1
|
Rasoulianboroujeni M, Kang RH, Klukas M, Kwon GS. Crystallization of supersaturated PEG-b-PLA for the production of drug-loaded polymeric micelles. J Control Release 2025; 380:457-468. [PMID: 39921034 PMCID: PMC11908913 DOI: 10.1016/j.jconrel.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/19/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
In this study, we propose the "crystallization from supersaturated solution" method for producing drug-loaded polymeric micelles. This method involves the formation of solid drug-encapsulating crystals of a diblock copolymer through isothermal crystallization from a supersaturated solution of the copolymer in low molecular weight PEGs containing the drug, followed by dissolution of the crystals to obtain drug-loaded micelles. We fabricated and characterized micelles loaded with several model drugs (paclitaxel, rapamycin, and docetaxel) and their oligo(lactic acid)8-prodrugs using PEG4kDa-b-PLA2.2kDa as the micelle-forming copolymer and PEGs of varying molecular weights (200, 400, and 600 Da) as solvents. Our findings indicate that the molecular weight of the solvent PEG and the target drug loading significantly influence the physicochemical properties of the resulting micelles, including loading efficiency and particle size distribution. Micelles produced with PEG200 as the solvent exhibited the highest loading efficiency, followed by those made with PEG600 and PEG400 for all the drugs and prodrugs tested. Increasing the target drug loading enhanced both the loading efficiency and average particle size across all formulations. Furthermore, prodrug-loaded micelles showed higher loading efficiency and improved stability in aqueous solutions compared to their parent drug counterparts. Crystals encapsulating both parent drugs and prodrugs could be stored at room temperature for extended periods, producing micelles with no significant differences in loading efficiency and particle size distribution compared to freshly prepared micelles. Additionally, the crystals demonstrated a rapid dissolution rate, forming uniform micelles after just 5 s of hydration and agitation. Cytotoxicity studies against 4 T1 and MDA-MB-231 breast cancer cell lines revealed that the molecular weight of the PEG used as the solvent impacts the cytotoxicity of the resulting micelles, with those produced using PEG200 displaying the highest cytotoxicity, followed by PEG400 and PEG600. Overall, the crystallization from supersaturated solution method proves to be an effective platform for prolonged storage and rapid formation of stable, drug-loaded polymeric micelles. It has the potential to eliminate the need for freeze-drying in the formulation and storage of drug-loaded polymeric micelles. These findings highlight the method's potential for advancing drug delivery systems, particularly for the solubilization of hydrophobic drugs using micellar formulations.
Collapse
Affiliation(s)
- Morteza Rasoulianboroujeni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Rae Hyung Kang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States; Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Maraya Klukas
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States.
| |
Collapse
|
2
|
Wang L, Cai F, Li Y, Lin X, Wang Y, Liang W, Liu C, Wang C, Ruan J. pH-Responsive Block Copolymer Micelles of Temsirolimus: Preparation, Characterization and Antitumor Activity Evaluation. Int J Nanomedicine 2024; 19:9821-9841. [PMID: 39345910 PMCID: PMC11430863 DOI: 10.2147/ijn.s469913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Renal cell carcinoma (RCC) is the most common and lethal type of urogenital cancer, with one-third of new cases presenting as metastatic RCC (mRCC), which, being the seventh most common cancer in men and the ninth in women, poses a significant challenge. For patients with poor prognosis, temsirolimus (TEM) has been approved for first-line therapy, possessing pharmacodynamic activities that block cancer cell growth and inhibit proliferation-associated proteins. However, TEM suffers from poor water solubility, low bioavailability, and systemic side effects. This study aims to develop a novel drug formulation for the treatment of RCC. Methods In this study, amphiphilic block copolymer (poly(ethylene glycol) monomethyl ether-poly(beta-amino ester)) (mPEG-PBAE) was utilized as a drug delivery vehicle and TEM-loaded micelles were prepared by thin-film hydration method by loading TEM inside the nanoparticles. Then, the molecular weight of mPEG-PBAE was controlled to make it realize hydrophobic-hydrophilic transition in the corresponding pH range thereby constructing pH-responsive TEM-loaded micelles. Characterization of pH-responsive TEM-loaded nanomicelles particle size, potential and micromorphology while its determination of drug-loading properties, in vitro release properties. Finally, pharmacodynamics and hepatorenal toxicity were further evaluated. Results TEM loading in mPEG-PBAE increased the solubility of TEM in water from 2.6 μg/mL to more than 5 mg/mL. The pH-responsive TEM-loaded nanomicelles were in the form of spheres or spheroidal shapes with an average particle size of 43.83 nm and a Zeta potential of 1.79 mV. The entrapment efficiency (EE) of pH-responsive TEM nanomicelles with 12.5% drug loading reached 95.27%. Under the environment of pH 6.7, the TEM was released rapidly within 12 h, and the release rate could reach 73.12% with significant pH-dependent characteristics. In vitro experiments showed that mPEG-PBAE preparation of TEM-loaded micelles had non-hemolytic properties and had significant inhibitory effects on cancer cells. In vivo experiments demonstrated that pH-responsive TEM-loaded micelles had excellent antitumor effects with significantly reduced liver and kidney toxicity. Conclusion In conclusion, we successfully prepared pH-responsive TEM-loaded micelles. The results showed that pH-responsive TEM-loaded micelles can achieve passive tumor targeting of TEM, and take advantage of the acidic conditions in tumor tissues to achieve rapid drug release.
Collapse
Affiliation(s)
- Ling Wang
- School of Pharmacy, Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Molecular Biology Laboratory of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, Fujian Province, People’s Republic of China
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Fangqing Cai
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Yixuan Li
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Xiaolan Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Yuting Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Weijie Liang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Caiyu Liu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, People’s Republic of China
| | - Cunze Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Junshan Ruan
- School of Pharmacy, Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Molecular Biology Laboratory of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, Fujian Province, People’s Republic of China
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| |
Collapse
|
3
|
Repp L, Skoczen SL, Rasoulianboroujeni M, Stern ST, Kwon GS. Plasma Stability and Plasma Metabolite Concentration-Time Profiles of Oligo(Lactic Acid) 8-Paclitaxel Prodrug Loaded Polymeric Micelles. AAPS J 2023; 25:39. [PMID: 37041376 PMCID: PMC10141660 DOI: 10.1208/s12248-023-00807-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Paclitaxel (PTX) is a frequently prescribed chemotherapy drug used to treat a wide variety of solid tumors. Oligo(lactic acid)8-PTX prodrug (o(LA)8-PTX) loaded poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA) micelles have higher loading, slower release and higher antitumor efficacy in murine tumor models over PTX-loaded PEG-b-PLA micelles. The goal of this work is to study plasma stability of o(LA)8-PTX-loaded PEG-b-PLA micelles and its pharmacokinetics after IV injection in rats. In rat plasma, o(LA)8-PTX prodrug is metabolized into o(LA)1-PTX and PTX. In human plasma, o(LA)8-PTX is metabolized more slowly into o(LA)2-PTX, o(LA)1-PTX, and PTX. After IV injection of 10 mg/kg PTX-equiv of o(LA)8-PTX prodrug loaded PEG-b-PLA micelles in Sprague-Dawley rats, metabolite abundance in plasma follows the order: o(LA)1-PTX > o(LA)2-PTX > o(LA)4-PTX > o(LA)6-PTX. Bile metabolite profiles of the o(LA)8-PTX prodrug is similar to plasma metabolite profiles. In comparison to equivalent doses of Abraxane®, plasma PTX exposure is two orders of magnitude higher for Abraxane® than PTX from o(LA)8-PTX prodrug loaded PEG-b-PLA micelles, and plasma o(LA)1-PTX exposure is fivefold higher than PTX from Abraxane®, demonstrating heightened plasma metabolite exposure for enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Lauren Repp
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, 53705, USA
| | - Sarah L Skoczen
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research Sponsored By the National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Morteza Rasoulianboroujeni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, 53705, USA
| | - Stephan T Stern
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research Sponsored By the National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, 53705, USA.
| |
Collapse
|
4
|
Repp L, Rasoulianboroujeni M, Lee HJ, Kwon GS. Acyl and oligo(lactic acid) prodrugs for PEG-b-PLA and PEG-b-PCL nano-assemblies for injection. J Control Release 2020; 330:1004-1015. [PMID: 33166607 DOI: 10.1016/j.jconrel.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 01/14/2023]
Abstract
Poly(ethylene glycol)-block-poly(D,L-lactic acid) (PEG-b-PLA) and poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) form nano-assemblies, including micelles and nanoparticles, that increase the water solubility of anticancer drugs for injection. PEG-b-PLA and PEG-b-PCL are less toxic than commonly used organic solvents or solubilizers for injection, such as Cremophor EL® in Taxol®. Formulating paclitaxel in PEG-b-PLA micelles, as Genexol-PM®, permits dose escalation over Taxol®, enhancing antitumor efficacy in breast, lung and ovarian cancers. To expand the repertoire of anticancer drugs for injection, acyl and oligo(lactic acid) ester prodrugs have been synthesized for PEG-b-PLA and PEG-b-PCL nano-assemblies, compatibility, and novel nanomedicines for injection. Notably, acyl and oligo(lactic acid) taxane prodrugs delivered by PEG-b-PLA and PEG-b-PCL nano-assemblies display heightened plasma exposure, reduction in biodistribution into major organs and enhanced tumor exposure in murine tumor models, versus parent anticancer drugs in conventional formulations. As a result, acyl and oligo(lactic acid) ester prodrugs are less toxic and induce durable antitumor responses. In summary, acyl and oligo(lactic acid) ester prodrugs widen the range of anticancer drugs that can be tested safely and effectively by using PEG-b-PLA and PEG-b-PCL nano-assemblies, and they display superior anticancer efficacy over parent anticancer drugs, which are often approved products. Oligo(lactic acid) ester taxane prodrugs are in pre-clinical development as novel drug combinations and immunotherapy combinations for cancer therapy.
Collapse
Affiliation(s)
- Lauren Repp
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI, 53705, United States
| | - Morteza Rasoulianboroujeni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI, 53705, United States
| | - Hye Jin Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI, 53705, United States
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI, 53705, United States.
| |
Collapse
|
5
|
Puthumana M, Santhana Gopala Krishnan P, Nayak SK. Chemical modifications of PLA through copolymerization. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1830650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Manju Puthumana
- Department of Plastics Technology, Central Institute of Plastics Engineering and Technology, Institute of Plastics Technology, Chennai, India
| | - P. Santhana Gopala Krishnan
- Department of Plastics Technology, Central Institute of Plastics Engineering and Technology, Institute of Plastics Technology, Chennai, India
| | - Sanjay Kumar Nayak
- Department of Plastics Technology, Central Institute of Plastics Engineering and Technology, Institute of Plastics Technology, Chennai, India
| |
Collapse
|
6
|
Jin IS, Jo MJ, Park CW, Chung YB, Kim JS, Shin DH. Physicochemical, Pharmacokinetic, and Toxicity Evaluation of Soluplus ® Polymeric Micelles Encapsulating Fenbendazole. Pharmaceutics 2020; 12:pharmaceutics12101000. [PMID: 33096915 PMCID: PMC7589096 DOI: 10.3390/pharmaceutics12101000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 01/26/2023] Open
Abstract
Fenbendazole (FEN), a broad-spectrum benzimidazole anthelmintic, suppresses cancer cell growth through various mechanisms but has low solubility and achieves low blood concentrations, which leads to low bioavailability. Solubilizing agents are required to prepare poorly soluble drugs for injections; however, these are toxic. To overcome this problem, we designed and fabricated low-toxicity Soluplus® polymeric micelles encapsulating FEN and conducted toxicity assays in vitro and in vivo. FEN-loaded Soluplus® micelles had an average particle size of 68.3 ± 0.6 nm, a zeta potential of −2.3 ± 0.2 mV, a drug loading of 0.8 ± 0.03%, and an encapsulation efficiency of 85.3 ± 2.9%. MTT and clonogenic assays were performed on A549 cells treated with free FEN and FEN-loaded Soluplus® micelles. The in vitro drug release profile showed that the micelles released FEN more gradually than the solution. Pharmacokinetic studies revealed lower total clearance and volume of distribution and higher area under the curve and plasma concentration at time zero of FEN-loaded Soluplus® micelles than of the FEN solution. The in vivo toxicity assay revealed that FEN-loaded Soluplus® micelle induced no severe toxicity. Therefore, we propose that preclinical and clinical safety and efficacy trials on FEN-loaded Soluplus® micelles would be worthwhile.
Collapse
Affiliation(s)
- Ik Sup Jin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (I.S.J.); (M.J.J.); (C.-W.P.); (Y.B.C.)
| | - Min Jeong Jo
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (I.S.J.); (M.J.J.); (C.-W.P.); (Y.B.C.)
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (I.S.J.); (M.J.J.); (C.-W.P.); (Y.B.C.)
| | - Youn Bok Chung
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (I.S.J.); (M.J.J.); (C.-W.P.); (Y.B.C.)
| | - Jin-Seok Kim
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea;
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (I.S.J.); (M.J.J.); (C.-W.P.); (Y.B.C.)
- Correspondence: ; Tel.: +82-43-261-2820; Fax: +82-43-268-2732
| |
Collapse
|
7
|
Jo MJ, Jin IS, Park CW, Hwang BY, Chung YB, Kim JS, Shin DH. Revolutionizing technologies of nanomicelles for combinatorial anticancer drug delivery. Arch Pharm Res 2020; 43:100-109. [PMID: 31989478 DOI: 10.1007/s12272-020-01215-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Insufficient efficacy of current single drug therapy of cancers have led to the advancement of combination drug-loaded formulations. Specifically, polymeric micelles have been focused on as efficient injectable vehicles for the delivery of several anticancer drugs simultaneously to cancer cells. These nano delivery systems have evolved with advancements in the area of nanotechnology. The current review presents a summary of the past events that have led to the procession of nanomicelles and novel nanotechnologies for combinatorial drug delivery. It also focuses on the advantages, disadvantages, and considerations for the design of nanotechnologies for combinatorial drug delivery systems. The opportunities and challenges of nanotechnologies in drug delivery to overcome current disadvantages are also discussed. Furthermore, we have added findings regarding the trends and perspectives regarding nanotechnologies for combinatorial anticancer drug delivery.
Collapse
Affiliation(s)
- Min Jeong Jo
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Ik Sup Jin
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Youn Bok Chung
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Jin-Seok Kim
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea.
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea.
| |
Collapse
|
8
|
Liu F, Li A, Li F, Li J, Yan L, Li F, Luo J, Huang Z, Zheng Y. Entrapping Instantly‐Cleaved CPT Prodrugs in Polymeric Micelles for CPT Delivery. ChemistrySelect 2019. [DOI: 10.1002/slct.201903035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Fuyue Liu
- School of PharmacyKey Laboratory of Sichuan Province for Specific Structure of Small Molecule DrugsChengdu Medical College 783 Xindu Ave Chengdu 610500 China
| | - Anqin Li
- School of PharmacyKey Laboratory of Sichuan Province for Specific Structure of Small Molecule DrugsChengdu Medical College 783 Xindu Ave Chengdu 610500 China
| | - Fu Li
- School of PharmacyKey Laboratory of Sichuan Province for Specific Structure of Small Molecule DrugsChengdu Medical College 783 Xindu Ave Chengdu 610500 China
| | - Jin Li
- School of PharmacyKey Laboratory of Sichuan Province for Specific Structure of Small Molecule DrugsChengdu Medical College 783 Xindu Ave Chengdu 610500 China
| | - Lu Yan
- School of PharmacyKey Laboratory of Sichuan Province for Specific Structure of Small Molecule DrugsChengdu Medical College 783 Xindu Ave Chengdu 610500 China
| | - Feng Li
- School of PharmacyKey Laboratory of Sichuan Province for Specific Structure of Small Molecule DrugsChengdu Medical College 783 Xindu Ave Chengdu 610500 China
| | - Jing Luo
- School of PharmacyKey Laboratory of Sichuan Province for Specific Structure of Small Molecule DrugsChengdu Medical College 783 Xindu Ave Chengdu 610500 China
| | - Zhao Huang
- School of PharmacyKey Laboratory of Sichuan Province for Specific Structure of Small Molecule DrugsChengdu Medical College 783 Xindu Ave Chengdu 610500 China
| | - Yaxin Zheng
- School of PharmacyKey Laboratory of Sichuan Province for Specific Structure of Small Molecule DrugsChengdu Medical College 783 Xindu Ave Chengdu 610500 China
| |
Collapse
|
9
|
The trip of a drug inside the body: From a lipid-based nanocarrier to a target cell. J Control Release 2019; 309:59-71. [PMID: 31340187 DOI: 10.1016/j.jconrel.2019.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 01/25/2023]
Abstract
To date, enormous investigations have been conducted to enhance medicines' target-oriented delivery to improve their therapeutic index. In this regard, lipid-based carrier system might have been regarded as prime delivery systems that are very close to the naturally cell-derived vesicles used for biomolecular communication among cells from occasionally remote tissues. Upon examination of the literature, we found a chasm between groups of investigations in drug pharmaceutics and thought that maybe holistic research could provide better information with respect to drug delivery inside the body, especially when they are going to be injected directly into the bloodstream for systemic distribution. While a collection of older research in most cases dealt with the determination of drug partition coefficient between the aqueous and cell membrane compartments, the link has been overlooked in newer investigations that were mostly focused on drug formulation optimization and their association with particle biodistribution. This gap in the literature motivated us to present the current opinion paper, in which drug physicochemical properties like drug lipophilicity/hydrophilicity is considered as an important element in designing drug-carrying liposomes or micelles. How a hypothetical high throughput cell-embedded chromatographic technique might help to investigate a nanocarrier tissue distribution and to design 'multi-epitope grafted lipid-based drug carrier systems' are discussed. Whenever we would need support for our opinions, we have provided analogy from hydrophobic biomolecules like cholesterol, steroid hormones, and sex hormones and encouraged readers to consider our principle hypothesis: If these molecules could reach their targets far away from the site of production, then a large list of hydrophobic drugs could be delivered to their targets using the same principles.
Collapse
|