1
|
Zamanian MY, Zafari H, Osminina MK, Skakodub AA, Al‐Aouadi RFA, Golmohammadi M, Nikbakht N, Fatemi I. Improving dexamethasone drug loading and efficacy in treating rheumatoid arthritis via liposome: Focusing on inflammation and molecular mechanisms. Animal Model Exp Med 2025; 8:5-19. [PMID: 39627850 PMCID: PMC11798740 DOI: 10.1002/ame2.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/04/2024] [Indexed: 02/07/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects approximately 0.46% of the global population. Conventional therapeutics for RA, including disease-modifying antirheumatic drugs (DMARDs), nonsteroidal anti-inflammatory drugs (NSAIDs), and corticosteroids, frequently result in unintended adverse effects. Dexamethasone (DEX) is a potent glucocorticoid used to treat RA due to its anti-inflammatory and immunosuppressive properties. Liposomal delivery of DEX, particularly when liposomes are surface-modified with targeting ligands like peptides or sialic acid, can improve drug efficacy by enhancing its distribution to inflamed joints and minimizing toxicity. This study investigates the potential of liposomal drug delivery systems to enhance the efficacy and targeting of DEX in the treatment of RA. Results from various studies demonstrate that liposomal DEX significantly inhibits arthritis progression in animal models, reduces joint inflammation and damage, and alleviates cartilage destruction compared to free DEX. The liposomal formulation also shows better hemocompatibility, fewer adverse effects on body weight and immune organ index, and a longer circulation time with higher bioavailability. The anti-inflammatory mechanism is associated with the downregulation of pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α) and B-cell-activating factor (BAFF), which are key players in the pathogenesis of RA. Additionally, liposomal DEX can induce the expression of anti-inflammatory cytokines like interleukin-10 (IL-10), which has significant anti-inflammatory and immunoregulatory properties. The findings suggest that liposomal DEX represents a promising candidate for effective and safe RA therapy, with the potential to improve the management of this debilitating disease by providing targeted delivery and sustained release of the drug.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Hamidreza Zafari
- Department of Orthopedic Surgery, Joint Reconstruction Research Center, Imam Khomeini Hospital Complex, School of MedicineTehran University of Medical SciencesTehranIran
| | - Maria K. Osminina
- Pediatric departmentI.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)MoscowRussian Federation
| | - Alla A. Skakodub
- Department of Pediatric Preventive Dentistry E.V. BorovskyI.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)MoscowRussian Federation
| | | | | | - Nikta Nikbakht
- Department of Physical Medicine and Rehabilitation, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Iman Fatemi
- Research Center of Tropical and Infectious DiseasesKerman University of Medical SciencesKermanIran
| |
Collapse
|
2
|
Xu Z, Li J, Yan N, Liu X, Deng Y, Song Y. Phosphatidylserine and/or Sialic Acid Modified Liposomes Increase Uptake by Tumor-associated Macrophages and Enhance the Anti-tumor Effect. AAPS PharmSciTech 2024; 25:125. [PMID: 38834759 DOI: 10.1208/s12249-024-02837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
DOX liposomes have better therapeutic effects and lower toxic side effects. The targeting ability of liposomes is one of the key factors affecting the therapeutic effect of DOX liposomes. This study developed two types of targeted liposomes. Sialic acid (SA)-modified liposomes were designed to target the highly expressed Siglec-1 receptor on tumor-associated macrophages surface. Phosphatidylserine (PS)-modified liposomes were designed to promote phagocytosis by monocyte-derived macrophages through PS apoptotic signaling. In order to assess and compare the therapeutic potential of different targeted pathways in the context of anti-tumor treatment, we compared four phosphatidylserine membrane materials (DOPS, DSPS, DPPS and DMPS) and found that liposomes prepared using DOPS as material could significantly improve the uptake ability of RAW264.7 cells for DOX liposomes. On this basis, normal DOX liposomes (CL-DOX) and SA-modified DOX liposomes (SAL-DOX), PS-modified DOX liposomes (PS-CL-DOX), SA and PS co-modified DOX liposomes (PS-SAL-DOX) were prepared. The anti-tumor cells function of each liposome on S180 and RAW264.7 in vitro was investigated, and it was found that SA on the surface of liposomes can increase the inhibitory effect. In vivo efficacy results exhibited that SAL-DOX and PS-CL-DOX were superior to other groups in terms of ability to inhibit tumor growth and tumor inhibition index, among which SAL-DOX had the best anti-tumor effect. Moreover, SAL-DOX group mice had high expression of IFN-γ as well as IL-12 factors, which could significantly inhibit mice tumor growth, improve the immune microenvironment of the tumor site, and have excellent targeted delivery potential.
Collapse
Affiliation(s)
- Zihan Xu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Jie Li
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Na Yan
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
3
|
Liu H, Ji M, Xiao P, Gou J, Yin T, He H, Tang X, Zhang Y. Glucocorticoids-based prodrug design: Current strategies and research progress. Asian J Pharm Sci 2024; 19:100922. [PMID: 38966286 PMCID: PMC11222810 DOI: 10.1016/j.ajps.2024.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 07/06/2024] Open
Abstract
Attributing to their broad pharmacological effects encompassing anti-inflammation, antitoxin, and immunosuppression, glucocorticoids (GCs) are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus, nephritis, arthritis, ulcerative colitis, asthma, keratitis, macular edema, and leukemia. However, long-term use often causes undesirable side effects, including metabolic disorders-induced Cushing's syndrome (buffalo back, full moon face, hyperglycemia, etc.), osteoporosis, aggravated infection, psychosis, glaucoma, and cataract. These notorious side effects seriously compromise patients' quality of life, especially in patients with chronic diseases. Therefore, glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention. Among them, prodrugs have the advantages of low investment, low risk, and high success rate, making them a promising strategy. In this review, we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades, including polymer-based prodrugs, dendrimer-based prodrugs, antibody-drug conjugates, peptide-drug conjugates, carbohydrate-based prodrugs, aliphatic acid-based prodrugs and so on. Besides, we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs. This review is expected to be helpful for the research and development of novel GCs and prodrugs.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peifu Xiao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
4
|
Wang B, Wang T, Jiang T, Li S, Zhang L, Zhao X, Yang X, Wang X. Circulating immunotherapy strategy based on pyroptosis and STING pathway: Mn-loaded paclitaxel prodrug nanoplatform against tumor progression and metastasis. Biomaterials 2024; 306:122472. [PMID: 38280315 DOI: 10.1016/j.biomaterials.2024.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/16/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024]
Abstract
Immunotherapy has emerged as a promising strategy against tumors. However, its efficacy is limited by low immunogenicity, poor antigen presentation, and inadequate lymphocyte infiltration. Herein, we develop a nanoplatform (Mn-HSP) loaded with manganese ions (Mn2+) and paclitaxel (PTX) prodrug based on hyaluronic acid. PTX in Mn-HSP induces DNA damage and pyroptosis to release tumor-associated antigens (TAAs), enhancing tumor-specific adaptive immunity. Meanwhile, Mn2+ in Mn-HSP, together with PTX-induced DNA damage, activates the stimulator of interferon gene (STING) pathway to amplify innate immunity. Mn-HSP combines with adaptive and innate immunity, effectively enhancing the presentation of antigen-presenting cells (APCs) and promoting tumor infiltration of cytotoxic T lymphocytes (CTLs). In turn, the granzyme B (GZMB) secreted by CTLs triggers pyroptosis again, thereby establishing a "circulating immunotherapy" against tumors. Our results demonstrate that Mn-HSP efficiently inhibits primary breast tumors, as well as rechallenge tumors and lung metastasis in vivo. Therefore, the circulating immunotherapy that combines pyroptosis mediated adaptive immunity and STING pathway amplified innate immunity provides a novel strategy for enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Teng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Lianxiao Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Xiaojia Yang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xueyang Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
5
|
An M, Zhang J, Zhang X, Zhao Y, Liu Y. Nanomedicine targeted anti-inflammatory therapy to deal with the 'crux' of rheumatoid arthritis. J Drug Target 2024; 32:381-392. [PMID: 38321981 DOI: 10.1080/1061186x.2024.2315475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Rheumatoid arthritis is a chronic and complex autoimmune disease that is marked by an inflammatory response, synovial hyperplasia, vascularisation, fascial formation, cartilage and bone destruction, which can lead to joint deformity and even loss of function, ultimately affecting a person's health and quality of life. Although the pathogenesis of RA is unclear, growing evidence suggests that inflammation-associated cells infiltrate joints, causing tissue damage, inflammation and pain. This disruption in the balance between host tolerance and immune homeostasis the progression of RA. Existing drug therapy and surgical treatments for RA are unable to completely cure the disease or reverse its accelerated progression. Therefore, the design and development of an appropriate and effective drug delivery system will substantially improve the therapeutic effect. In this review, by describing the inflammatory microenvironment of rheumatoid arthritis and the associated inflammatory cells, the progress of targeting strategies and applications of nanotechnology in the disease is summarised, which will be helpful in providing new ideas for the subsequent treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yumeng Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Nautiyal G, Sharma SK, Kaushik D, Pandey P. Nano - Based Therapeutic Strategies in Management of Rheumatoid Arthritis. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:433-456. [PMID: 37904559 DOI: 10.2174/1872210517666230822100324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease, progressively distinctive via cartilage destruction, auto-antibody production, severe joint pain, and synovial inflammation. Nanotechnology represents as one of the utmost promising scientific technologies of the 21st century. It exhibits remarkable potential in the field of medicine, including imaging techniques and diagnostic tools, drug delivery systems and providing advances in treatment of several diseases with nanosized structures (less than 100 nm). OBJECTIVE Conventional drugs as a cornerstone of RA management including disease-modifying antirheumatic drugs (DMARDS), Glucocorticosteroids, etc are under clinical practice. Nevertheless, their low solubility profile, poor pharmacokinetics behaviour, and non-targeted distribution not only hamper their effectiveness, but also give rise to severe adverse effects which leads to the need for the emergence of nanoscale drug delivery systems. METHODS Several types of nano-diagnostic agents and nanocarriers have been identified; including polymeric nanoparticles (NPs), liposomes, nanogels, metallic NPs, nanofibres, carbon nanotubes, nano fullerene etc. Various patents and clinical trial data have been reported in relevance to RA treatment. RESULTS Nanocarriers, unlike standard medications, encapsulate molecules with high drug loading efficacy and avoid drug leakage and burst release before reaching the inflamed sites. Because of its enhanced targeting specificity with the ability to solubilise hydrophobic drugs, it acts as an enhanced drug delivery system. CONCLUSION This study explores nanoparticles potential role in RA as a carrier for site-specific delivery and its promising strategies to overcome the drawbacks. Hence, it concludes that nanomedicine is advantageous compared with conventional therapy to enhanced futuristic approach.
Collapse
Affiliation(s)
- Gunjan Nautiyal
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Shiv Kant Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Dhirender Kaushik
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| |
Collapse
|
7
|
Garhwal A, Kendya P, Soni S, Kori S, Soni V, Kashaw SK. Drug Delivery System Approaches for Rheumatoid Arthritis Treatment: A Review. Mini Rev Med Chem 2024; 24:704-720. [PMID: 37711105 DOI: 10.2174/1389557523666230913105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 09/16/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that has traditionally been treated using a variety of pharmacological compounds. However, the effectiveness of these treatments is often limited due to challenges associated with their administration. Oral and parenteral routes of drug delivery are often restricted due to issues such as low bioavailability, rapid metabolism, poor absorption, first-pass effect, and severe side effects. In recent years, nanocarrier-based delivery methods have emerged as a promising alternative for overcoming these challenges. Nanocarriers, including nanoparticles, dendrimers, micelles, nanoemulsions, and stimuli-sensitive carriers, possess unique properties that enable efficient drug delivery and targeted therapy. Using nanocarriers makes it possible to circumvent traditional administration routes' limitations. One of the key advantages of nanocarrier- based delivery is the ability to overcome resistance or intolerance to traditional antirheumatic therapies. Moreover, nanocarriers offer improved drug stability, controlled release kinetics, and enhanced solubility, optimizing the therapeutic effect. They can also protect the encapsulated drug, prolonging its circulation time and facilitating sustained release at the target site. This targeted delivery approach ensures a higher concentration of the therapeutic agent at the site of inflammation, leading to improved therapeutic outcomes. This article explores potential developments in nanotherapeutic regimens for RA while providing a comprehensive summary of current approaches based on novel drug delivery systems. In conclusion, nanocarrier-based drug delivery systems have emerged as a promising solution for improving the treatment of rheumatoid arthritis. Further advancements in nanotechnology hold promise for enhancing the efficacy and safety of RA therapies, offering new hope for patients suffering from this debilitating disease.
Collapse
Affiliation(s)
- Anushka Garhwal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Priyadarshi Kendya
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sakshi Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
8
|
Zhang Q, Li S, Tong R, Zhu Y. Sialylation: An alternative to designing long-acting and targeted drug delivery system. Biomed Pharmacother 2023; 166:115353. [PMID: 37611437 DOI: 10.1016/j.biopha.2023.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Long-acting and specific targeting are two important properties of excellent drug delivery systems. Currently, the long-acting strategies based on polyethylene glycol (PEG) are controversial, and PEGylation is incapable of simultaneously possessing targeting ability. Thus, it is crucial to identify and develop approaches to produce long-acting and targeted drug delivery systems. Sialic acid (SA) is an endogenous, negatively charged, nine-carbon monosaccharide. SA not only mediates immune escape in the body but also binds to numerous disease related targets. This suggests a potential strategy, namely "sialylation," for preparing long-acting and targeted drug delivery systems. This review focuses on the application status of SA-based long-acting and targeted agents as a reference for subsequent research.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
9
|
Deshmukh R. Rheumatoid arthritis: Pathophysiology, current therapeutic strategies and recent advances in targeted drug delivery system. MATERIALS TODAY COMMUNICATIONS 2023; 35:105877. [DOI: 10.1016/j.mtcomm.2023.105877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Radu AF, Bungau SG. Nanomedical approaches in the realm of rheumatoid arthritis. Ageing Res Rev 2023; 87:101927. [PMID: 37031724 DOI: 10.1016/j.arr.2023.101927] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Rheumatoid arthritis (RA) is a heterogeneous autoimmune inflammatory disorder defined by the damage to the bone and cartilage in the synovium, which causes joint impairment and an increase in the mortality rate. It is associated with an incompletely elucidated pathophysiological mechanism. Even though disease-modifying antirheumatic drugs have contributed to recent improvements in the standard of care for RA, only a small fraction of patients is able to attain and maintain clinical remission without the necessity for ongoing immunosuppressive drugs. The evolution of tolerance over time as well as patients' inability to respond to currently available therapy can alter the overall management of RA. A significant increase in the research of RA nano therapies due to the possible improvements they may provide over traditional systemic treatments has been observed. New approaches to getting beyond the drawbacks of existing treatments are presented by advancements in the research of nanotherapeutic techniques, particularly drug delivery nano systems. Via passive or active targeting of systemic delivery, therapeutic drugs can be precisely transported to and concentrated in the affected sites. As a result, nanoscale drug delivery systems improve the solubility and bioavailability of certain drugs and reduce dose escalation. In the present paper, we provide a thorough overview of the possible biomedical applications of various nanostructures in the diagnostic and therapeutic management of RA, derived from the shortcomings of conventional therapies. Moreover, the paper suggests the need for improvement on the basis of research directions and properly designed clinical studies.
Collapse
Affiliation(s)
- Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
11
|
Kheirkhah S, Abedi M, Zare F, Salmanpour M, Abolmaali SS, Tamaddon AM. Surface engineered palmitoyl-mesoporous silica nanoparticles with supported lipid bilayer coatings for high-capacity loading and prolonged release of dexamethasone: A factorial design approach. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Shen N, Qi X, Bagrov DV, Krechetov SP, Sharapov MG, Durymanov MO. Surface modification of fibroblasts with peroxiredoxin-1-loaded polymeric microparticles increases cell mobility, resistance to oxidative stress and collagen I production. Colloids Surf B Biointerfaces 2022; 219:112834. [PMID: 36152599 DOI: 10.1016/j.colsurfb.2022.112834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
Modification of the cell surface with artificial nano- and microparticles (also termed "cellular backpacks") containing biologically active payloads usually enables drug targeting via harnessing intrinsic cell tropism to the sites of injury. In some cases, using cells as delivery vehicles leads to improved pharmacokinetics due to extended circulation time of cell-immobilized formulations. Another rationale for particle attachment to cells is augmentation of desirable cellular functions and cell proliferation in response to release of the particle contents. In this study, we conjugated poly(lactic-co-glycolic acid) (PLGA) microparticles loaded with multifunctional antioxidant enzyme peroxiredoxin-1 (Prx1) to the surface of fibroblasts. The obtained microparticles were uniform in size and demonstrated sustained protein release. We found that the released Prx1 maintains its signaling activity resulting in macrophage activation, as indicated by TNFα upregulation and increase in ROS generation. Functionalization of fibroblasts with PLGA/Prx1 microparticles via EDC/sulfo-NHS coupling reaction did not affect cell viability but increased cell migratory properties and collagen I production. Moreover, PLGA/Prx1 backpacks increased resistance of fibroblasts to oxidative stress and attenuated cell senescence. In summary, we have developed a novel approach of fibroblast modification to augment their biological properties, which can be desirable for wound repair, cosmetic dermatology, and tissue engineering.
Collapse
Affiliation(s)
- Ningfei Shen
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Xiaoli Qi
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Dmitry V Bagrov
- Faculty of Biology, Moscow State University, Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Sergey P Krechetov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Moscow, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Mikhail O Durymanov
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia.
| |
Collapse
|
13
|
Jiang T, Xie L, Zhou S, Liu Y, Huang Y, Mei N, Ma F, Gong J, Gao X, Chen J. Metformin and histone deacetylase inhibitor based anti-inflammatory nanoplatform for epithelial-mesenchymal transition suppression and metastatic tumor treatment. J Nanobiotechnology 2022; 20:394. [PMID: 36045429 PMCID: PMC9429706 DOI: 10.1186/s12951-022-01592-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a differentiation process with aberrant changes of tumor cells, is identified as an initial and vital procedure for metastatic processes. Inflammation is a significant inducer of EMT and provides an indispensable target for blocking EMT, however, an anti-inflammatory therapeutic with highlighted safety and efficacy is deficient. Metformin is a promising anti-inflammatory agent with low side effects, but tumor monotherapy with an anti-inflammation drug could generate therapy resistance, cell adaptation or even promote tumor development. Combination therapies with various anti-inflammatory mechanisms can be favorable options improving therapeutic effects of metformin, here we develop a tumor targeting hybrid micelle based on metformin and a histone deacetylase inhibitor propofol-docosahexaenoic acid for efficient therapeutic efficacies of anti-inflammatory drugs. Triptolide is further encapsulated in hybrid micelles for orthotopic tumor therapies. The final multifunctional nanoplatforms (HAOPTs) with hyaluronic acid (HA) modification can target tumor efficiently, inhibit tumor cell EMT processes, repress metastasis establishment and suppress metastatic tumor development in a synergistic manner. Collectively, the results afford proof of concept that the tumor targeting anti-inflammatory nanoplatform can provide a potent, safe and clinical translational approach for EMT inhibition and metastatic tumor therapy.
Collapse
Affiliation(s)
- Tianze Jiang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.,Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Laozhi Xie
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Songlei Zhou
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Yipu Liu
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Yukun Huang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.,Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Ni Mei
- Shanghai Center for Drug Evaluation and Inspection, Lane 58, HaiQv Road, Shanghai, 201210, People's Republic of China
| | - Fenfen Ma
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.,Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Jingru Gong
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China. .,Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, People's Republic of China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China.
| | - Jun Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China. .,Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
14
|
Li C, Zheng X, Hu M, Jia M, Jin R, Nie Y. Recent progress in therapeutic strategies and biomimetic nanomedicines for rheumatoid arthritis treatment. Expert Opin Drug Deliv 2022; 19:883-898. [PMID: 35760767 DOI: 10.1080/17425247.2022.2094364] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune systemic disease in which inflammatory and immune cells accumulate in inflamed joints. Researchers aimed at the characteristics of RA to achieve the effect of treating RA through different therapeutic strategies, and have used various endogenous materials to design drug-loaded nanoparticles that can target RA by binding to cell adhesion molecules or chemokines. In some cases, the nanoparticles can respond to the characteristics of the microenvironment. AREAS COVERED This article reviews the recent advances in the treatment of RA from two aspects of therapeutic strategies and delivery strategies. Therapeutic strategies mainly include neutralization of inflammatory factors, promotion of inflammatory cell apoptosis, ROS scavenger, immunosuppression, and bone tissue repair. The drug delivery strategy is mainly described from two aspects: chemically functionalized biomimetic nanoparticles and endogenous nanoparticles. EXPERT OPINION Biomimetic NPs may be effective drug carriers for targeted RA treatment. NPs can reduce the clearance of mononuclear phagocytes, prolong the blood circulation time, and improve the targeting ability. With the deepening of research, more and more biomimetic NPs have entered the clinical trial stage. However, safe and scalable preparation methods are needed to improve their clinical applicability.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiu Zheng
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Mei Hu
- Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
15
|
Madamsetty VS, Mohammadinejad R, Uzieliene I, Nabavi N, Dehshahri A, García-Couce J, Tavakol S, Moghassemi S, Dadashzadeh A, Makvandi P, Pardakhty A, Aghaei Afshar A, Seyfoddin A. Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomater Sci Eng 2022; 8:1763-1790. [PMID: 35439408 PMCID: PMC9045676 DOI: 10.1021/acsbiomaterials.2c00026] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dexamethasone (DEX) has been widely used to treat a variety of diseases, including autoimmune diseases, allergies, ocular disorders, cancer, and, more recently, COVID-19. However, DEX usage is often restricted in the clinic due to its poor water solubility. When administered through a systemic route, it can elicit severe side effects, such as hypertension, peptic ulcers, hyperglycemia, and hydro-electrolytic disorders. There is currently much interest in developing efficient DEX-loaded nanoformulations that ameliorate adverse disease effects inhibiting advancements in scientific research. Various nanoparticles have been developed to selectively deliver drugs without destroying healthy cells or organs in recent years. In the present review, we have summarized some of the most attractive applications of DEX-loaded delivery systems, including liposomes, polymers, hydrogels, nanofibers, silica, calcium phosphate, and hydroxyapatite. This review provides our readers with a broad spectrum of nanomedicine approaches to deliver DEX safely.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Noushin Nabavi
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, British Columbia, Canada V6H 3Z6
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Jomarien García-Couce
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Department of Polymeric Biomaterials, Biomaterials Center (BIOMAT), University of Havana, Havana 10600, Cuba
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1417755469, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7618866748, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ali Seyfoddin
- Drug Delivery Research Group, Auckland University of Technology (AUT), School of Science, Auckland 1010, New Zealand
| |
Collapse
|
16
|
Fan C, Li C, Lu S, Lai X, Wang S, Liu X, Song Y, Deng Y. Polysialic Acid Self-assembled Nanocomplexes for Neutrophil-Based Immunotherapy to Suppress Lung Metastasis of Breast Cancer. AAPS PharmSciTech 2022; 23:109. [PMID: 35411426 DOI: 10.1208/s12249-022-02243-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
The role of neutrophils in tumor metastasis has recently attracted widespread interest. Neutrophils are the most abundant immune cells in human peripheral blood, and large numbers can spontaneously migrate to metastatic sites, where they form an immunosuppressive microenvironment. Polysialic acid (PSA) can target peripheral blood neutrophils (PBNs) mediated by L-selectin, and abemaciclib (ABE) and mitoxantrone (MIT) can treat immunosuppressive microenvironments. Here, we aimed to inhibit lung metastasis of breast cancer and improve chemoimmunotherapy by designing a PSA-modified ABE and MIT co-delivery system (AM-polyion complex (PIC)) to target PBNs in mice with metastatic tumors. We found that through electrostatic interactions between the strong negative charge of PSA and the positive charge of the drug can form stable nanocomplexes and that spontaneous migration of neutrophils can mediate the aggregation of these complexes in the lungs, induce antimetastatic immune responses, enhance the effectiveness of cytotoxic T lymphocytes (CTLs), and inhibit regulatory T cell (Treg) proliferation in vivo and in vitro. Pharmacodynamic results suggested that neutrophil-mediated AM-PIC chemoimmunotherapy inhibited tumor metastasis in mice with lung metastasis of 4T1 breast cancer. Overall, PSA-modified nanocomplexes offer promising neutrophil-mediated, targeted drug delivery systems to treat lung metastasis of breast cancer.
Collapse
|
17
|
Chen M, Wu W, Wang S, Lai X, Liu M, Sun Y, Liu X, Li G, Song Y, Bao C, Li X, Chen G, Deng Y. Neutrophils as emerging immunotherapeutic targets: Indirect treatment of tumors by regulating the tumor immune environment based on a sialic acid derivative-modified nanocomplex platform. Int J Pharm 2022; 620:121684. [PMID: 35314280 DOI: 10.1016/j.ijpharm.2022.121684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 01/02/2023]
Abstract
Tumor cells are dependent on their microenvironment; thus, targeting the non-cancerous components surrounding the tumor may be beneficial. Neutrophils are important inflammatory cells in the tumor microenvironment that significantly affect tumor cell proliferation, metastasis, and immune regulation. Targeted regulation of tumor-associated neutrophil-related pathways is expected to become a new therapeutic approach. Colchicine compounds are powerful anti-inflammatory drugs that strongly inhibit the chemotaxis of neutrophils to the inflammatory site. We attempted to achieve anticancer effects by utilizing its ability to inhibit neutrophil recruitment rather than killing tumor cells. As such drugs are likely to cause non-specific damages due to the lack of selectivity, we synthesized and used sialic acid and cholesterol derivatives (SA-CH) for surface modification of the newly synthesized low-toxic colchicine derivative (BCS) nanocomposite to improve neutrophil targeting. In vivo and in vitro experiments have shown that SA-CH-modified BCS preparations are effectively absorbed by neutrophils, inhibit cell migration, reduce infiltration of tumor-associated neutrophils, enhance T lymphocyte function, and exhibit good anti-S180 early tumor effect. In addition, in a triple-negative breast cancer model, the agent could strongly inhibit tumor metastasis to the lungs.
Collapse
Affiliation(s)
- Meng Chen
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Wenjing Wu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xiaoxue Lai
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Mengyang Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yiming Sun
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Gang Li
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Changshun Bao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaohu Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
18
|
Wu Y, Liu Y, Wang T, Jiang Q, Xu F, Liu Z. Living Cell for Drug Delivery. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Tu AB, Lewis JS. Biomaterial-based immunotherapeutic strategies for rheumatoid arthritis. Drug Deliv Transl Res 2021; 11:2371-2393. [PMID: 34414564 PMCID: PMC8376117 DOI: 10.1007/s13346-021-01038-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an extremely painful autoimmune disease characterized by chronic joint inflammation leading to the erosion of adjacent cartilage and bone. Rheumatoid arthritis pathology is primarily driven by inappropriate infiltration and activation of immune cells within the synovium of the joint. There is no cure for RA. As such, manifestation of symptoms entails lifelong management via various therapies that aim to generally dampen the immune system or impede the function of immune mediators. However, these treatment strategies lead to adverse effects such as toxicity, general immunosuppression, and increased risk of infection. In pursuit of safer and more efficacious therapies, many emerging biomaterial-based strategies are being developed to improve payload delivery, specific targeting, and dose efficacy, and to mitigate adverse reactions and toxicity. In this review, we highlight biomaterial-based approaches that are currently under investigation to circumvent the limitations of conventional RA treatments.
Collapse
Affiliation(s)
- Allen B Tu
- Department of Biomedical Engineering, University of California, 1 Shields Ave, Davis , CA, 95616, USA
| | - Jamal S Lewis
- Department of Biomedical Engineering, University of California, 1 Shields Ave, Davis , CA, 95616, USA.
| |
Collapse
|
20
|
Wen J, Moloney EB, Canning A, Donohoe E, Ritter T, Wang J, Xiang D, Wu J, Li Y. Synthesized nanoparticles, biomimetic nanoparticles and extracellular vesicles for treatment of autoimmune disease: Comparison and prospect. Pharmacol Res 2021; 172:105833. [PMID: 34418563 DOI: 10.1016/j.phrs.2021.105833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022]
Abstract
An emerging strategy is needed to treat autoimmune diseases, many of which are chronic with no definitive cure. Current treatments only alleviate symptoms and have many side effects affecting patient quality of life. Recently, nanoparticle drug delivery systems, an emerging method in medicine, has been used to target cells or organs, without damaging normal tissue. This approach has led to fewer side effects, along with a strong immunosuppressive capacity. Therefore, a nanotechnology approach may help to improve the treatment of autoimmune diseases. In this review, we separated nanoparticles into three categories: synthesized nanoparticles, biomimetic nanoparticles, and extracellular vesicles. This review firstly compares the typical mechanism of action of these three nanoparticle categories respectively in terms of active targeting, camouflage effect, and similarity to parent cells. Then their immunomodulation properties are discussed. Finally, the challenges faced by all these nanoparticles are described.
Collapse
Affiliation(s)
- Jing Wen
- Department of Pharmacy, the Third Hospital of Changsha, Changsha, China
| | - Elizabeth B Moloney
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aoife Canning
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ellen Donohoe
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jiemin Wang
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Daxiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongjiang Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Wang S, Lai X, Li C, Chen M, Hu M, Liu X, Song Y, Deng Y. Sialic acid-conjugate modified doxorubicin nanoplatform for treating neutrophil-related inflammation. J Control Release 2021; 337:612-627. [PMID: 34332025 DOI: 10.1016/j.jconrel.2021.07.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
Neutrophils, the most abundant leukocytes in human peripheral blood, are important effector cells that mediate the inflammatory response. During neutrophil dysfunction, excessive activation and uncontrolled infiltration are the core processes in the progression of inflammation-related diseases, including severe coronavirus disease-19 (COVID-19), sepsis, etc. Herein, we used sialic acid-modified liposomal doxorubicin (DOX-SAL) to selectively target inflammatory neutrophils in the peripheral blood and deliver DOX intracellularly, inducing neutrophil apoptosis, blocking neutrophil migration, and inhibiting the inflammatory response. Strong selectivity resulted from the specific affinity between SA and L-selectin, which is highly expressed on inflammatory neutrophil membranes. In inflammation models of acute lung inflammation/injury (ALI), sepsis, and rheumatoid arthritis (RA), DOX-SAL suppressed the inflammatory response, increased the survival of mice, and delayed disease progression, respectively. Moreover, DOX-SAL restored immune homeostasis in the body, without side effects. We have presented a targeted nanocarrier drug delivery system that can block the recruitment of inflammatory neutrophils, enabling specific inhibition of the core disease process and the potential to treat multiple diseases with a single drug. This represents a revolutionary treatment strategy for inflammatory diseases caused by inappropriate neutrophil activation.
Collapse
Affiliation(s)
- Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Xiaoxue Lai
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Cong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Meng Chen
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Miao Hu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
22
|
van Alem CMA, Metselaar JM, van Kooten C, Rotmans JI. Recent Advances in Liposomal-Based Anti-Inflammatory Therapy. Pharmaceutics 2021; 13:pharmaceutics13071004. [PMID: 34371695 PMCID: PMC8309101 DOI: 10.3390/pharmaceutics13071004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/13/2023] Open
Abstract
Liposomes can be seen as ideal carriers for anti-inflammatory drugs as their ability to (passively) target sites of inflammation and release their content to inflammatory target cells enables them to increase local efficacy with only limited systemic exposure and adverse effects. Nonetheless, few liposomal formulations seem to reach the clinic. The current review provides an overview of the more recent innovations in liposomal treatment of rheumatoid arthritis, psoriasis, vascular inflammation, and transplantation. Cutting edge developments include the liposomal delivery of gene and RNA therapeutics and the use of hybrid systems where several liposomal bilayer features, or several drugs, are combined in a single formulation. The majority of the articles reviewed here focus on preclinical animal studies where proof-of-principle of an improved efficacy-safety ratio is observed when using liposomal formulations. A few clinical studies are included as well, which brings us to a discussion about the challenges of clinical translation of liposomal nanomedicines in the field of inflammatory diseases.
Collapse
Affiliation(s)
- Carla M. A. van Alem
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
| | - Josbert M. Metselaar
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | - Cees van Kooten
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
| | - Joris I. Rotmans
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
- Correspondence: ; Tel.: +31-(0)-7152-62148
| |
Collapse
|
23
|
Chen L, Wang Y, Sun L, Yan J, Mao H. Nanomedicine Strategies for Anti-Inflammatory Treatment of Noninfectious Arthritis. Adv Healthc Mater 2021; 10:e2001732. [PMID: 33870656 DOI: 10.1002/adhm.202001732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Noninfectious arthritis (NIA) comprises a class of chronic and progressive inflammatory disorders that require early-stage management to prevent disease progression. The most common forms include osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, and gouty arthritis. Current treatments involve nonsteroidal anti-inflammatory drugs, disease-modifying antirheumatic drugs and glucocorticoids to alleviate clinical symptoms, although regular use of these can result in a high risk of chronic kidney disease and heart failure, as well as severe adverse gastrointestinal effects. Nanomedicine offers unique opportunities to address these challenges and improve therapeutic efficacy due to its ability to deliver therapeutics locally in a sustained manner, thus extending the half-life, improving bioavailability, and reducing the side effects of these agents. This review includes a comprehensive analysis of the mechanisms of various treatment options for NIA and highlights recent progress and emerging strategies in treating NIA with nanomedicine platforms, particularly related to long-term biosafety and nonspecific targeting in designing nanomedicine delivery systems.
Collapse
Affiliation(s)
- Long Chen
- Department of Orthopedics Guizhou Provincial People's Hospital Guiyang Guizhou 550000 China
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Yuanzheng Wang
- Department of Orthopedics Guizhou Provincial People's Hospital Guiyang Guizhou 550000 China
| | - Li Sun
- Department of Orthopedics Guizhou Provincial People's Hospital Guiyang Guizhou 550000 China
| | - Jerry Yan
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Biomedical Engineering School of Medicine Johns Hopkins University Baltimore MD 21205 USA
| | - Hai‐Quan Mao
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Biomedical Engineering School of Medicine Johns Hopkins University Baltimore MD 21205 USA
- Department of Materials Science and Engineering Whiting School of Engineering Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
24
|
Wang Q, Qin X, Fang J, Sun X. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies. Acta Pharm Sin B 2021; 11:1158-1174. [PMID: 34094826 PMCID: PMC8144894 DOI: 10.1016/j.apsb.2021.03.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing understanding of the pathogenesis of rheumatoid arthritis (RA) has remarkably promoted the development of effective therapeutic regimens of RA. Nevertheless, the inadequate response to current therapies in a proportion of patients, the systemic toxicity accompanied by long-term administration or distribution in non-targeted sites and the comprised efficacy caused by undesirable bioavailability, are still unsettled problems lying across the full remission of RA. So far, these existing limitations have inspired comprehensive academic researches on nanomedicines for RA treatment. A variety of versatile nanocarriers with controllable physicochemical properties, tailorable drug release pattern or active targeting ability were fabricated to enhance the drug delivery efficiency in RA treatment. This review aims to provide an up-to-date progress regarding to RA treatment using nanomedicines in the last 5 years and concisely discuss the potential application of several newly emerged therapeutic strategies such as inducing the antigen-specific tolerance, pro-resolving therapy or regulating the immunometabolism for RA treatments.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiyu Fang
- Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Vishnevskiy DA, Garanina AS, Chernysheva AA, Chekhonin VP, Naumenko VA. Neutrophil and Nanoparticles Delivery to Tumor: Is It Going to Carry That Weight? Adv Healthc Mater 2021; 10:e2002071. [PMID: 33734620 DOI: 10.1002/adhm.202002071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/02/2021] [Indexed: 12/15/2022]
Abstract
The application of cell carriers for transporting nanodrugs to the tumor draws much attention as the alternative to the passive drug delivery. In this concept, the neutrophil (NΦ) is of special interest as this cell is able to uptake nanoparticles (NPs) and cross the vascular barrier in response to tumor signaling. There is a growing body of literature describing NP-NΦ interactions in vitro and in vivo that demonstrates the opportunity of using these cells to improve the efficacy of cancer therapy. However, a number of conceptual and technical issues need to be resolved for translating the technology into clinics. The current review summarizes the recent advances and challenges associated with NP-NΦ interactions, with the special focus on the complex interplay between the NP internalization pathways and the modulation of NΦ activity, and its potential consequences for nanodrug delivery.
Collapse
Affiliation(s)
- Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
- N. I Pirogov Russian National Research Medical University Ulitsa Ostrovityanova, 1 Moscow 117997 Russia
| | - Anastasiia S. Garanina
- National University of Science and Technology (MISIS) Leninskiy Prospekt, 4 Moscow 119049 Russia
| | - Anastasia A. Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
- N. I Pirogov Russian National Research Medical University Ulitsa Ostrovityanova, 1 Moscow 117997 Russia
| | - Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
| |
Collapse
|
26
|
Ferreira-Silva M, Faria-Silva C, Viana Baptista P, Fernandes E, Ramos Fernandes A, Corvo ML. Liposomal Nanosystems in Rheumatoid Arthritis. Pharmaceutics 2021; 13:pharmaceutics13040454. [PMID: 33801603 PMCID: PMC8065723 DOI: 10.3390/pharmaceutics13040454] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that affects the joints and results in reduced patient quality of life due to its chronic nature and several comorbidities. RA is also associated with a high socioeconomic burden. Currently, several available therapies minimize symptoms and prevent disease progression. However, more effective treatments are needed due to current therapies' severe side-effects, especially under long-term use. Drug delivery systems have demonstrated their clinical importance-with several nanocarriers present in the market-due to their capacity to improve therapeutic drug index, for instance, by enabling passive or active targeting. The first to achieve market authorization were liposomes that still represent a considerable part of approved delivery systems. In this manuscript, we review the role of liposomes in RA treatment, address preclinical studies and clinical trials, and discuss factors that could hamper a successful clinical translation. We also suggest some alterations that could potentially improve their progression to the market.
Collapse
Affiliation(s)
- Margarida Ferreira-Silva
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (M.F.-S.); (C.F.-S.)
| | - Catarina Faria-Silva
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (M.F.-S.); (C.F.-S.)
| | - Pedro Viana Baptista
- Unidade de Ciências Biomoleculares Aplicadas UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Eduarda Fernandes
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV, REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Alexandra Ramos Fernandes
- Unidade de Ciências Biomoleculares Aplicadas UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
- Correspondence: (A.R.F.); (M.L.C.)
| | - Maria Luísa Corvo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (M.F.-S.); (C.F.-S.)
- Correspondence: (A.R.F.); (M.L.C.)
| |
Collapse
|
27
|
Bordron A, Morel M, Bagacean C, Dueymes M, Pochard P, Harduin-Lepers A, Jamin C, Pers JO. Hyposialylation Must Be Considered to Develop Future Therapies in Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms22073402. [PMID: 33810246 PMCID: PMC8036829 DOI: 10.3390/ijms22073402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune disease development depends on multiple factors, including genetic and environmental. Abnormalities such as sialylation levels and/or quality have been recently highlighted. The adjunction of sialic acid at the terminal end of glycoproteins and glycolipids is essential for distinguishing between self and non-self-antigens and the control of pro- or anti-inflammatory immune reactions. In autoimmunity, hyposialylation is responsible for chronic inflammation, the anarchic activation of the immune system and organ lesions. A detailed characterization of this mechanism is a key element for improving the understanding of these diseases and the development of innovative therapies. This review focuses on the impact of sialylation in autoimmunity in order to determine future treatments based on the regulation of hyposialylation.
Collapse
Affiliation(s)
- Anne Bordron
- Univ Brest, Inserm, LBAI, UMR1227 Brest, France; (M.M.); (C.B.); (M.D.); (C.J.); (J.-O.P.)
- Correspondence:
| | - Marie Morel
- Univ Brest, Inserm, LBAI, UMR1227 Brest, France; (M.M.); (C.B.); (M.D.); (C.J.); (J.-O.P.)
| | - Cristina Bagacean
- Univ Brest, Inserm, LBAI, UMR1227 Brest, France; (M.M.); (C.B.); (M.D.); (C.J.); (J.-O.P.)
- CHU de Brest, Laboratory of Immunolgy, 29200 Brest, France;
| | - Maryvonne Dueymes
- Univ Brest, Inserm, LBAI, UMR1227 Brest, France; (M.M.); (C.B.); (M.D.); (C.J.); (J.-O.P.)
- CHU de Brest, Laboratory of Immunolgy, 29200 Brest, France;
| | - Pierre Pochard
- CHU de Brest, Laboratory of Immunolgy, 29200 Brest, France;
| | - Anne Harduin-Lepers
- Univ. Lille, CNRS UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France;
| | - Christophe Jamin
- Univ Brest, Inserm, LBAI, UMR1227 Brest, France; (M.M.); (C.B.); (M.D.); (C.J.); (J.-O.P.)
- CHU de Brest, Laboratory of Immunolgy, 29200 Brest, France;
| | - Jacques-Olivier Pers
- Univ Brest, Inserm, LBAI, UMR1227 Brest, France; (M.M.); (C.B.); (M.D.); (C.J.); (J.-O.P.)
- CHU de Brest, Laboratory of Immunolgy, 29200 Brest, France;
| |
Collapse
|
28
|
Grafting of 18β-Glycyrrhetinic Acid and Sialic Acid onto Chitosan to Produce a New Amphipathic Chitosan Derivative: Synthesis, Characterization, and Cytotoxicity. Molecules 2021; 26:molecules26020452. [PMID: 33467083 PMCID: PMC7829902 DOI: 10.3390/molecules26020452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Chitosan is the only cationic polysaccharide found in nature. It has broad application prospects in biomaterials, but its application is limited due to its poor solubility in water. A novel chitosan derivative was synthesized by amidation of chitosan with 18β-glycyrrhetinic acid and sialic acid. The chitosan derivatives were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and measurement of the zeta potential. We also investigated the solubility, cytotoxicity, and blood compatibility of chitosan derivatives. 18β-glycyrrhetinic acid and sialic acid could be grafted onto chitosan molecular chains. The thermal stability of the synthesized chitosan derivatives was decreased and the surface was positively charged in water and phosphate-buffered saline. After chitosan had been modified by 18 β-glycyrrhetinic acid and sialic acid, the solubility of chitosan was improved greatly in water and phosphate-buffered saline, and percent hemolysis was <5%. Novel amphiphilic chitosan derivatives could be suitable polymers for biomedical purposes.
Collapse
|
29
|
Mi Z, Guo L, Liu P, Qi Y, Feng Z, Liu J, He Z, Yang X, Jiang S, Wu J, Ding J, Zhou W, Rong P. "Trojan Horse" Salmonella Enabling Tumor Homing of Silver Nanoparticles via Neutrophil Infiltration for Synergistic Tumor Therapy and Enhanced Biosafety. NANO LETTERS 2021; 21:414-423. [PMID: 33356313 DOI: 10.1021/acs.nanolett.0c03811] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salmonella selectively colonizes into the hypoxic tumor region and exerts antitumor effects via multiple mechanisms, while the tumor colonized Salmonella recruits host neutrophils into the tumor, presenting a key immunological restraint to compromise the Salmonella efficacy. Here, we develop a combinatorial strategy by employing silver nanoparticles (AgNPs) to improve the efficacy and biosafety of Salmonella. The AgNPs were decorated with sialic acid (SA) to allow selective recognition of L-selectin on neutrophil surfaces, based on which the tumor-homing of AgNPs was achieved by neutrophil infiltration in the Salmonella colonized tumor. The tumor-targeting AgNPs exert the functions of (1) local depletion of neutrophils in tumors to boost the efficacy of Salmonella, (2) direct killing tumor cells via L-selectin-mediated intracellular delivery, and (3) clearing the residual Salmonella after complete tumor eradication to minimize the side effects. With a single tail vein injection of such combination treatment, the tumor was eliminated with high biosafety, resulting in a superior therapeutic outcome.
Collapse
Affiliation(s)
- Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lina Guo
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Peng Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine & The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Zhichao Feng
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jiahao Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhenhu He
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xiao Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shengnan Jiang
- Department of Radiology, Xiangya School of Medicine Affiliated Haikou Hospital, Central South University, Hunan 410013, China
| | - Jianzhen Wu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenhu Zhou
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, China
- Molecular Imaging Research Center, Central South University, Hunan 410013, China
| |
Collapse
|
30
|
Qiu Q, Li C, Yan X, Zhang H, Luo X, Gao X, Liu X, Song Y, Deng Y. Photodynamic/ photothermal therapy enhances neutrophil-mediated ibrutinib tumor delivery for potent tumor immunotherapy: More than one plus one? Biomaterials 2021; 269:120652. [PMID: 33450581 DOI: 10.1016/j.biomaterials.2021.120652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
Neutrophil-mediated drug-delivery systems have gained widespread attention owing to their superior efficacy in cancer therapy. Neutrophils, the most abundant white cells in peripheral blood, are known to migrate to inflamed tumors. Here, we elaborate on a novel strategy to enhance tumor infiltration of neutrophils by photodynamic/photothermal therapy (PDT/PTT) to deliver ibrutinib (IBR) nanocomplexes for cancer immunotherapy. DiR-loading liposomes (DiR-lipos) were administered to induce acute inflammation, and sialic acid (SA) derivative-coated IBR-loading nanocomplexes (SA-2@NCs) were fabricated for targeting activated peripheral blood neutrophils (PBNs). This in vitro and in vivo attempt, therefore, proved the hypothesis that inducing acute inflammation via PDT/PTT could facilitate the migration of PBNs, which could deliver SA-2@NCs into the tumor. The enhanced tumor delivery of SA-2@NCs was accompanied by enhanced antitumor T-cell immune responses in a mouse orthotopic breast cancer model. Our findings indicate that the combination of IBR-mediated immunotherapy with DiR-mediated PDT/PTT bring together two leading novel strategies, taking advantage of their synergistic mechanisms of action for a potent anti-tumor efficacy for breast cancer therapy.
Collapse
Affiliation(s)
- Qiujun Qiu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Cong Li
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xinyang Yan
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Hongxia Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xiang Luo
- College of Chemistry and Chemical Engineering, Shaoxing University, No. 508 Huancheng West Road, Shaoxing, Zhejiang Province, 312000, PR China.
| | - Xin Gao
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
31
|
Wang S, Yang S, Lai X, Song Y, Hu L, Li C, Shi T, Liu X, Deng Y, Chen G. Sialic Acid Conjugate-Modified Liposomal Dexamethasone Palmitate Targeting Neutrophils for Rheumatoid Arthritis Therapy: Influence of Particle Size. AAPS PharmSciTech 2021; 22:16. [PMID: 33389218 DOI: 10.1208/s12249-020-01870-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Many anti-inflammatory therapies targeting neutrophils have been developed so far. A sialic acid (SA)-modified liposomal (SAL) formulation, based on the high expression of L-selectin in peripheral blood neutrophils (PBNs) and SA as its targeting ligand, has proved to be an effective neutrophil-mediated drug delivery system targeting rheumatoid arthritis (RA). The objective of this study was to investigate the influence of particle size of drug-carrying SALs transported and delivered by neutrophils on their anti-RA effect. Dexamethasone palmitate-loaded SALs (DP-SALs) of different particle sizes (300.2 ± 5.5 nm, 150.3 ± 4.3 nm, and 75.0 ± 3.9 nm) were prepared with DP as a model drug. Our study indicated that DP-SALs could efficiently target PBNs, with larger liposomes leading to higher drug accumulation in cells. However, a high intake of large DP-SALs by PBNs inhibited their migration ability and capacity to release the payload at the target site. In contrast, small DP-SALs (75.0 ± 3.9 nm) could maintain the drug delivery potential of PBNs, leading to their efficient accumulation at the inflammatory site, where PBNs would be excessively activated to form neutrophil extracellular traps along with efficient payload release (small DP-SALs) and finally to induce excellent anti-RA effect.
Collapse
|
32
|
Neutrophils and Macrophages as Targets for Development of Nanotherapeutics in Inflammatory Diseases. Pharmaceutics 2020; 12:pharmaceutics12121222. [PMID: 33348630 PMCID: PMC7766591 DOI: 10.3390/pharmaceutics12121222] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Neutrophils and macrophages are major components of innate systems, playing central roles in inflammation responses to infections and tissue injury. If they are out of control, inflammation responses can cause the pathogenesis of a wide range of diseases, such as inflammatory disorders and autoimmune diseases. Precisely regulating the functions of neutrophils and macrophages in vivo is a potential strategy to develop immunotherapies to treat inflammatory diseases. Advances in nanotechnology have enabled us to design nanoparticles capable of targeting neutrophils or macrophages in vivo. This review discusses the current status of how nanoparticles specifically target neutrophils or macrophages and how they manipulate leukocyte functions to inhibit their activation for inflammation resolution or to restore their defense ability for pathogen clearance. Finally, we present a novel concept of hijacking leukocytes to deliver nanotherapeutics across the blood vessel barrier. This review highlights the challenges and opportunities in developing nanotherapeutics to target leukocytes for improved treatment of inflammatory diseases.
Collapse
|
33
|
Fang G, Tang B. Current advances in the nano-delivery of celastrol for treating inflammation-associated diseases. J Mater Chem B 2020; 8:10954-10965. [PMID: 33174584 DOI: 10.1039/d0tb01939a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammation is ubiquitous in the body, and uncontrolled inflammation often contributes to various diseases. Celastrol, a compound isolated from a Chinese medicinal herb, holds great potential in treating multiple inflammation-associated diseases. However, its further clinical use is limited by its poor solubility, bioavailability, and high organ toxicity. With the advancement of nanotechnology, the nano-delivery of celastrol can effectively improve its oral bioavailability, maximize its efficacy and minimize its side effects. Here, we summarize the roles of celastrol in the treatment of various inflammation-associated diseases, with a special emphasis on its role in modulating immune cell signaling or non-immune cell signaling within the inflammatory microenvironment, and we highlight the latest advances in nano-delivery strategies for celastrol to treat diseases associated with inflammation.
Collapse
Affiliation(s)
- Guihua Fang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu Province 226001, China.
| | | |
Collapse
|
34
|
Han D, Chen Q, Chen H. Food-Derived Nanoscopic Drug Delivery Systems for Treatment of Rheumatoid Arthritis. Molecules 2020; 25:E3506. [PMID: 32752061 PMCID: PMC7436204 DOI: 10.3390/molecules25153506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a severe systemic inflammatory disease with no cure at present. Recent developments in the understanding of inflammation and nanomaterial science have led to increased applications of nanostructured drug delivery systems in the treatment of RA. The present review summarizes novel fabrications of nanoscale drug carriers using food components as either the delivered drugs or carrier structures, in order to achieve safe, effective and convenient drug administration. Polyphenols and flavonoids are among the most frequently carried anti-RA therapeutics in the nanosystems. Fatty substances, polysaccharides, and peptides/proteins can function as structuring agents of the nanocarriers. Frequently used nanostructures include nanoemulsions, nanocapsules, liposomes, and various nanoparticles. Using these nanostructures has improved drug solubility, absorption, biodistribution, stability, targeted accumulation, and release. Joint vectorization, i.e., using a combination of bioactive molecules, can bring elevated therapeutic outcomes. Utilization of anti-arthritic chemicals that can self-assemble into nanostructures is a promising research orientation in this field.
Collapse
Affiliation(s)
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China;
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China;
| |
Collapse
|
35
|
Targeted drug-delivery systems in the treatment of rheumatoid arthritis: recent advancement and clinical status. Ther Deliv 2020; 11:269-284. [DOI: 10.4155/tde-2020-0029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that is characterized by synovial inflammation, cellular infiltration in joints which leads to progressive joint destruction and bone erosion. RA is associated with many comorbidities including pulmonary disease, rheumatoid nodules and can have a pessimistic impact on quality of life. The current therapies of RA treatment comprise conventional, small molecule and biological antirheumatic drugs. Their utility as therapeutic agents is limited because of poor absorption, rapid metabolism and adverse effects (dose-escalation, systemic toxicity, lack of selectivity and safety). To overcome these limitations, the novel drug delivery systems are being investigated. This review has compiled currently approved therapies along with emerging advanced drug-delivery systems for RA treatment. Further, active targeting of therapeutic agents to inflamed joints via folate receptor, CD44, angiogenesis, integrins and other provided an improved therapeutic efficacy in the treatment of RA.
Collapse
|
36
|
Yu Z, Reynaud F, Lorscheider M, Tsapis N, Fattal E. Nanomedicines for the delivery of glucocorticoids and nucleic acids as potential alternatives in the treatment of rheumatoid arthritis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1630. [PMID: 32202079 DOI: 10.1002/wnan.1630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects 0.5-1% of the world population. Current treatments include on one hand non-steroidal anti-inflammatory drugs and glucocorticoids (GCs) for treating pain and on the other hand disease-modifying anti-rheumatic drugs such as methotrexate, Janus kinase inhibitors or biologics such as antibodies targeting mainly cytokine expression. More recently, nucleic acids such as siRNA, miRNA, or anti-miRNA have shown strong potentialities for the treatment of RA. This review discusses the way nanomedicines can target GCs and nucleic acids to inflammatory sites, increase drug penetration within inflammatory cells, achieve better subcellular distribution and finally protect drugs against degradation. For GCs such a targeting effect would allow the treatment to be more effective at lower doses and to reduce the administration frequency as well as to induce much fewer side-effects. In the case of nucleic acids, particularly siRNA, knocking down proteins involved in RA, could importantly be facilitated using nanomedicines. Finally, the combination of both siRNA and GCs in the same carrier allowed for the same cell to target both the GCs receptor as well as any other signaling pathway involved in RA. Nanomedicines appear to be very promising for the delivery of conventional and novel drugs in RA therapeutics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Zhibo Yu
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Franceline Reynaud
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mathilde Lorscheider
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
37
|
Sujitha S, Dinesh P, Rasool M. Berberine encapsulated PEG-coated liposomes attenuate Wnt1/β-catenin signaling in rheumatoid arthritis via miR-23a activation. Eur J Pharm Biopharm 2020; 149:170-191. [PMID: 32068029 DOI: 10.1016/j.ejpb.2020.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
Abstract
Bone erosion is a debilitating pathological process of osteopathic disorder like rheumatoid arthritis (RA). Current treatment strategies render low disease activity but with disease recurrence. To find an alternative, we designed this study with an aim to explore the underlying therapeutic effect of PEGylated liposomal BBR (PEG-BBR) against Wnt1/β-catenin mediated bone erosion in adjuvant-induced arthritic (AA) rat model and fibroblast-like synoviocytes (FLS) with reference to microRNA-23a (miR-23a) activity. Our initial studies using confocal microscopy and Near-Infrared Imaging (NIR) showed successful internalization of PEG-BBR and PEG-miR-23a in vitro and in vivo respectively and was retained till 48 h. The preferential internalization of PEG-BBR into the inflamed joint region significantly reduced the gene and protein level expression of major Wnt1 signaling mediators and reduced bone erosion in rats. Moreover, PEG-BBR treatment in FLS cells attenuated the gene and protein expression levels of FZD4, LRP5, β-catenin, and Dvl-1 through the induction of CYLD. Furthermore, inhibition of these factors resulted in reduced bone loss and increased calcium retainability by altering the RANKL/OPG axis. PEG-BBR treatment markedly inhibited the expression of LRP5 protein on par with the DKK-1 (LRP5/Wnt signaling inhibitor) and suppressed the transcriptional activation of β-catenin inside the cells. We further witnessed that miR-23a altered the expression levels of LRP5 through RNA interference. Overall, our findings endorsed that miR-23a possesses a multifaceted therapeutic efficiency like berberine in RA pathogenesis and can be considered as a potential candidate for therapeutic targeting of Wnt1/β-catenin signaling in RA disease condition.
Collapse
Affiliation(s)
- Sali Sujitha
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
38
|
Gu Y, Ma J, Fu Z, Xu Y, Gao B, Yao J, Xu W, Chu K, Chen J. Development Of Novel Liposome-Encapsulated Combretastatin A4 Acylated Derivatives: Prodrug Approach For Improving Antitumor Efficacy. Int J Nanomedicine 2019; 14:8805-8818. [PMID: 31806973 PMCID: PMC6844228 DOI: 10.2147/ijn.s210938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose The objective of the present study was to develop a liposomal drug delivery system based on combretastatin A4 (CA4) prodrugs modified with varying alkyl chains and investigate the in vitro drug conversion from prodrug and in vivo antitumor effect. Methods The prodrug of CA4 was synthesized with stearyl chloride (18-carbon chain), palmitoyl chloride (16-carbon chain), myristoyl chloride (14-carbon chain), decanoyl chloride (10-carbon chain), and hexanoyl chloride (6-carbon chain) at the 3′-position of the CA4. Subsequently, it was encapsulated with liposomes through the thin-film evaporation method. Furthermore, the characteristics of prodrug-liposome were evaluated using in vitro drug release, conversion, and cytotoxicity assays, as well as in vivo pharmacokinetic, antitumor, and biodistribution studies. Results The liposome system with loaded CA4 derivatives was successfully developed with nano-size and electronegative particles. The rate of in vitro drug release and conversion was reduced as the fatty acid carbon chain lengthened. On the contrary, in vivo antitumor effects were improved with the enlargement of the fatty acid carbon chain. The results of the in vivo pharmacokinetic and tissue distribution studies indicated that the reduced rate of CA4 release with a long carbon chain could prolong the circulation time and increase the drug concentration in the tumor tissue. Conclusion These results suggested that the release or hydrolysis of the parent drug from the prodrug was closely related with the in vitro and in vivo properties. The slow drug release of CA4 modified with longer acyl chain could prolong the circulation time and increase the concentration of the drug in the tumor tissue. These effects play a critical role in increasing the antitumor efficacy.
Collapse
Affiliation(s)
- Yongwei Gu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350108, People's Republic of China.,Shanghai Wei Er Biopharmaceutical Technology Co., Ltd., Shanghai 201707, People's Republic of China
| | - Juanjuan Ma
- Shanghai Wei Er Biopharmaceutical Technology Co., Ltd., Shanghai 201707, People's Republic of China
| | - Zhiqin Fu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350108, People's Republic of China.,Shanghai Wei Er Biopharmaceutical Technology Co., Ltd., Shanghai 201707, People's Republic of China
| | - Youfa Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350108, People's Republic of China.,Shanghai Wei Er Biopharmaceutical Technology Co., Ltd., Shanghai 201707, People's Republic of China
| | - Baoan Gao
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350108, People's Republic of China.,Shanghai Wei Er Biopharmaceutical Technology Co., Ltd., Shanghai 201707, People's Republic of China
| | - Jianzhong Yao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Wei Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350108, People's Republic of China
| | - Kedan Chu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350108, People's Republic of China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350108, People's Republic of China.,Shanghai Wei Er Biopharmaceutical Technology Co., Ltd., Shanghai 201707, People's Republic of China
| |
Collapse
|
39
|
Syed A, Devi VK. Potential of targeted drug delivery systems in treatment of rheumatoid arthritis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|