSE79768, and GSE14975 were acquired from the Gene Expression Omnibus Database. R software was used for identifying differentially expressed genes (DEGs), and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were subsequently performed. A protein–protein interaction network was constructed in Cytoscape software. Next, a least absolute shrinkage and selection operator (LASSO) model was constructed and receiver-operating characteristic curve analysis was conducted to assess the specificity and sensitivity of the key genes. Results We obtained 204 DEGs from the datasets. The DEGs were mostly involved in immune response and cell communication. The primary pathways of the DEGs were related to the course or maintenance of autoimmune and chronic inflammatory diseases. The top 20 hub genes (high scores in cytoHubba) were selected in the PPI network. Finally, we identified 6 key genes (FCGR3B, CLEC10A, FPR2, IGSF6, S100A9, and S100A12) via the LASSO model. Conclusions We present 6 target genes that are potentially involved in the molecular mechanisms of AF development. In addition, these genes are likely to serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Liu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yun Yu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Long-Long Hu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Quan-Bin Dong
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Feng Hu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Ling-Juan Zhu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Qian Liang
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Ling-Ling Yu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Hui-Hui Bao
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xiao-Shu Cheng
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
3
|
Castellanos DM, Sun J, Yang J, Ou W, Zambon AC, Pardridge WM, Sumbria RK. Acute and Chronic Dosing of a High-Affinity Rat/Mouse Chimeric Transferrin Receptor Antibody in Mice. Pharmaceutics 2020; 12:pharmaceutics12090852. [PMID: 32911688 PMCID: PMC7558337 DOI: 10.3390/pharmaceutics12090852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Non-invasive brain delivery of neurotherapeutics is challenging due to the blood-brain barrier. The revived interest in transferrin receptor antibodies (TfRMAbs) as brain drug-delivery vectors has revealed the effect of dosing regimen, valency, and affinity on brain uptake, TfR expression, and Fc-effector function side effects. These studies have primarily used monovalent TfRMAbs with a human constant region following acute intravenous dosing in mice. The effects of a high-affinity bivalent TfRMAb with a murine constant region, without a fusion partner, following extravascular dosing in mice are, however, not well characterized. Here we elucidate the plasma pharmacokinetics and safety of a high-affinity bivalent TfRMAb with a murine constant region following acute and chronic subcutaneous dosing in adult C57BL/6J male mice. Mice received a single (acute dosing) 3 mg/kg dose, or were treated for four weeks (chronic dosing). TfRMAb and control IgG1 significantly altered reticulocyte counts following acute and chronic dosing, while other hematologic parameters showed minimal change. Chronic TfRMAb dosing did not alter plasma- and brain-iron measurements, nor brain TfR levels, however, it significantly increased splenic-TfR and -iron. Plasma concentrations of TfRMAb were significantly lower in mice chronically treated with IgG1 or TfRMAb. Overall, no injection related reactions were observed in mice.
Collapse
Affiliation(s)
- Demi M. Castellanos
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (D.M.C.); (J.Y.)
| | - Jiahong Sun
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (J.S.); (W.O.); (A.C.Z.)
| | - Joshua Yang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (D.M.C.); (J.Y.)
| | - Weijun Ou
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (J.S.); (W.O.); (A.C.Z.)
| | - Alexander C. Zambon
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (J.S.); (W.O.); (A.C.Z.)
| | | | - Rachita K. Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (J.S.); (W.O.); (A.C.Z.)
- Department of Neurology, University of California, Irvine, CA 92868, USA
- Correspondence: ; Tel.: +1-(909)-607-0319; Fax: +1-(909)-607-9826
| |
Collapse
|
4
|
Wang J, Li Y, Li L, Yang J, Kopeček J. Exploration and Evaluation of Therapeutic Efficacy of Drug-Free Macromolecular Therapeutics in Collagen-Induced Rheumatoid Arthritis Mouse Model. Macromol Biosci 2020; 20:e1900445. [PMID: 32196951 PMCID: PMC7549750 DOI: 10.1002/mabi.201900445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022]
Abstract
Monoclonal antibodies (mAbs) against B cell antigens are extensively used in the treatment of rheumatoid arthritis (RA). The B cell depletion therapy prevents RA symptoms and/or alleviates existing inflammation. The previously established two-step drug-free macromolecular therapeutics (DFMT) is applied in the treatment of collagen-induced rheumatoid arthritis in a collagen-induced rheumatoid arthritis mouse model. DFMT is a B cell depletion strategy utilizing Fab' fragment of anti-CD20 mAb for biorecognition and receptor crosslinking to induce B cell apoptosis. DFMT is composed from two nanoconjugates: 1) bispecific engager, Fab'-MORF1 (anti-CD20 Fab' fragment conjugated with morpholino oligonucleotide MORF1), and 2) a crosslinking (effector) component P-(MORF2)X (N-(2-hydroxypropyl)methacrylamide copolymer grafted with multiple copies of complementary morpholino oligonucleotide MORF2). The absence of Fc fragment has the potential to avoid development of resistance and infusion-related reactions. DFMT produces B cell depletion, keeps the RA score low for more than 100 days, and shows minimal cartilage and bone erosion and inflammatory cell infiltration. Further improvements will be explored to optimize DFMT strategy in autoimmune disease treatment.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Yachao Li
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jindřich Kopeček
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
5
|
Radical rearrangement and transfer reactions in proteins. Essays Biochem 2020; 64:87-96. [PMID: 31922197 DOI: 10.1042/ebc20190046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/29/2022]
Abstract
Radical rearrangement and transfer reactions play an important role in the chemical modifications of proteins in vivo and in vitro. These reactions depend on protein sequence, as well as structure and dynamics. Frequently, these reactions have well-defined precedents in the organic chemistry literature, but their occurrence in proteins provides a stage for a number of novel and, perhaps, unexpected reaction products. This essay will provide an overview over a few representative examples of radical rearrangement and transfer reactions.
Collapse
|
6
|
Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol 2019; 181:101665. [DOI: 10.1016/j.pneurobio.2019.101665] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
|
7
|
The Binding of Human IgG to Minipig FcγRs - Implications for Preclinical Assessment of Therapeutic Antibodies. Pharm Res 2019; 36:47. [PMID: 30721414 PMCID: PMC6373530 DOI: 10.1007/s11095-019-2574-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022]
Abstract
Purpose The Göttingen minipig is a relevant non-rodent species for regulatory toxicological studies. Yet, its use with therapeutic antibodies has been limited by the unknown binding properties of human immunoglobulins (huIgG) to porcine Fc gamma receptors (poFcγR) influencing safety and efficacy readouts. Therefore, knowing IgG-FcγR interactions in the animal model is a prerequisite for the use of minipigs in preclinical safety and efficacy studies with therapeutic antibodies. Methods Here, we describe the cloning and expression of poFcγRs and their interactions with free and complexed human therapeutic IgG1 by surface plasmon resonance and flow cytometry. Results We show here that poFcγRIa, poFcγRIIa, and poFcγRIIb bind huIgG1 antibodies with comparable affinities as corresponding huFcγRs. Importantly, poFcγRs bind huIgG immune complexes with high avidity, thus probably allowing human-like effector functions. However, poFcγRIIIa binds poIgG1a but not to huIgG1. Conclusions The lack of binding of poFcγRIIIa to huIgG1 might cause underestimation of FcγRIIIa-mediated efficacy or toxicity as mediated by porcine natural killer cells. Therefore, the suitability of minipigs in preclinical studies with human therapeutic antibodies has to be assessed case by case. Our results facilitate the use of Göttingen minipigs for assessment of human therapeutic antibodies in preclinical studies. Electronic supplementary material The online version of this article (10.1007/s11095-019-2574-y) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Johnsen KB, Bak M, Melander F, Thomsen MS, Burkhart A, Kempen PJ, Andresen TL, Moos T. Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J Control Release 2019; 295:237-249. [PMID: 30633947 DOI: 10.1016/j.jconrel.2019.01.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 01/17/2023]
Abstract
Transport of the majority of therapeutic molecules to the brain is precluded by the presence of the blood-brain barrier (BBB) rendering efficient treatment of many neurological disorders impossible. This BBB, nonetheless, may be circumvented by targeting receptors and transport proteins expressed on the luminal surface of the brain capillary endothelial cells (BCECs). The transferrin receptor (TfR) has remained a popular target since its original description for this purpose, although clinical progression of TfR-targeted drug constructs or nanomedicines remains unsuccessful. One proposed issue pertaining to the use of TfR-targeting in nanomedicines is the efficient tuning of the ligand density on the nanoparticle surface. We studied the impact of TfR antibody density on the uptake and transport of nanoparticles into the brain, taking a parallel approach to investigate the impact on both antibody-functionalized gold nanoparticles (AuNPs) and cargo-loaded liposomes. We report that among three different low-range mean ligand densities (0.15, 0.3, and 0.6 ∗ 103 antibodies/μm2), the highest density yielded the highest ability towards both targeting of the BCECs and subsequent transport across the BBB in vivo, and in vitro using primary cultures of the murine BBB. We also find that TfR-targeting on liposomes in the mouse may induce severe adverse effects after intravenous administration.
Collapse
Affiliation(s)
- Kasper Bendix Johnsen
- Laboratory for Neurobiology, Biomedicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Denmark
| | - Martin Bak
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Denmark
| | - Fredrik Melander
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Denmark
| | - Maj Schneider Thomsen
- Laboratory for Neurobiology, Biomedicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Annette Burkhart
- Laboratory for Neurobiology, Biomedicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Paul Joseph Kempen
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Denmark
| | - Thomas Lars Andresen
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Denmark
| | - Torben Moos
- Laboratory for Neurobiology, Biomedicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|