1
|
Gao W, Xing W, Tang Z, Wang Q, Yu W, Zhang Q. Ionic liquid-iontophoresis mediates transdermal delivery of sparingly soluble drugs. Drug Deliv 2025; 32:2489730. [PMID: 40255114 PMCID: PMC12013143 DOI: 10.1080/10717544.2025.2489730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/27/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
Low solubility restricted transdermal penetration of drugs. We aimed to develop a novel ionic liquid-iontophoresis (IL-IS) technology and assess their efficacy and primary factors in facilitating transdermal drug delivery. Five choline-based ILs with different chain length were synthesized and validated, and the impact of IL and/or IS technology on transdermal penetration of model drugs were investigated. The results indicated that five groups of ILs synthesized in this study exhibited minimal level of toxicity, and the longer the chain of acid ligands of ILs, the greater the cytotoxicity. The longer chain of acid ligand was demonstrated superior solubilizing capabilities compared to the shorter chain. Cinnamic acid-choline-based IL ([Cho] [Cin]) significantly improved permeation of all three model drugs, and permeation quantity was linearly positively associated with the concentration of ILs. The 10 h cumulative permeation of aripiprazole applied with ILs alone was enhanced by about 14-fold when paired with IS, and the penetration was linearly positively associated with the concentration and current strength of the ILs. In vivo results indicated that IL and/or IS technology primarily facilitated drug penetration into the skin, with potential involvement of endocytosis in this process. This study demonstrated that [Cho] [Cin] exhibited a significant enhancement in the transdermal delivery of three sparingly soluble drugs. It further enhanced the transdermal permeation of weak base drug following with the combining IL and IS technology. These findings highlighted that the IL-IS technology holded promise for facilitating the transdermal delivery of sparingly soluble and weak base drugs.
Collapse
Affiliation(s)
- Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Wenmin Xing
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, China
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qi Zhang
- Institute of Library, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
2
|
Gao S, Cheng X, Feng Y, Wu D, Han Z, He Q, Zhang M, Dai Q, Zhang L, Liu C, Lu Y. Transdermal Delivery of Valproate-Choline Ionic Liquid Induces Hair Regrowth. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13471-13483. [PMID: 39970445 DOI: 10.1021/acsami.4c20709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Alopecia treatment research has been increasingly focused on innovative materials systems and drug delivery methods. Valproic acid (VPA) has been shown to promote hair regrowth by upregulating the Wnt/β-catenin signaling pathway, a key regulator of hair papilla cell proliferation. However, topical administration of VPA typically requires organic solvents or complex transdermal devices to enhance skin penetration. Biocompatible ionic liquids have gained attention as customizable solvents for transdermal drug delivery (TDD). In this study, we introduce a novel choline-based valproic acid ionic liquid (VPA-IL) for the treatment of hair loss. Our findings demonstrate that VPA-IL significantly enhances the transdermal penetration of VPA by disrupting the lipid bilayer structure of stratum corneum (SC), due to strong hydrogen bonding between the methyl hydrogen of the choline and the carboxyl group of phospholipid molecules. In vivo pharmacodynamic assessments revealed that topical application of VPA-IL effectively promotes hair regrowth by activating the Wnt/β-catenin pathway and upregulating proliferating cell nuclear antigen (PCNA), K14, loricrin, and several hair follicle (HF) stem cell markers without causing skin irritation or systemic toxicity. This work offers a safe and promising new therapeutic option for alopecia.
Collapse
Affiliation(s)
- Sai Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xueqing Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yunhao Feng
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dingqi Wu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zeren Han
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qian He
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, P. R. China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing 102206, P. R. China
| | - Qiong Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yunfeng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
3
|
Nabila F, Islam R, Yamin L, Yoshirou K, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M. Transdermal Insulin Delivery Using Ionic Liquid-Mediated Nanovesicles for Diabetes Treatment. ACS Biomater Sci Eng 2025; 11:402-414. [PMID: 39686755 PMCID: PMC11808643 DOI: 10.1021/acsbiomaterials.4c02000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
Transdermal insulin delivery is a promising method for diabetes management, providing the potential for controlled, sustained release and prolonged insulin effectiveness. However, the large molecular weight of insulin hinders its passive absorption through the stratum corneum (SC) of the skin, and high doses of insulin are required, which limits the commercial viability. We developed ethosome (ET) and trans-ethosome (TET) nanovesicle formulations containing a biocompatible lipid-based ionic liquid, [EDMPC][Lin], dissolved in 35% ethanol. TET formulations were obtained by adding isopropyl myristate (IPM), Tween-80, or Span-20 as surfactants to ET formulations. Dynamic light scattering, ζ-potential, transmission electron microscopy, and confocal laser scanning microscopy studies revealed that the nanovesicles had a stable particle size. The formulations remained stable at 4 °C for more than 3 months. ET and TET formulations containing IPM (TET1) significantly (p < 0.0001) enhanced the transdermal penetration of FITC-tagged insulin (FITC-Ins) in both mouse and pig skin, compared with that of the control FITC-Ins solution and other TET formulations, by altering the molecular structure of the SC layer. These nanovesicles were found to be biocompatible and nonirritants (cell viability >80%) in the in vitro and in vivo studies on three-dimensional (3D) artificial human skin and a diabetic mouse model, respectively. The ET and TET1 formulations were applied to the skin of diabetic mice at an insulin dosage of 30 IU/kg. The nanovesicle formulations significantly reduced blood glucose levels (BGLs) compared with the initial high BGL value (>150 mg/dL). The nanovesicle-treated mice maintained low BGLs for over 15 h, as opposed to only 2 h in the injection group. The ET and TET1 formulations reduced the BGLs by 62 and 34%, respectively, of the initial value. These ET and TET1 formulations have a high potential for use in commercial transdermal insulin patches, enhancing comfort and adherence in diabetes treatment.
Collapse
Affiliation(s)
- Fahmida
Habib Nabila
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rashedul Islam
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Li Yamin
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kawaguchi Yoshirou
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced
Transdermal Drug Delivery System Center, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division
of Biotechnology, Center for Future Chemistry, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced
Transdermal Drug Delivery System Center, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division
of Biotechnology, Center for Future Chemistry, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Chemical
Engineering Department, Universiti Teknologi
PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced
Transdermal Drug Delivery System Center, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division
of Biotechnology, Center for Future Chemistry, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Mirhadi E, Kesharwani P, Jha SK, Karav S, Sahebkar A. Utilizing ionic liquids as eco-friendly and sustainable carriers for delivering nucleic acids: A review on the revolutionary advancement in nano delivery systems. Int J Biol Macromol 2024; 283:137582. [PMID: 39542300 DOI: 10.1016/j.ijbiomac.2024.137582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Ionic liquids (ILs) are an extremely versatile class of chemicals. It has been shown that they can effectively pass through many biological barriers in the human body to deliver medications. ILs are solvents noted for their ecological friendliness; they contain equal amounts of cations and anions and remain liquid at temperatures below 100 °C. Hence, these are ideal for biomedical applications owing to their advantageous properties such as biocompatibility, solubility, and adaptability. ILs are widely reported to improve the solubility and stability of nucleic acids (DNA and RNA) in aqueous conditions, allowing for more effective delivery. Certain ILs have shown the ability to enhance the absorption of nucleic acids into cells. In addition, ILs can also be used to create vectors for gene delivery, such as liposomes and nanoparticles, thereby improving the transfection efficiency of plasmid DNA and siRNA. Subsequently, the application of ILs for nucleic acid delivery has increased significantly in recent years. In this context, we believe that using ILs to enhance the transport of nucleic acids will have a considerable effect as a novel and crucial therapeutic method in the upcoming decades. The use of ILs as solvents to preserve the natural structure of DNA and RNA shows promise for a variety of biotechnological and medical applications. Notably, ILs may be utilized for a variety of functions, including extracting, concentrating, stabilizing, and spreading nucleic acids inside cells. Our review emphasizes the key findings of research works published in this domain, wherein outstanding effectiveness of delivering RNA to the desired areas was achieved, and was made possible through the utilization of ILs.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Gao S, Cheng X, Zhang M, Dai Q, Liu C, Lu Y. Design Principles and Applications of Ionic Liquids for Transdermal Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405983. [PMID: 39342651 PMCID: PMC11578336 DOI: 10.1002/advs.202405983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Indexed: 10/01/2024]
Abstract
Ionic liquids (ILs) are salts with melting points typically <100 °C, composed of specific anions and cations. Recently, IL application has expanded into material engineering and biomedicine. Due to their unique properties, ILs have garnered significant interest in pharmacological research as solubilizers, transdermal absorption enhancers, antibacterial agents, and stabilizers of insoluble pharmaceutical active ingredients. The improvement of skin permeability by ILs is closely associated with their specific physicochemical characteristics, which are identified by their ionic composition. However, the existing literature on transdermal medication administration is insufficient in terms of a comprehensive knowledge base. This review provides a comprehensive assessment of the design principles involved in IL synthesis. Additionally, it discusses the methods utilized to assess skin permeability and provides a focused outline of IL application in transdermal drug administration.
Collapse
Affiliation(s)
- Sai Gao
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xueqing Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Ming Zhang
- Department of PathologyPeking University International HospitalBeijing102206P. R. China
| | - Qiong Dai
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yunfeng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| |
Collapse
|
6
|
Jain A, Shakya AK, Prajapati SK, Eldesoqui M, Mody N, Jain SK, Naik RR, Patil UK. An insight into pharmaceutical challenges with ionic liquids: where do we stand in transdermal delivery? Front Bioeng Biotechnol 2024; 12:1454247. [PMID: 39165403 PMCID: PMC11333206 DOI: 10.3389/fbioe.2024.1454247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Ionic liquids (ILs) represent an exciting and promising solution for advancing drug delivery platforms. Their unique properties, including broad chemical diversity, adaptable structures, and exceptional thermal stability, make them ideal candidates for overcoming challenges in transdermal drug delivery. Despite encountering obstacles such as side reactions, impurity effects, biocompatibility concerns, and stability issues, ILs offer substantial potential in enhancing drug solubility, navigating physiological barriers, and improving particle stability. To propel the use of IL-based drug delivery in pharmaceutical innovation, it is imperative to devise new strategies and solvents that can amplify drug effectiveness, facilitate drug delivery to cells at the molecular level, and ensure compatibility with the human body. This review introduces innovative methods to effectively address the challenges associated with transdermal drug delivery, presenting progressive approaches to significantly improve the efficacy of this drug delivery system.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, India
| | - Ashok K. Shakya
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Nishi Mody
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Sanjay K. Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Rajashri R. Naik
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Umesh K. Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| |
Collapse
|
7
|
Chen X, Li Z, Yang C, Yang D. Ionic liquids as the effective technology for enhancing transdermal drug delivery: Design principles, roles, mechanisms, and future challenges. Asian J Pharm Sci 2024; 19:100900. [PMID: 38590797 PMCID: PMC10999516 DOI: 10.1016/j.ajps.2024.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 04/10/2024] Open
Abstract
Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs; as novel solvents for improving the solubility of drugs in carriers; as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs; and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Ziqing Li
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Degong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
8
|
Yuan Y, Takashi E, Hou P, Kamijo A, Miura D, Ten H. Topical Skin Application of Small-Molecule Antiplatelet Agent against Pressure Injury in Rat Models. Int J Mol Sci 2024; 25:1639. [PMID: 38338918 PMCID: PMC10855411 DOI: 10.3390/ijms25031639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Due to prolonged forced positioning, the incidence of intraoperative pressure injuries is high. This study aimed to explore the impact of small-molecule antiplatelet drugs on pressure injuries by locally applying them before an injury occurs. In the first part of this study, water-soluble tracers with different molecular weights were applied to normal and early-stage pressure-injured skin. Through digital cameras, spectrophotometers, and histological observations, the penetration of tracers into the epidermis was clarified. In the second part of this study, a water-soluble antiplatelet drug called Trapidil (molecular weight = 205 Da) was applied to the left side of the back of a rat before, during, and after compression, and the contralateral side served as a non-intervention control group. The differences in pressure injuries between the two groups were observed through a digital camera, an ultraviolet camera, and temperature measurement, and skin circulation and perfusion were assessed via an intravenous injection of Evans Blue. The first part of this study found that water-soluble tracers did not easily penetrate normal skin but could more easily penetrate pressure-damaged skin. The smaller the molecular weight of the tracer, the easier it penetrated the skin. Therefore, in the next step of research, water-soluble drugs with smaller molecular weights should be selected. The second part of this study found that, compared with the control group, the occurrence rates and areas of ulcers were lower, the gray value was higher, and the skin temperature was lower in the Trapidil group (p < 0.05). After the intravenous Evans Blue injection, skin circulation and perfusion in the Trapidil group were found to be better. In conclusion, this study found that the topical skin application of a small-molecule antiplatelet agent may have significant effects against pressure injuries by improving post-decompression ischemia, providing new insights into the prevention and treatment of intraoperative pressure injuries.
Collapse
Affiliation(s)
- Yuan Yuan
- Division of Basic & Clinical Medicine, Faculty of Nursing, Nagano College of Nursing, Komagane 399-4117, Nagano, Japan; (P.H.); (A.K.); (D.M.)
- School of Nursing and Public Health, Yangzhou University, Yangzhou 225000, China
| | - En Takashi
- Division of Basic & Clinical Medicine, Faculty of Nursing, Nagano College of Nursing, Komagane 399-4117, Nagano, Japan; (P.H.); (A.K.); (D.M.)
| | - Ping Hou
- Division of Basic & Clinical Medicine, Faculty of Nursing, Nagano College of Nursing, Komagane 399-4117, Nagano, Japan; (P.H.); (A.K.); (D.M.)
- School of Nursing and Public Health, Yangzhou University, Yangzhou 225000, China
| | - Akio Kamijo
- Division of Basic & Clinical Medicine, Faculty of Nursing, Nagano College of Nursing, Komagane 399-4117, Nagano, Japan; (P.H.); (A.K.); (D.M.)
| | - Daiji Miura
- Division of Basic & Clinical Medicine, Faculty of Nursing, Nagano College of Nursing, Komagane 399-4117, Nagano, Japan; (P.H.); (A.K.); (D.M.)
| | - Hirotomo Ten
- Department of Judo Physical Therapy, Faculty of Health, Teikyo Heisei University, Tokyo 170-8445, Japan;
| |
Collapse
|
9
|
Lu B, Zhang J, Zhang J. Enhancing Transdermal Delivery of Curcumin-Based Ionic Liquid Liposomes for Application in Psoriasis. ACS APPLIED BIO MATERIALS 2023; 6:5864-5873. [PMID: 38047528 DOI: 10.1021/acsabm.3c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
To improve the permeation of curcumin, we prepared curcumin-based ionic liquid (Cur-Bet-IL) (IL formed using curcumin succinic anhydride and betaine) from curcumin by combining theoretical calculation and experimental research and then prepared curcumin-based ionic liquid liposome (Cur-Bet-IL-Lip). The Cur-Bet-IL-Lip has good stability (stored for 10 days without significant changes) and biocompatibility, which encompasses not only the properties of curcumin but also the characteristics of ionic liquids and liposomes. Cur-Bet-IL-Lip can penetrate the stratum corneum and deliver curcumin to the epidermis and dermis of the skin, and the cumulative permeability of curcumin after 24 h was 49%. Compared to Cur-Bet-IL, Cur-Bet-IL-Lip has a good uptake ability on human immortalized keratinocyte (HaCaT) cells (1.87-fold), which can reduce the expression of TNF-α (1.59-fold), IL-1β (1.19-fold), IL-17A (1.53-fold), IL-17F (1.18-fold), and IL-22 (1.49-fold) in HaCaT cells and then increase the expression of collagen-I (1.14-fold). Therefore, Cur-Bet-IL-Lip has guiding significance in improving the solubility and permeation of insoluble drugs, which also provides a potential value for the clinical application of curcumin.
Collapse
Affiliation(s)
- Beibei Lu
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen 518020, Guangdong, China
- Department of Shenzhen People's Hospital Geriatrics Center, Shenzhen 518020, Guangdong, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen 518020, Guangdong, China
- Department of Shenzhen People's Hospital Geriatrics Center, Shenzhen 518020, Guangdong, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| |
Collapse
|
10
|
Md Moshikur R, Goto M. Pharmaceutical Applications of Ionic Liquids: A Personal Account. CHEM REC 2023; 23:e202300026. [PMID: 37042429 DOI: 10.1002/tcr.202300026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Indexed: 04/13/2023]
Abstract
Ionic liquids (ILs) have been extensively used in drug formulation and delivery as designer solvents and other components because of their inherent tunability and useful physicochemical and biopharmaceutical properties. ILs can be used to manage some of the operational and functional challenges of drug delivery, including drug solubility, permeability, formulation instability, and in vivo systemic toxicity, that are associated with conventional organic solvents/agents. Furthermore, ILs have been recognized as potential solvents to address the polymorphism, limited solubility, poor permeability, instability, and low bioavailability of crystalline drugs. In this account, we discuss the technological progress and strategies toward designing biocompatible ILs and explore potential biomedical applications, namely the solubilization of small and macromolecular drugs, the creation of active pharmaceutical ingredients, and the delivery of pharmaceuticals.
Collapse
Affiliation(s)
- Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Advanced Transdermal Drug Delivery System Center, Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Tharmatt A, Sahel DK, Raza K, Pandey MM, Mittal A, Chitkara D. Topical delivery of Anti-VEGF nanomedicines for treating psoriasis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Moshikur RM, Carrier RL, Moniruzzaman M, Goto M. Recent Advances in Biocompatible Ionic Liquids in Drug Formulation and Delivery. Pharmaceutics 2023; 15:1179. [PMID: 37111664 PMCID: PMC10145603 DOI: 10.3390/pharmaceutics15041179] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The development of effective drug formulations and delivery systems for newly developed or marketed drug molecules remains a significant challenge. These drugs can exhibit polymorphic conversion, poor bioavailability, and systemic toxicity, and can be difficult to formulate with traditional organic solvents due to acute toxicity. Ionic liquids (ILs) are recognized as solvents that can improve the pharmacokinetic and pharmacodynamic properties of drugs. ILs can address the operational/functional challenges associated with traditional organic solvents. However, many ILs are non-biodegradable and inherently toxic, which is the most significant challenge in developing IL-based drug formulations and delivery systems. Biocompatible ILs comprising biocompatible cations and anions mainly derived from bio-renewable sources are considered a green alternative to both conventional ILs and organic/inorganic solvents. This review covers the technologies and strategies developed to design biocompatible ILs, focusing on the design of biocompatible IL-based drug formulations and delivery systems, and discusses the advantages of these ILs in pharmaceutical and biomedical applications. Furthermore, this review will provide guidance on transitioning to biocompatible ILs rather than commonly used toxic ILs and organic solvents in fields ranging from chemical synthesis to pharmaceutics.
Collapse
Affiliation(s)
- Rahman Md Moshikur
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Rebecca L. Carrier
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Uddin S, Islam MR, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M. Modification with Conventional Surfactants to Improve a Lipid-Based Ionic-Liquid-Associated Transcutaneous Anticancer Vaccine. Molecules 2023; 28:molecules28072969. [PMID: 37049732 PMCID: PMC10095727 DOI: 10.3390/molecules28072969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Transcutaneous vaccination is one of the successful, affordable, and patient-friendly advanced immunization approaches because of the presence of multiple immune-responsive cell types in the skin. However, in the absence of a preferable facilitator, the skin’s outer layer is a strong impediment to delivering biologically active foreign particles. Lipid-based biocompatible ionic-liquid-mediated nanodrug carriers represent an expedient and distinct strategy to permit transdermal drug delivery; with acceptable surfactants, the performance of drug formulations might be further enhanced. For this purpose, we formulated a lipid-based nanovaccine using a conventional (cationic/anionic/nonionic) surfactant loaded with an antigenic protein and immunomodulator in its core to promote drug delivery by penetrating the skin and boosting drug delivery and immunogenic cell activity. In a follow-up investigation, a freeze–dry emulsification process was used to prepare the nanovaccine, and its transdermal delivery, pharmacokinetic parameters, and ability to activate autoimmune cells in the tumor microenvironment were studied in a tumor-budding C57BL/6N mouse model. These analyses were performed using ELISA, nuclei and HE staining, flow cytometry, and other biological techniques. The immunomodulator-containing nanovaccine significantly (p < 0.001) increased transdermal drug delivery and anticancer immune responses (IgG, IgG1, IgG2, CD8+, CD207+, and CD103+ expression) without causing cellular or biological toxicity. Using a nanovaccination approach, it is possible to create a more targeted and efficient delivery system for cancer antigens, thereby stimulating a stronger immune response compared with conventional aqueous formulations. This might lead to more effective therapeutic and preventative outcomes for patients with cancer.
Collapse
|
14
|
Md Moshikur R, Shimul IM, Uddin S, Wakabayashi R, Moniruzzaman M, Goto M. Transformation of Hydrophilic Drug into Oil-Miscible Ionic Liquids for Transdermal Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55332-55341. [PMID: 36508194 DOI: 10.1021/acsami.2c15636] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The transdermal delivery of hydrophilic drugs remains challenging owing to their poor ability to permeate the skin; formulation with oil media is difficult without adding chemical permeation enhancers or co-solvents. Herein, we synthesized 12 oil-miscible ionic liquid (IL) drugs comprising lidocaine-, imipramine-, and levamisole (Lev)-hydrochloride with fatty acid permeation enhancers, i.e., laurate, oleate, linoleate, and stearate as counterions. A set of in vitro and in vivo studies was performed to investigate the potency and deliverability of the transdermal drug formulations. All of the synthesized compounds were freely miscible with pharmaceutically acceptable solvents/agents (i.e., ethanol, N-methyl pyrrolidone, Tween 20, and isopropyl myristate (IPM)). In vitro permeation studies revealed that the oleate-based Lev formulation had 2.6-fold higher skin permeation capability than the Lev salts and also superior ability compared with the laurate-, linoleate-, and stearate-containing samples. Upon in vivo transdermal administration to mice, the peak plasma concentration, elimination half-life, and area under the plasma concentration curve values of Lev-IL were 4.6-, 2.9-, and 5.4-fold higher, respectively, than those of the Lev salt. Furthermore, in vitro skin irritation and in vivo histological studies have demonstrated that Lev-IL has excellent biocompatibility compared with a conventional ionic liquid-based carrier. The results indicate that oil-miscible IL-based drugs provide a simple and scalable strategy for the design of effective transdermal drug delivery systems.
Collapse
Affiliation(s)
- Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Islam Md Shimul
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shihab Uddin
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Santamaría C, Morales E, Rio CD, Herradón B, Amarilla JM. Studies on sodium-ion batteries: searching for the proper combination of the cathode material, the electrolyte and the working voltage. The role of magnesium substitution in layered manganese-rich oxides, and pyrrolidinium ionic liquid. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
16
|
Lu Y, Qi J, Wu W. Ionic Liquids-Based Drug Delivery: a Perspective. Pharm Res 2022; 39:2329-2334. [PMID: 35974125 DOI: 10.1007/s11095-022-03362-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Ionic liquids (ILs) recently draw attention for addressing unmet needs in biomedicines. By converting solids into liquids, ILs are emerging as novel platforms to overcome some critical drawbacks associated with the application of solid or crystalline active pharmaceutical ingredients (APIs). ILs have shown promise in liquidizing or solubilizing APIs, or as green solvents, novel permeation enhancers or active ingredients, alone or synergistically with APIs. Meanwhile, challenges turn up in company with the deepening understanding of ILs as drug delivery carrier systems. This perspective aims to provide a sketchy overview on the status quo with specific attention paid to new problems arising from the utilization of ILs-based technologies in drug delivery.
Collapse
Affiliation(s)
- Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China.
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
- Fudan Zhangjiang Institute, Shanghai, 201203, China.
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|