1
|
Chang Y, Fang Y, Liu J, Ye T, Li X, Tu H, Ye Y, Wang Y, Xiong L. Stress-induced nuclear translocation of ONAC023 improves drought and heat tolerance through multiple processes in rice. Nat Commun 2024; 15:5877. [PMID: 38997294 PMCID: PMC11245485 DOI: 10.1038/s41467-024-50229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Drought and heat are major abiotic stresses frequently coinciding to threaten rice production. Despite hundreds of stress-related genes being identified, only a few have been confirmed to confer resistance to multiple stresses in crops. Here we report ONAC023, a hub stress regulator that integrates the regulations of both drought and heat tolerance in rice. ONAC023 positively regulates drought and heat tolerance at both seedling and reproductive stages. Notably, the functioning of ONAC023 is obliterated without stress treatment and can be triggered by drought and heat stresses at two layers. The expression of ONAC023 is induced in response to stress stimuli. We show that overexpressed ONAC23 is translocated to the nucleus under stress and evidence from protoplasts suggests that the dephosphorylation of the remorin protein OSREM1.5 can promote this translocation. Under drought or heat stress, the nuclear ONAC023 can target and promote the expression of diverse genes, such as OsPIP2;7, PGL3, OsFKBP20-1b, and OsSF3B1, which are involved in various processes including water transport, reactive oxygen species homeostasis, and alternative splicing. These results manifest that ONAC023 is fine-tuned to positively regulate drought and heat tolerance through the integration of multiple stress-responsive processes. Our findings provide not only an underlying connection between drought and heat responses, but also a promising candidate for engineering multi-stress-resilient rice.
Collapse
Affiliation(s)
- Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Jiahan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tiantian Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Liu Y, Wu P, Li B, Wang W, Zhu B. Phosphoribosyltransferases and Their Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2023; 24:11828. [PMID: 37511586 PMCID: PMC10380321 DOI: 10.3390/ijms241411828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation is a widespread glycosyl modification that regulates gene expression and metabolite bioactivity in all life processes of plants. Phosphoribosylation is a special glycosyl modification catalyzed by phosphoribosyltransferase (PRTase), which functions as a key step in the biosynthesis pathway of purine and pyrimidine nucleotides, histidine, tryptophan, and coenzyme NAD(P)+ to control the production of these essential metabolites. Studies in the past decades have reported that PRTases are indispensable for plant survival and thriving, whereas the complicated physiological role of PRTases in plant life and their crosstalk is not well understood. Here, we comprehensively overview and critically discuss the recent findings on PRTases, including their classification, as well as the function and crosstalk in regulating plant development, abiotic stress response, and the balance of growth and stress responses. This review aims to increase the understanding of the role of plant PRTase and also contribute to future research on the trade-off between plant growth and stress response.
Collapse
Affiliation(s)
- Ye Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peiwen Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bowen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weihao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Si CC, Liang QG, Liu HJ, Wang N, Kumar S, Chen YL, Zhu GP. Response Mechanism of Endogenous Hormones of Potential Storage Root to Phosphorus and Its Relationship With Yield and Appearance Quality of Sweetpotato. FRONTIERS IN PLANT SCIENCE 2022; 13:872422. [PMID: 35677246 PMCID: PMC9168888 DOI: 10.3389/fpls.2022.872422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Field and pot experiments were conducted to explore the response mechanism of endogenous hormones of potential storage root to phosphorus and its relationship with yield and appearance quality of sweetpotato using five different rates of phosphorus addition. Application of adequate amounts of phosphorus (P2 treatment, 112 kg of P2O5 ha-1 in field experiment or 0.04 g of P2O5 kg-1 in pot experiment) improved the yield and the appearance quality of sweetpotato when compared to the control treatment. This observation can be attributed to the fact that P2 treatment significantly increased the expression of Ibkn1 and APRT genes and the concentration of ZR from 20 to 40 days after planting, but the results were the opposite at 10 days after planting. In addition, an increase in the expression of SRD1, NIT4, IbMADS1, and OPR3 and the concentrations of IAA and JA from day 10 to day 40 after planting were observed. Furthermore, the expression of GA3oX4 and the concentration of GA3 decreased significantly from 20 to 30 days of planting and significantly increased after 40 days of planting. Moreover, a significant decrease in the expression of AAO and concentration of ABA was observed from 10 to 30 days after planting, and a significant increase was observed after 40 days of planting. The results show that P2 treatment promoted root development, particularly significantly increased the number of roots and potential storage roots. P2 treatment significantly increased the diameter, weight, and number of storage roots at 40 days after planting. Finally, proper phosphorus application (112 kg of P2O5 ha-1) increased the yield (enhanced from 18.99 to 25.93%) by increasing the number of storage roots per plant and improving the appearance quality by increasing the length/diameter ratio and uniformity of storage root weight.
Collapse
Affiliation(s)
- Cheng-cheng Si
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Qing-gan Liang
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Hong-Juan Liu
- State Key Laboratory of Crop Biology, Agricultural College, Shandong Agricultural University, Tai’an, China
| | - Ning Wang
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Sunjeet Kumar
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yan-li Chen
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Guo-peng Zhu
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
4
|
Men Y, Li JR, Shen HL, Yang YM, Fan ST, Li K, Guo YS, Lin H, Liu ZD, Guo XW. VaAPRT3 Gene is Associated With Sex Determination in Vitis amurensis. Front Genet 2022; 12:727260. [PMID: 35003203 PMCID: PMC8733387 DOI: 10.3389/fgene.2021.727260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
In the past decade, progress has been made in sex determination mechanism in Vitis. However, genes responsible for sexual differentiation and its mechanism in V. amurensis remain unknown. Here, we identify a sex determination candidate gene coding adenine phosphoribosyl transferase 3 (VaAPRT3) in V. amurensis. Cloning and sequencing of the VaAPRT3 gene allowed us to develop a molecular marker able to discriminate female individuals from males or hermaphrodites based on a 22-bp InDel. Gene expression and endogenous cytokinin content analysis revealed that the VaAPRT3 gene is involved in sex determination or, to be precise, in female organ differentiation, through regulating cytokinin metabolism in V. amurensis. This study enlarged the understanding of sex determination mechanism in the genus Vitis, and the sex marker could be used as a helpful tool for sexual identification in breeding programs as well as in investigation and collection of V. amurensis germplasms.
Collapse
Affiliation(s)
- Yan Men
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ji-Rui Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hai-Lin Shen
- Institute of Pomology, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Yi-Ming Yang
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shu-Tian Fan
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yin-Shan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhen-Dong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiu-Wu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
5
|
Wang H, Qi X, Chen S, Feng J, Chen H, Qin Z, Deng Y. An integrated transcriptomic and proteomic approach to dynamically study the mechanism of pollen-pistil interactions during jasmine crossing. J Proteomics 2021; 249:104380. [PMID: 34517123 DOI: 10.1016/j.jprot.2021.104380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023]
Abstract
Jasmine (Jasminum sambac Aiton, Oleaceae) flowers are widely consumed in many countries for their tea-making, medicinal and ornamental properties. To improve the quality and yield of flowers, it is very important to carry out cross-breeding between different petal types of jasmine. However, because of the difficulty of sexual reproduction, there is no report on the success of jasmine crosses. In this paper, single- and double-petal jasmine plants were crossed artificially. The stigmas of single-petal plants post pollination, including those at 0 h after pollination (CK), 1 h after pollination (T1) and 6 h after pollination (T2), were sequenced by transcriptomic combined with proteomic analyses. A total of 178,098 gene products were assembled. Simultaneously, a total of 2337 protein species were identified. Some regulatory gene products and functional protein species were identified that may be involved in the process of pollen-pistil interactions. These findings suggest that the identified differentially expressed gene products and differentially accumulated protein species may play vital roles in jasmine plants in response to pollen-pistil interactions, providing important genetic resources for further functional dissection of the molecular mechanisms of these interactions. SIGNIFICANCE: These results have important scientific significance to take effective measures to overcome pre-fertilization barriers and to guide the cross breeding of jasmine. Further, they can also be used for reference in other plant breeding with the same fertilization barriers.
Collapse
Affiliation(s)
- Huadi Wang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Ziyi Qin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210014, Jiangsu, China
| | - Yanming Deng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
6
|
Abdalla EA, Id‐Lahoucine S, Cánovas A, Casellas J, Schenkel FS, Wood BJ, Baes CF. Discovering lethal alleles across the turkey genome using a transmission ratio distortion approach. Anim Genet 2020; 51:876-889. [PMID: 33006154 PMCID: PMC7702127 DOI: 10.1111/age.13003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 12/23/2022]
Abstract
Deviation from Mendelian inheritance expectations (transmission ratio distortion, TRD) has been observed in several species, including the mouse and humans. In this study, TRD was characterized in the turkey genome using both allelic (specific- and unspecific-parent TRD) and genotypic (additive- and dominance-TRD) parameterizations within a Bayesian framework. In this study, we evaluated TRD for 23 243 genotyped Turkeys across 56 393 autosomal SNPs. The analyses included 500 sires, 2013 dams and 11 047 offspring (trios). Three different haplotype sliding windows of 4, 10 and 20 SNPs were used across the autosomal chromosomes. Based on the genotypic parameterizations, 14 haplotypes showed additive and dominance TRD effects highlighting regions with a recessive TRD pattern. In contrast, the allelic model uncovered 12 haplotype alleles with the allelic TRD pattern which showed an underrepresentation of heterozygous offspring in addition to the absence of homozygous animals. For regions with the allelic pattern, only one particular region showed a parent-specific TRD where the penetrance was high via the dam, but low via the sire. The gene set analysis uncovered several gene ontology functional terms, Reactome pathways and several Medical Subject Headings that showed significant enrichment of genes associated with TRD. Many of these gene ontology functional terms (e.g. mitotic spindle assembly checkpoint, DRM complex and Aneuploidy), Reactome pathways (e.g. Mismatch repair) and Medical Subject Headings (e.g. Adenosine monophosphate) are known to be related to fertility, embryo development and lethality. The results of this study revealed potential novel candidate lethal haplotypes, functional terms and pathways that may enhance breeding programs in Turkeys through reducing mortality and improving reproduction rate.
Collapse
Affiliation(s)
- E. A. Abdalla
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
| | - S. Id‐Lahoucine
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
| | - A. Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
| | - J. Casellas
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterra08193Spain
| | - F. S. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
| | - B. J. Wood
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
- Hybrid TurkeysC‐650 Riverbend Drive, Suite CKitchenerONN2K 3S2Canada
- School of Veterinary ScienceUniversity of QueenslandGattonQld4343Australia
| | - C. F. Baes
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
- Institute of Genetics, Vetsuisse FacultyUniversity of BernBern3001Switzerland
| |
Collapse
|
7
|
Systems Metabolic Alteration in a Semi-Dwarf Rice Mutant Induced by OsCYP96B4 Gene Mutation. Int J Mol Sci 2020; 21:ijms21061924. [PMID: 32168953 PMCID: PMC7139402 DOI: 10.3390/ijms21061924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
Dwarfism and semi-dwarfism are among the most valuable agronomic traits in crop breeding, which were adopted by the “Green Revolution”. Previously, we reported a novel semi-dwarf rice mutant (oscyp96b4) derived from the insertion of a single copy of Dissociator (Ds) transposon into the gene OsCYP96B4. However, the systems metabolic effect of the mutation is not well understood, which is important for understanding the gene function and developing new semi-dwarf mutants. Here, the metabolic phenotypes in the semi-dwarf mutant (M) and ectopic expression (ECE) rice line were compared to the wild-type (WT) rice, by using nuclear magnetic resonance (NMR) metabolomics and quantitative real-time polymerase chain reaction (qRT-PCR). Compared with WT, ECE of the OsCYP96B4 gene resulted in significant increase of γ-aminobutyrate (GABA), glutamine, and alanine, but significant decrease of glutamate, aromatic and branched-chain amino acids, and some other amino acids. The ECE caused significant increase of monosaccharides (glucose, fructose), but significant decrease of disaccharide (sucrose); induced significant changes of metabolites involved in choline metabolism (phosphocholine, ethanolamine) and nucleotide metabolism (adenosine, adenosine monophosphate, uridine). These metabolic profile alterations were accompanied with changes in the gene expression levels of some related enzymes, involved in GABA shunt, glutamate and glutamine metabolism, choline metabolism, sucrose metabolism, glycolysis/gluconeogenesis pathway, tricarboxylic acid (TCA) cycle, nucleotide metabolism, and shikimate-mediated secondary metabolism. The semi-dwarf mutant showed corresponding but less pronounced changes, especially in the gene expression levels. It indicates that OsCYP96B4 gene mutation in rice causes significant alteration in amino acid metabolism, carbohydrate metabolism, nucleotide metabolism, and shikimate-mediated secondary metabolism. The present study will provide essential information for the OsCYP96B4 gene function analysis and may serve as valuable reference data for the development of new semi-dwarf mutants.
Collapse
|
8
|
Ashihara H, Stasolla C, Fujimura T, Crozier A. Purine salvage in plants. PHYTOCHEMISTRY 2018; 147:89-124. [PMID: 29306799 DOI: 10.1016/j.phytochem.2017.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 05/04/2023]
Abstract
Purine bases and nucleosides are produced by turnover of nucleotides and nucleic acids as well as from some cellular metabolic pathways. Adenosine released from the S-adenosyl-L-methionine cycle is linked to many methyltransferase reactions, such as the biosynthesis of caffeine and glycine betaine. Adenine is produced by the methionine cycles, which is related to other biosynthesis pathways, such those for the production of ethylene, nicotianamine and polyamines. These purine compounds are recycled for nucleotide biosynthesis by so-called "salvage pathways". However, the salvage pathways are not merely supplementary routes for nucleotide biosynthesis, but have essential functions in many plant processes. In plants, the major salvage enzymes are adenine phosphoribosyltransferase (EC 2.4.2.7) and adenosine kinase (EC 2.7.1.20). AMP produced by these enzymes is converted to ATP and utilised as an energy source as well as for nucleic acid synthesis. Hypoxanthine, guanine, inosine and guanosine are salvaged to IMP and GMP by hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) and inosine/guanosine kinase (EC 2.7.1.73). In contrast to de novo purine nucleotide biosynthesis, synthesis by the salvage pathways is extremely favourable, energetically, for cells. In addition, operation of the salvage pathway reduces the intracellular levels of purine bases and nucleosides which inhibit other metabolic reactions. The purine salvage enzymes also catalyse the respective formation of cytokinin ribotides, from cytokinin bases, and cytokinin ribosides. Since cytokinin bases are the active form of cytokinin hormones, these enzymes act to maintain homeostasis of cellular cytokinin bioactivity. This article summarises current knowledge of purine salvage pathways and their possible function in plants and purine salvage activities associated with various physiological phenomena are reviewed.
Collapse
Affiliation(s)
- Hiroshi Ashihara
- Department of Biology, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610, Japan.
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Tatsuhito Fujimura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, CA, 95616-5270, USA
| |
Collapse
|
9
|
Pacheco CM, Pestana-Calsa MC, Gozzo FC, Mansur Custodio Nogueira RJ, Menossi M, Calsa T. Differentially delayed root proteome responses to salt stress in sugar cane varieties. J Proteome Res 2013; 12:5681-95. [PMID: 24251627 DOI: 10.1021/pr400654a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soil salinity is a limiting factor to sugar cane crop development, although in general plants present variable mechanisms of tolerance to salinity stress. The molecular basis underlying these mechanisms can be inferred by using proteomic analysis. Thus, the objective of this work was to identify differentially expressed proteins in sugar cane plants submitted to salinity stress. For that, a greenhouse experiment was established with four sugar cane varieties and two salt conditions, 0 mM (control) and 200 mM NaCl. Physiological and proteomics analyses were performed after 2 and 72 h of stress induction by salt. Distinct physiological responses to salinity stress were observed in the varieties and linked to tolerance mechanisms. In proteomic analysis, the roots soluble protein fraction was extracted, quantified, and analyzed through bidimensional electrophoresis. Gel images analyses were done computationally, where in each contrast only one variable was considered (salinity condition or variety). Differential spots were excised, digested by trypsin, and identified via mass spectrometry. The tolerant variety RB867515 showed the highest accumulation of proteins involved in growth, development, carbohydrate and energy metabolism, reactive oxygen species metabolization, protein protection, and membrane stabilization after 2 h of stress. On the other hand, the presence of these proteins in the sensitive variety was verified only in stress treatment after 72 h. These data indicate that these stress responses pathways play a role in the tolerance to salinity in sugar cane, and their effectiveness for phenotypical tolerance depends on early stress detection and activation of the coding genes expression.
Collapse
Affiliation(s)
- Cinthya Mirella Pacheco
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Center for Biological Sciences, Universidade Federal de Pernambuco , Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Fechter I, Hausmann L, Daum M, Rosleff Sörensen T, Viehöver P, Weisshaar B, Töpfer R. Candidate genes within a 143 kb region of the flower sex locus in Vitis. Mol Genet Genomics 2012; 287:247-59. [DOI: 10.1007/s00438-012-0674-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/05/2012] [Indexed: 12/18/2022]
|
11
|
Zhou YF, Zhang XY, Xue QZ. Fine mapping and candidate gene prediction of the photoperiod and thermo-sensitive genic male sterile gene pms1(t) in rice. J Zhejiang Univ Sci B 2011; 12:436-47. [PMID: 21634036 DOI: 10.1631/jzus.b1000306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pei'ai64S, an indica sterile variety with photoperiod and thermo-sensitive genic male sterile (PTGMS) genes, has been widely exploited for commercial seed production for "two-line" hybrid rice in China. One PTGMS gene from Pei'ai64S, pms1(t), was mapped by a strategy of bulked-extreme and recessive-class approach with simple sequence repeat (SSR) and insert and deletion (In-Del) markers. Using linkage analysis for the F(2) mapping population consisting of 320 completely male sterile individuals derived from a cross between Pei'ai64S and 93-11 (indica restorer) lines, the pms1(t) gene was delimited to the region between the RM21242 (0.2 cM) and YF11 (0.2 cM) markers on the short arm of chromosome 7. The interval containing the pms1(t) locus, which was co-segregated with RM6776, is a 101.1 kb region based on the Nipponbare rice genome. Fourteen predicted loci were found in this region by the Institute for Genomic Research (TIGR) Genomic Annotation. Based on the function of the locus LOC_Os07g12130 by bioinformatics analysis, it is predicted to encode a protein containing a Myb-like DNA-binding domain, and may process the transcript with thermosensory response. The reverse transcription-polymerase chain reaction (RT-PCR) results revealed that the mRNA levels of LOC_Os07g12130 were altered in different photoperiod and temperature treatments. Thus, the LOC_Os07g12130 locus is the most likely candidate gene for pms1(t). These results may facilitate not only using the molecular marker assisted selection of PTGMS genes, but also cloning of the pms1(t) gene itself.
Collapse
Affiliation(s)
- Yuan-fei Zhou
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|
12
|
Wu S, Yu Z, Wang F, Li W, Yang Q, Ye C, Sun Y, Jin D, Zhao J, Wang B. Identification and characterization of a novel adenine phosphoribosyltransferase gene (ZmAPT2) from maize (Zea mays L.). ACTA ACUST UNITED AC 2008; 19:357-65. [PMID: 18464041 DOI: 10.1080/10425170701606235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Adenine phosphoribosyltransferase (APRT) is the key enzyme that converts adenine to adenosine monophosphate (AMP) in the purine salvage pathway. It was found that several different forms of APRT gene exist in plants, but no APRT gene in maize has been reported up to now. In this study, a novel maize APRT gene was cloned and characterized through a combination of bioinformatic, RT-PCR and RACE strategies. The full length of APRT cDNA sequence is 1202 nucleotides, with an ORF encoding 214 amino acid residues. Alignment of the deduced protein with that of other plant APRT genes indicates that the new gene is the form 2 of maize APRT, thus it was named ZmAPT2. Through basic local alignment search tool, search in the genomic survey sequence database of MaizeGDB, the putative genomic sequence of ZmAPT2 was obtained. Comparison of the cDNA and genomic sequence of the ZmAPT2 gene revealed that it contained seven exons and six introns. The locations of the introns within the maize ZmAPT2 coding region were consistent with those in the previously isolated APRTs of arabidopsis and rice. RT-PCR analysis showed that ZmAPRT was constitutively expressing in different organs under high temperature and salt stresses. Southern blot analysis indicated that at least three APRT genes existed in maize genome. These results confirmed that the novel maize ZmAPT2 gene was truly identified, and its potential role in maize growth and development was discussed.
Collapse
Affiliation(s)
- Suowei Wu
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dwivedi S, Perotti E, Ortiz R. Towards molecular breeding of reproductive traits in cereal crops. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:529-559. [PMID: 18507792 DOI: 10.1111/j.1467-7652.2008.00343.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The transition from vegetative to reproductive phase, flowering per se, floral organ development, panicle structure and morphology, meiosis, pollination and fertilization, cytoplasmic male sterility (CMS) and fertility restoration, and grain development are the main reproductive traits. Unlocking their genetic insights will enable plant breeders to manipulate these traits in cereal germplasm enhancement. Multiple genes or quantitative trait loci (QTLs) affecting flowering (phase transition, photoperiod and vernalization, flowering per se), panicle morphology and grain development have been cloned, and gene expression research has provided new information about the nature of complex genetic networks involved in the expression of these traits. Molecular biology is also facilitating the identification of diverse CMS sources in hybrid breeding. Few Rf (fertility restorer) genes have been cloned in maize, rice and sorghum. DNA markers are now used to assess the genetic purity of hybrids and their parental lines, and to pyramid Rf or tms (thermosensitive male sterility) genes in rice. Transgene(s) can be used to create de novo CMS trait in cereals. The understanding of reproductive biology facilitated by functional genomics will allow a better manipulation of genes by crop breeders and their potential use across species through genetic transformation.
Collapse
Affiliation(s)
- Sangam Dwivedi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.
| | | | | |
Collapse
|