1
|
Silimavicius L, Tchebotarev L, Zaveckas M, Razanskas R, Cepulyte L, Bielske K, Kucinskaite-Kodze I, Griguola L, Linauskiene K, Petraityte-Burneikiene R. Microarray-based evaluation of selected recombinant timothy grass allergens expressed in E. Coli and N. Benthamiana. BMC Biotechnol 2024; 24:72. [PMID: 39367362 PMCID: PMC11451218 DOI: 10.1186/s12896-024-00902-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Timothy grass (Phleum pratense) is a significant source of allergens, and recombinant allergens are increasingly used for diagnostic purposes. However, the performance of different recombinant allergen production systems in diagnostic assays needs further investigation to optimize their use in clinical settings. OBJECTIVE The main objective of this study was to analyze and compare the diagnostic performance of recombinant timothy grass allergens produced in E. coli and N. benthamiana using a custom-made microarray chip. METHODS Recombinant timothy grass allergens Phl p 1, Phl p 2, Phl p 5, Phl p 6, Phl p 11, and Phl p 12 were produced in E. coli and/or N. benthamiana. A total of 113 patient serum samples were tested to evaluate the diagnostic sensitivity, specificity, inter-assay variability, and correlation of allergen-specific IgE detection compared to commercial multiplex tests (ALEX and ISAC). Additionally, the prevalence of sIgE to these allergens was assessed. RESULTS Phl p 1, Phl p 2, Phl p 5, Phl p 6 and Phl p 11 showed high or very high positive correlation in immunoreactivity with other commercial multiplex tests. Notably, Phl p 11 fused with maltose-binding protein (MBP) demonstrated high diagnostic specificity and sensitivity, with a 0.3 arbitrary cut-off value. However, a high intra-assay variation was observed. The study also assessed specific IgE prevalence to timothy grass allergens within the tested patient cohort. CONCLUSIONS Recombinant allergens from both E. coli and N. benthamiana demonstrated strong diagnostic potential on the microarray platform, with Phl p 11 (MBP-fused) showing particularly high performance. High intra-assay variation highlights the need for further optimization in allergen formulation and microarray storage conditions. These results highlight the potential of recombinant allergens for diagnostic applications, despite challenges with allergen stability in microarray formats. Specific IgE prevalence to timothy allergens revealed a sensitization profile consistent with findings from multiple studies.
Collapse
Affiliation(s)
- Laimis Silimavicius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, 10257, Lithuania.
- Imunodiagnostika, Moletu str. 16, 14260, Didzioji Riese, Lithuania.
| | | | - Mindaugas Zaveckas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, 10257, Lithuania
| | - Raimundas Razanskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, 10257, Lithuania
| | - Laima Cepulyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, 10257, Lithuania
| | - Karolina Bielske
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, 10257, Lithuania
| | - Indre Kucinskaite-Kodze
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, 10257, Lithuania
| | - Linas Griguola
- Imunodiagnostika, Moletu str. 16, 14260, Didzioji Riese, Lithuania
- Center for Pulmonology and Allergology, Santaros Clinical Hospital, Vilnius University, Santariskiu str. 2, Vilnius, 08661, Lithuania
- Clinic of Chest Diseases, Immunology and Allergology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, Vilnius, 03101, Lithuania
| | - Kotryna Linauskiene
- Clinic of Chest Diseases, Immunology and Allergology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, Vilnius, 03101, Lithuania
| | - Rasa Petraityte-Burneikiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, 10257, Lithuania
| |
Collapse
|
2
|
Sokolov P, Evsegneeva I, Karaulov A, Sukhanova A, Nabiev I. Allergen Microarrays and New Physical Approaches to More Sensitive and Specific Detection of Allergen-Specific Antibodies. BIOSENSORS 2024; 14:353. [PMID: 39056629 PMCID: PMC11275078 DOI: 10.3390/bios14070353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The prevalence of allergic diseases has increased tremendously in recent decades, which can be attributed to growing exposure to environmental triggers, changes in dietary habits, comorbidity, and the increased use of medications. In this context, the multiplexed diagnosis of sensitization to various allergens and the monitoring of the effectiveness of treatments for allergic diseases become particularly urgent issues. The detection of allergen-specific antibodies, in particular, sIgE and sIgG, is a modern alternative to skin tests due to the safety and efficiency of this method. The use of allergen microarrays to detect tens to hundreds of allergen-specific antibodies in less than 0.1 mL of blood serum enables the transition to a deeply personalized approach in the diagnosis of these diseases while reducing the invasiveness and increasing the informativeness of analysis. This review discusses the technological approaches underlying the development of allergen microarrays and other protein microarrays, including the methods of selection of the microarray substrates and matrices for protein molecule immobilization, the obtainment of allergens, and the use of different types of optical labels for increasing the sensitivity and specificity of the detection of allergen-specific antibodies.
Collapse
Affiliation(s)
- Pavel Sokolov
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Irina Evsegneeva
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
| | - Alyona Sukhanova
- Laboratoire BioSpecT, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Igor Nabiev
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
- Laboratoire BioSpecT, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| |
Collapse
|
3
|
Üzülmez Ö, Kalic T, Mayr V, Lengger N, Tscheppe A, Radauer C, Hafner C, Hemmer W, Breiteneder H. The Major Peanut Allergen Ara h 2 Produced in Nicotiana benthamiana Contains Hydroxyprolines and Is a Viable Alternative to the E. Coli Product in Allergy Diagnosis. FRONTIERS IN PLANT SCIENCE 2021; 12:723363. [PMID: 34671372 PMCID: PMC8522509 DOI: 10.3389/fpls.2021.723363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/17/2021] [Indexed: 05/12/2023]
Abstract
Peanut allergy is a potentially life-threatening disease that is mediated by allergen-specific immunoglobulin E (IgE) antibodies. The major peanut allergen Ara h 2, a 2S albumin seed storage protein, is one of the most dangerous and potent plant allergens. Ara h 2 is posttranslationally modified to harbor four disulfide bridges and three hydroxyprolines. These hydroxyproline residues are required for optimal IgE-binding to the DPYSPOHS motifs representing an immunodominant IgE epitope. So far, recombinant Ara h 2 has been produced in Escherichia coli, Lactococcus lactis, Trichoplusia ni insect cell, and Chlamydomonas reinhardtii chloroplast expression systems, which were all incapable of proline hydroxylation. However, molecular diagnosis of peanut allergy is performed using either natural or E. coli-produced major peanut allergens. As IgE from the majority of patients is directed to Ara h 2, it is of great importance that the recombinant Ara h 2 harbors all of its eukaryotic posttranslational modifications. We produced hydroxyproline-containing and correctly folded Ara h 2 in the endoplasmic reticulum of leaf cells of Nicotiana benthamiana plants, using the plant virus-based magnICON® transient expression system with a yield of 200 mg/kg fresh biomass. To compare prokaryotic with eukaryotic expression methods, Ara h 2 was expressed in E. coli together with the disulfide-bond isomerase DsbC and thus harbored disulfide bridges but no hydroxyprolines. The recombinant allergens from N. benthamiana and E. coli were characterized and compared to the natural Ara h 2 isolated from roasted peanuts. Natural Ara h 2 outperformed both recombinant proteins in IgE-binding and activation of basophils via IgE cross-linking, the latter indicating the potency of the allergen. Interestingly, significantly more efficient IgE cross-linking by the N. benthamiana-produced allergen was observed in comparison to the one induced by the E. coli product. Ara h 2 from N. benthamiana plants displayed a higher similarity to the natural allergen in terms of basophil activation due to the presence of hydroxyproline residues, supporting so far published data on their contribution to the immunodominant IgE epitope. Our study advocates the use of N. benthamiana plants instead of prokaryotic expression hosts for the production of the major peanut allergen Ara h 2.
Collapse
Affiliation(s)
- Öykü Üzülmez
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Tanja Kalic
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
| | - Vanessa Mayr
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Nina Lengger
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Angelika Tscheppe
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christian Radauer
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
- Karl Landsteiner Institute for Dermatological Research, St. Pölten, Austria
| | | | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Xi J, He M, Pi J. Identification of antigenic sites destructed by high hydrostatic pressure (HHP) of the β subunit of β-conglycinin. Int J Biol Macromol 2019; 141:1287-1292. [PMID: 31499107 DOI: 10.1016/j.ijbiomac.2019.09.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 02/02/2023]
Abstract
β-conglycinin is one of the most allergenic proteins, and its constituent subunits α', α, and β are all potential allergens to humans. In the present study, we concentrated on the destructed antigenic sites of β subunit of β-conglycinin after high hydrostatic pressure (HHP) treatment. In this paper, the overlapping gene fragments of the β subunit of β-conglycinin were amplified by polymerase chain reaction (PCR) and cloned into T7 phage vectors. After being packaged in vitro, the recombinant T7 phage was constructed, and the overlapping fragments of the β subunit were displayed on the phage surface. The recombinant phages that expressed the overlapping fragments of the β subunit were used to react with specific antiserum by indirect ELISA to identify the HHP destructed antigenic sites. After three rounds of expression and identification, we used synthetic peptide technology to identify that the obtained fragment was a conformational epitope. We further confirmed that HHP treatment changed the conformational structure of β-conglycinin, which reduced the antigenicity of the protein.
Collapse
Affiliation(s)
- Jun Xi
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - MengXue He
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - JiangYi Pi
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
5
|
Cui Y, Yu L, Teng F, Wang N, Zhou Y, Zhang C, Yang L. Expression of recombinant allergen, Der f 1, Der f 2 and Der f 4 using baculovirus-insect cell systems. Arch Med Sci 2018; 14:1348-1354. [PMID: 30393489 PMCID: PMC6209719 DOI: 10.5114/aoms.2018.79005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/11/2016] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Specific immunotherapy is critical for alleviating symptoms associated with house dust mite allergy, such as asthma and rhinitis. However, this approach relies on crude extracts, which are often not of sufficient quality or purity and are not standardized. The use of recombinant allergens may enable safer, more effective treatment. MATERIAL AND METHODS Using our previously constructed plasmids pET28a(+)-Der f 1, pET28a(+)-Der f 2 and pET28b(+)-Der f 4 as templates, the gene fragments coding for the allergens Der f 1, Der f 2 and Der f 4, respectively, of the dust mite Dermatophagoides farinae were amplified by PCR. Next the PCR-amplified DNAs were recovered, cloned into pFastBacHT A, and transformed into Escherichia coli DH10Bac. The resulting vectors were co-transfected into Spodoptera frugiperda Sf9 cells for expression. The recombinant allergens were purified by Ni2+ affinity chromatography, and identified by SDS-PAGE and ELISA. RESULTS The recombinant allergens were successfully expressed and purified from a baculovirus expression system introduced into Sf9 cells, which were verified as being of the correct predicted molecular weights by SDS-PAGE. Furthermore, the reactivity to recombinant allergens rDer f 1, rDer f 2, and rDer f 4 was 85.2%, 88.9%, and 44.4%, respectively, in 27 children with asthma and D. farinae allergy. CONCLUSIONS Recombinant allergens from dust mites can be successfully generated using a baculovirus-insect expression system. Furthermore, these recombinant allergens can be used to detect mite sensitivity in sera, highlighting their utility in future work to understand and develop treatment for mite allergy.
Collapse
Affiliation(s)
- Yubao Cui
- Department of Clinical Laboratory, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
- Department of Laboratory Medicine, Yancheng Health Vocational and Technical College, Yancheng, Jiangsu Province, China
| | - Lili Yu
- Department of Laboratory Medicine, Yancheng Health Vocational and Technical College, Yancheng, Jiangsu Province, China
| | - Feixiang Teng
- Department of Laboratory Medicine, Yancheng Health Vocational and Technical College, Yancheng, Jiangsu Province, China
| | - Nan Wang
- Department of Laboratory Medicine, Yancheng Health Vocational and Technical College, Yancheng, Jiangsu Province, China
| | - Ying Zhou
- Department of Pediatrics Laboratory, Wuxi Children’s Hospital, Wuxi, China
| | - Chengbo Zhang
- Department of Laboratory Medicine, Yancheng Health Vocational and Technical College, Yancheng, Jiangsu Province, China
| | - Li Yang
- Department of Laboratory Medicine, Yancheng Health Vocational and Technical College, Yancheng, Jiangsu Province, China
| |
Collapse
|
6
|
Abstract
Food allergy has become a major public health problem worldwide. In the past two decades, development in molecular biology and immunology has led to many new techniques that had improved traditional methods in the food allergy field. These methods greatly facilitate identification, characterization, and quantification of food allergen and are certainly leading to better diagnostics and therapeutics for food allergic diseases. Here we review methods commonly used for food allergens.
Collapse
|
7
|
Havenith H, Kern K, Rautenberger P, Spiegel H, Szardenings M, Ueberham E, Lehmann J, Buntru M, Vogel S, Treudler R, Fischer R, Schillberg S. Combination of two epitope identification techniques enables the rational design of soy allergen Gly m 4 mutants. Biotechnol J 2017; 12. [PMID: 27906504 DOI: 10.1002/biot.201600441] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 11/08/2022]
Abstract
Detailed IgE-binding epitope analysis is a key requirement for the understanding and development of diagnostic and therapeutic agents to address food allergies. An IgE-specific linear peptide microarray with random phage peptide display for the high-resolution mapping of IgE-binding epitopes of the major soybean allergen Gly m 4, which is a homologue to the birch pollen allergen Bet v 1 is combined. Three epitopes are identified and mapped to a resolution of four key amino acids, allowing the rational design and the production of three Gly m 4 mutants with the aim to abolish or reduce the binding of epitope-specific IgE. In ELISA, the binding of the mutant allergens to polyclonal rabbit-anti Gly m 4 serum as well as IgE purified from Gly m 4-reactive soybean allergy patient sera is reduced by up to 63% compared to the wild-type allergen. Basophil stimulation experiments using RBL-SX38 cells loaded with patient IgE are showed a decreased stimulation from 25% for the wild-type Gly m 4 to 13% for one mutant. The presented approach demonstrates the feasibility of precise mapping of allergy-related IgE-binding epitopes, allowing the rational design of less allergenic mutants as potential therapeutic agents.
Collapse
Affiliation(s)
- Heide Havenith
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Karolin Kern
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Paul Rautenberger
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | | | - Elke Ueberham
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Jörg Lehmann
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Matthias Buntru
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Simon Vogel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Regina Treudler
- Dermatology, Venereology and Allergology Clinic, University of Leipzig, Leipzig, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- RWTH Aachen University, Institute for Molecular Biotechnology, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Phytopathology and Applied Zoology, Justus-Liebig University Giessen, Gießen, Germany
| |
Collapse
|
8
|
Gregory JA, Shepley-McTaggart A, Umpierrez M, Hurlburt BK, Maleki SJ, Sampson HA, Mayfield SP, Berin MC. Immunotherapy using algal-produced Ara h 1 core domain suppresses peanut allergy in mice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1541-50. [PMID: 26801740 PMCID: PMC5066676 DOI: 10.1111/pbi.12515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 05/26/2023]
Abstract
Peanut allergy is an IgE-mediated adverse reaction to a subset of proteins found in peanuts. Immunotherapy aims to desensitize allergic patients through repeated and escalating exposures for several months to years using extracts or flours. The complex mix of proteins and variability between preparations complicates immunotherapy studies. Moreover, peanut immunotherapy is associated with frequent negative side effects and patients are often at risk of allergic reactions once immunotherapy is discontinued. Allergen-specific approaches using recombinant proteins are an attractive alternative because they allow more precise dosing and the opportunity to engineer proteins with improved safety profiles. We tested whether Ara h 1 and Ara h 2, two major peanut allergens, could be produced using chloroplast of the unicellular eukaryotic alga, Chlamydomonas reinhardtii. C. reinhardtii is novel host for producing allergens that is genetically tractable, inexpensive and easy to grow, and is able to produce more complex proteins than bacterial hosts. Compared to the native proteins, algal-produced Ara h 1 core domain and Ara h 2 have a reduced affinity for IgE from peanut-allergic patients. We further found that immunotherapy using algal-produced Ara h 1 core domain confers protection from peanut-induced anaphylaxis in a murine model of peanut allergy.
Collapse
Affiliation(s)
- James A Gregory
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariel Shepley-McTaggart
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle Umpierrez
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barry K Hurlburt
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Soheila J Maleki
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Hugh A Sampson
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen P Mayfield
- Department of Biology, University of California San Diego, La Jolla, CA, USA
| | - M Cecilia Berin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Aryamvally A, Gunasekaran V, Narenthiran KR, Pasupathi R. New Strategies Toward Edible Vaccines: An Overview. J Diet Suppl 2016; 14:101-116. [PMID: 27065206 DOI: 10.3109/19390211.2016.1168904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With the ever growing population, advancements in edible vaccines and related technologies have seen a rise in popularity. Antigenic peptides incorporated into an edible part of a plant can be administered raw as a vaccine. While conventional vaccines have improved the quality of life by drastically reducing the onset of diseases, edible vaccines are able to perform the same with greater accessibility and at an affordable price. Low cost of production, ease of storage, transportation and administration are some of the many reasons behind the push for the development of edible vaccines. This article aims at giving an overview of the different plant systems used to produce vaccines in various experiments, as well as the merits and demerits of using that particular expression system. Further, the article elaborates on the problems faced in the production of edible vaccines and the measures adopted to surpass them. The major obstacle in the process is attaining a sufficiently large concentration of foreign antigen in the plant system. The article discusses various plant expression systems like banana, rice, alfalfa, mushroom, potato, tomato, pea, tobacco, and maize. When these were reviewed, it was found that the inability to produce the desired antigen concentration was one of the primary reasons why edible vaccines sometimes fail to generate the desired level of immune response in the recipient. We conclude with a promising solution to the problem by incorporating nano-technological advancements to the already existing protocols for edible vaccine development.
Collapse
Affiliation(s)
- Anjali Aryamvally
- a Department of Genetic Engineering , SRM University , Kattankulathur , Tamil Nadu , India
| | - Vignesh Gunasekaran
- a Department of Genetic Engineering , SRM University , Kattankulathur , Tamil Nadu , India
| | | | | |
Collapse
|
10
|
Teng F, Yu L, Bian Y, Sun J, Wu J, Ling C, Yang L, Wang Y, Cui Y. In silico structural analysis of group 3, 6 and 9 allergens from Dermatophagoides farinae. Mol Med Rep 2015; 11:3559-64. [PMID: 25572027 DOI: 10.3892/mmr.2015.3166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 12/02/2014] [Indexed: 11/06/2022] Open
Abstract
Dermatophagoides farinae (Hughes; Acari: Pyroglyphidae) are the predominant source of dust mite allergens, which provoke allergic diseases, such as rhinitis, asthma and eczema. Of the 30 allergen groups produced by D. farinae, the Der f 3, Der f 6 and Der f 9 allergens are all trypsin‑associated proteins, however little else is currently known about them. The present study used in silico tools to compare the amino acid sequences, and predict the secondary and tertiary structures of Der f 3, Der f 6 and Der f 9 allergens. Protein sequence alignment detected ~46% identity between Der f 3, Der f 6 and Der f 9. Furthermore, each protein was shown to contain three active sites and two highly conserved trypsin functional domains. Predictions of the secondary and tertiary structure identified α‑helices, β‑sheets and random coils. The active sites of the three proteins appeared to fold onto each other in a three‑dimensional model, constituting the active site of the enzyme. Epitope analysis demonstrated that Der f 3, Der f 6 and Der f 9 have 4‑5 potential epitopes located in random coils, and the epitope sequences of Der f 3, Der f 6 and Der f 9 were shown to overlap in two domains (at amino acids 83‑87 and 179‑180); however the residues in these two domains were not identical. The present study aimed to conduct a biochemical and genetic analysis of these three allergens, and to potentially contribute to the development of vaccines for allergen‑specific immunotherapy.
Collapse
Affiliation(s)
- Feixiang Teng
- Department of Laboratory Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224006, P.R. China
| | - Lili Yu
- Department of Laboratory Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224006, P.R. China
| | - Yonghua Bian
- Department of Laboratory Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224006, P.R. China
| | - Jinxia Sun
- Department of Laboratory Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224006, P.R. China
| | - Juansong Wu
- Department of Laboratory Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224006, P.R. China
| | - Cunbao Ling
- Department of Laboratory Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224006, P.R. China
| | - Li Yang
- Department of Laboratory Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224006, P.R. China
| | - Yungang Wang
- Department of Laboratory Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224006, P.R. China
| | - Yubao Cui
- Department of Laboratory Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224006, P.R. China
| |
Collapse
|
11
|
Gadermaier G, Hauser M, Ferreira F. Allergens of weed pollen: an overview on recombinant and natural molecules. Methods 2013; 66:55-66. [PMID: 23806644 DOI: 10.1016/j.ymeth.2013.06.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 06/13/2013] [Indexed: 12/16/2022] Open
Abstract
Weeds represent a botanically unrelated group of plants that usually lack commercial or aesthetical value. Pollen of allergenic weeds are able to trigger type I reactions in allergic patients and can be found in the plant families of Asteraceae, Amaranthaceae, Plantaginaceae, Urticaceae, and Euphorbiaceae. To date, 34 weed pollen allergens are listed in the IUIS allergen nomenclature database, which were physicochemically and immunologically characterized to varying degrees. Relevant allergens of weeds belong to the pectate lyase family, defensin-like family, Ole e 1-like family, non-specific lipid transfer protein 1 family and the pan-allergens profilin and polcalcins. This review provides an overview on weed pollen allergens primarily focusing on the molecular level. In particular, the characteristics and properties of purified recombinant allergens and hypoallergenic derivatives are described and their potential use in diagnosis and therapy of weed pollen allergy is discussed.
Collapse
Affiliation(s)
- Gabriele Gadermaier
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria.
| | - Michael Hauser
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Fatima Ferreira
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
12
|
Li C, Jiang Y, Guo W, Liu Z. Production of a chimeric allergen derived from the major allergen group 1 of house dust mite species in Nicotiana benthamiana. Hum Immunol 2013; 74:531-7. [PMID: 23354320 DOI: 10.1016/j.humimm.2013.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/06/2013] [Accepted: 01/14/2013] [Indexed: 11/23/2022]
Abstract
Plants are widely accepted as a general platform for the large-scale production of recombinant proteins, which has been demonstrated by the successful expression of various exogenous proteins. Using plants as a bioreactor for mass production of target proteins for vaccines is thought to show the most potential. This study explores whether a chimeric allergen R8, derived from the major allergen group 1 of house dust mites species (Dermatophagoides farinae and Dermatophagoides pteronyssinus), is expressed in tobacco. The highly efficient and useful Tobacco mosaic virus RNA-based overexpression (TRBO) vector was used to investigate expression of the R8 molecule in tobacco by agroinfection. Presence of R8 was detected using SDS-PAGE and Western blotting. Purified allergens were characterized using IgE-binding activity assay and allergen-specific immunotherapy (ASIT) in murine asthmatic models. The recombinant R8 was successfully expressed in tobacco leaves. The pro-peptide was observed in the herbaceous leaf extracts. This protein exhibits properties similar to the parental allergen ProDer f 1 expressed in Escherichia coli or tobacco with respect to IgE immunoreactivity. R8 also rectifies imbalance of TH1/TH2 cells. An herbaceous plant expression system model allows mass production of R8, which might be used in the future for diagnosis of asthma or production of a candidate vaccine for allergen-specific immunotherapy of asthma.
Collapse
Affiliation(s)
- Chaopin Li
- Department of Medical Parasitology, Wannan Medical College, Wuhu, Anhui, China.
| | | | | | | |
Collapse
|
13
|
Saroja C, Lakshmi P, Bhaskaran S. Recent trends in vaccine delivery systems: A review. Int J Pharm Investig 2012; 1:64-74. [PMID: 23071924 PMCID: PMC3465129 DOI: 10.4103/2230-973x.82384] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/14/2011] [Accepted: 02/21/2011] [Indexed: 12/17/2022] Open
Abstract
Vaccines are the preparations given to patients to evoke immune responses leading to the production of antibodies (humoral) or cell-mediated responses that will combat infectious agents or noninfectious conditions such as malignancies. Alarming safety profile of live vaccines, weak immunogenicity of sub-unit vaccines and immunization, failure due to poor patient compliance to booster doses which should potentiate prime doses are few strong reasons, which necessitated the development of new generation of prophylactic and therapeutic vaccines to promote effective immunization. Attempts are being made to deliver vaccines through carriers as they control the spatial and temporal presentation of antigens to immune system thus leading to their sustained release and targeting. Hence, lower doses of weak immunogens can be effectively directed to stimulate immune responses and eliminate the need for the administration of prime and booster doses as a part of conventional vaccination regimen. This paper reviews carrier systems such as liposomes, microspheres, nanoparticles, dendrimers, micellar systems, ISCOMs, plant-derived viruses which are now being investigated and developed as vaccine delivery systems. This paper also describes various aspects of "needle-free technologies" used to administer the vaccine delivery systems through different routes into the human body.
Collapse
Affiliation(s)
- Ch Saroja
- Department of Pharmaceutics, G. Pulla Reddy College of Pharmacy, Hyderabad, Andhra Pradesh, India
| | | | | |
Collapse
|
14
|
Siegert M, Pertl-Obermeyer H, Gadermaier G, Ferreira F, Obermeyer G. Expression of the major mugwort pollen allergen Art v 1 in tobacco plants and cell cultures: problems and perspectives for allergen production in plants. PLANT CELL REPORTS 2012; 31:561-71. [PMID: 22159963 PMCID: PMC3325494 DOI: 10.1007/s00299-011-1199-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/11/2011] [Accepted: 11/26/2011] [Indexed: 05/31/2023]
Abstract
An economic and cheap production of large amounts of recombinant allergenic proteins might become a prerequisite for the common use of microarray-based diagnostic allergy assays which allow a component-specific diagnosis. A molecular pharming strategy was applied to express the major allergen of Artemisia vulgaris pollen, Art v 1, in tobacco plants and tobacco cell cultures. The original Art v 1 with its endogenous signal peptide which directs Art v 1 to the secretory pathway, was expressed in transiently transformed tobacco leaves but was lost in stable transformed tobacco plants during the alternation of generations. Using a light-regulated promoter and "hiding" the recombinant Art v 1 in the ER succeeded in expression of Art v 1 over three generations of tobacco plants and in cell cultures generated from stable transformed plants. However, the amounts of the recombinant allergen were sufficient for analysis but not high enough to allow an economic production. Although molecular pharming has been shown to work well for the production of non-plant therapeutic proteins, it might be less efficient for closely related plant proteins.
Collapse
Affiliation(s)
- Marc Siegert
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Heidi Pertl-Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Gabriele Gadermaier
- Christian Doppler Laboratory for Allergy Diagnostics and Therapy, Department of Molecular Biology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Fatima Ferreira
- Christian Doppler Laboratory for Allergy Diagnostics and Therapy, Department of Molecular Biology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Gerhard Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| |
Collapse
|