1
|
Zhao C, Ries C, Du Y, Zhang J, Sakimura K, Itoi K, Deussing JM. Differential CRH expression level determines efficiency of Cre- and Flp-dependent recombination. Front Neurosci 2023; 17:1163462. [PMID: 37599997 PMCID: PMC10434532 DOI: 10.3389/fnins.2023.1163462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Corticotropin-releasing hormone expressing (CRH+) neurons are distributed throughout the brain and play a crucial role in shaping the stress responses. Mouse models expressing site-specific recombinases (SSRs) or reporter genes are important tools providing genetic access to defined cell types and have been widely used to address CRH+ neurons and connected brain circuits. Here, we investigated a recently generated CRH-FlpO driver line expanding the CRH system-related tool box. We directly compared it to a previously established and widely used CRH-Cre line with respect to the FlpO expression pattern and recombination efficiency. In the brain, FlpO mRNA distribution fully recapitulates the expression pattern of endogenous Crh. Combining both Crh locus driven SSRs driver lines with appropriate reporters revealed an overall coherence of respective spatial patterns of reporter gene activation validating CRH-FlpO mice as a valuable tool complementing existing CRH-Cre and reporter lines. However, a substantially lower number of reporter-expressing neurons was discerned in CRH-FlpO mice. Using an additional CRH reporter mouse line (CRH-Venus) and a mouse line allowing for conversion of Cre into FlpO activity (CAG-LSL-FlpO) in combination with intersectional and subtractive mouse genetic approaches, we were able to demonstrate that the reduced number of tdTomato reporter expressing CRH+ neurons can be ascribed to the lower recombination efficiency of FlpO compared to Cre recombinase. This discrepancy particularly manifests under conditions of low CRH expression and can be overcome by utilizing homozygous CRH-FlpO mice. These findings have direct experimental implications which have to be carefully considered when targeting CRH+ neurons using CRH-FlpO mice. However, the lower FlpO-dependent recombination efficiency also entails advantages as it provides a broader dynamic range of expression allowing for the visualization of cells showing stress-induced CRH expression which is not detectable in highly sensitive CRH-Cre mice as Cre-mediated recombination has largely been completed in all cells generally possessing the capacity to express CRH. These findings underscore the importance of a comprehensive evaluation of novel SSR driver lines prior to their application.
Collapse
Affiliation(s)
- Chen Zhao
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Clemens Ries
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ying Du
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jingwei Zhang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Keiichi Itoi
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
2
|
Peperstraete K, Baes M, Swinkels D. Unexpected failure of rod bipolar cell targeting using L7Cre-2 mice. Exp Eye Res 2023; 228:109406. [PMID: 36740160 DOI: 10.1016/j.exer.2023.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Utilizing cell type-specific knockout mice has been an excellent tool for decades not only to explore the role of a gene in a specific cell, but also to unravel the underlying mechanism in diseases. To investigate the mechanistic association between dysfunction of the peroxisomal protein multifunctional protein 2 (MFP2) and retinopathy, we generated and phenotyped multiple transgenic mouse models with global or cell type-specific MFP2 deletion. These studies pointed to a potential role of MFP2 specifically in rod bipolar cells. To explore this, we aimed to create rod bipolar cell specific knockout mice of Mfp2 by crossing Mfp2L/L mice with L7Cre-2 mice (also known as PCP2Cre), generating L7-Mfp2-/- mice. L7Cre-2 mice express Cre recombinase under the control of the L7 promoter, which is believed to be exclusively expressed in rod bipolar cells and cerebellar Purkinje cells. Unexpectedly, only sporadic Cre activity was observed in the rod bipolar cells of L7-Mfp2-/- mice, despite efficient Cre recombination in cerebellar Purkinje cells. Moreover, a variable fraction of photoreceptors was targeted, which does not correspond with the supposed specificity of L7Cre-2 mice. These observations indicate that L7Cre-2 mice can be exploited to manipulate Purkinje cells in the cerebellum, whereas they cannot be used to generate rod bipolar cell specific knockout mice. For this aim, we suggest utilizing an independently generated mouse line named BAC-L7-IRES-Cre.
Collapse
Affiliation(s)
- Kaat Peperstraete
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| | - Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Legrand JMD, Hobbs RM. Defining Gene Function in Spermatogonial Stem Cells Through Conditional Knockout Approaches. Methods Mol Biol 2023; 2656:261-307. [PMID: 37249877 DOI: 10.1007/978-1-0716-3139-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian male fertility is maintained throughout life by a population of self-renewing mitotic germ cells known as spermatogonial stem cells (SSCs). Much of our current understanding regarding the molecular mechanisms underlying SSC activity is derived from studies using conditional knockout mouse models. Here, we provide a guide for the selection and use of mouse strains to develop conditional knockout models for the study of SSCs, as well as their precursors and differentiation-committed progeny. We describe Cre recombinase-expressing strains, breeding strategies to generate experimental groups, and treatment regimens for inducible knockout models and provide advice for verifying and improving conditional knockout efficiency. This resource can be beneficial to those aiming to develop conditional knockout models for the study of SSC development and postnatal function.
Collapse
Affiliation(s)
- Julien M D Legrand
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
4
|
Mayr D, Preishuber-Pflügl J, Koller A, Brunner SM, Runge C, Ladek AM, Rivera FJ, Reitsamer HA, Trost A. Characterization of the two inducible Cre recombinase-based mouse models NG2- CreER TM and PDGFRb-P2A-CreER T2 for pericyte labeling in the retina. Curr Eye Res 2021; 47:590-596. [PMID: 34758271 DOI: 10.1080/02713683.2021.2002910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE/AIM OF THE STUDY Pericytes (PCs), located abluminal of endothelial cells on capillaries, are essential for vascular development and stability. They display a heterogeneous morphology depending on organ localization, differentiation state and function. Consequently, PCs show a diverse gene expression profile, impeding the usage of a unique PC marker and therefore the distinct identification of PCs. Inducible reporter mouse models represent an important tool for investigating the fate of PCs under physiological and pathophysiological conditions. PC-specific expression efficiency of the fluorescence reporter tdTomato following tamoxifen induction was analyzed and compared in two inducible Cre recombinase-expressing mouse models under control of the NG2 and PDGFRb promotor. MATERIAL AND METHODS The NG2-CreERTM-tdTomato and the PDGFRb-P2A-CreERT2-tdTomato mice were treated with tamoxifen at three defining time points of retinal vascular development: postnatal days (P)5, P10/11/12 and P48/49/50/51. TdTomato reporter induction efficiency was determined by analyzing retinal whole mounts utilizing confocal microscopy, using the antibodies Anti-neural/glial antigen 2 (PCs), Anti-Collagen IV (basement membrane) and Anti-Glutamine Synthetase (Müller glial cells). RESULTS Tamoxifen induction at the three different time points resulted in PC-specific expression of tdTomato in both reporter models. In the NG2-CreERTM-tdTomato mouse, the induction efficiency ranged from 21.9 to 35.5%. In the PDGFRb-P2A-CreERT2-tdTomato mouse an induction efficiency between 78.9 and 94.1% was achieved. TdTomato expression in the retina was restricted to PCs and vascular smooth muscle cells in the NG2-CreERTM-tdTomato mouse, however, in the PDGFRb-P2A-CreERT2-tdTomato mouse, tdTomato was also expressed in Müller glial cells. CONCLUSION Both reporter mouse models represent promising tools for fate mapping studies of PCs. While the NG2-CreERTM-tdTomato mouse reveals very specific labeling of PCs in the retina, its induction efficiency is lower compared to the PDGFRb-P2A-CreERT2-tdTomato mouse. Although the latter revealed a high percentage of tdTomato-positive PCs in the retina, additional labeling of Müller cells potentially hampers analysis of reporter-positive PCs.
Collapse
Affiliation(s)
- Daniela Mayr
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Julia Preishuber-Pflügl
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Andreas Koller
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Susanne M Brunner
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Christian Runge
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Anja-Maria Ladek
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.,Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Herbert A Reitsamer
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Austria.,Director of the Research Program for Experimental Ophthalmology and Glaucoma Research
| | - Andrea Trost
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Austria
| |
Collapse
|
5
|
Thomas PA, Schafler ED, Ruff SE, Voisin M, Ha S, Logan SK. UXT in Sertoli cells is required for blood-testis barrier integrity†. Biol Reprod 2021; 103:880-891. [PMID: 32678429 DOI: 10.1093/biolre/ioaa121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/12/2020] [Accepted: 07/16/2020] [Indexed: 01/01/2023] Open
Abstract
Spermatogenesis is a complex process that establishes male fertility and involves proper communication between the germline (spermatozoa) and the somatic tissue (Sertoli cells). Many factors that are important for spermatozoa production are also required for Sertoli cell function. Recently, we showed that the transcriptional cofactor ubiquitously expressed transcript (UXT) encodes a protein that is essential in germ cells for spermatogenesis and fertility. However, the role of UXT within Sertoli cells and how it affects Sertoli cell function was still unclear. Here we describe a novel role for UXT in the Sertoli cell's ability to support spermatogenesis. We find that the conditional deletion of Uxt in Sertoli cells results in smaller testis size and weight, which coincided with a loss of germ cells in a subset of seminiferous tubules. In addition, the deletion of Uxt has no impact on Sertoli cell abundance or maturity, as they express markers of mature Sertoli cells. Gene expression analysis reveals that the deletion of Uxt in Sertoli cells reduces the transcription of genes involved in the tight junctions of the blood-testis barrier (BTB). Furthermore, tracer experiments and electron microscopy reveal that the BTB is permeable in UXT KO animals. These findings broaden our understanding of UXT's role in Sertoli cells and its contribution to the structural integrity of the BTB.
Collapse
Affiliation(s)
- Phillip A Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Eric D Schafler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Sophie E Ruff
- Department of Urology, New York University School of Medicine, New York, NY, USA.,Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Maud Voisin
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Susan Ha
- Department of Urology, New York University School of Medicine, New York, NY, USA
| | - Susan K Logan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Department of Urology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Lindner L, Cayrou P, Rosahl TW, Zhou HH, Birling MC, Herault Y, Pavlovic G. Droplet digital PCR or quantitative PCR for in-depth genomic and functional validation of genetically altered rodents. Methods 2021; 191:107-119. [PMID: 33838271 DOI: 10.1016/j.ymeth.2021.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Gene targeting and additive (random) transgenesis have proven to be powerful technologies with which to decipher the mammalian genome. With the advent of CRISPR/Cas9 genome editing, the ability to inactivate or modify the function of a gene has become even more accessible. However, the impact of each generated modification may be different from what was initially desired. Minimal validation of mutant alleles from genetically altered (GA) rodents remains essential to guarantee the interpretation of experimental results. The protocol described here combines design strategies for genomic and functional validation of genetically modified alleles with droplet digital PCR (ddPCR) or quantitative PCR (qPCR) for target DNA or mRNA quantification. In-depth analysis of the results obtained with GA models through the analysis of target DNA and mRNA quantification is also provided, to evaluate which pitfalls can be detected using these two methods, and we propose recommendations for the characterization of different type of mutant allele (knock-out, knock-in, conditional knock-out, FLEx, IKMC model or transgenic). Our results also highlight the possibility that mRNA expression of any mutated allele can be different from what might be expected in theory or according to common assumptions. For example, mRNA analyses on knock-out lines showed that nonsense-mediated mRNA decay is generally not achieved with a critical-exon approach. Likewise, comparison of multiple conditional lines crossed with the same CreERT2 deleter showed that the inactivation outcome was very different for each conditional model. DNA quantification by ddPCR of G0 to G2 generations of transgenic rodents generated by pronuclear injection showed an unexpected variability, demonstrating that G1 generation rodents cannot be considered as established lines.
Collapse
Affiliation(s)
- Loic Lindner
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Pauline Cayrou
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Thomas W Rosahl
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Heather H Zhou
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Marie-Christine Birling
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Yann Herault
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Guillaume Pavlovic
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France.
| |
Collapse
|
7
|
Abstract
The mouse is one of the most widely used model organisms for genetic study. The tools available to alter the mouse genome have developed over the preceding decades from forward screens to gene targeting in stem cells to the recent influx of CRISPR approaches. In this review, we first consider the history of mice in genetic study, the development of classic approaches to genome modification, and how such approaches have been used and improved in recent years. We then turn to the recent surge of nuclease-mediated techniques and how they are changing the field of mouse genetics. Finally, we survey common classes of alleles used in mice and discuss how they might be engineered using different methods.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
8
|
Blazejewski SM, Bennison SA, Smith TH, Toyo-Oka K. Neurodevelopmental Genetic Diseases Associated With Microdeletions and Microduplications of Chromosome 17p13.3. Front Genet 2018; 9:80. [PMID: 29628935 PMCID: PMC5876250 DOI: 10.3389/fgene.2018.00080] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/26/2018] [Indexed: 01/24/2023] Open
Abstract
Chromosome 17p13.3 is a region of genomic instability that is linked to different rare neurodevelopmental genetic diseases, depending on whether a deletion or duplication of the region has occurred. Chromosome microdeletions within 17p13.3 can result in either isolated lissencephaly sequence (ILS) or Miller-Dieker syndrome (MDS). Both conditions are associated with a smooth cerebral cortex, or lissencephaly, which leads to developmental delay, intellectual disability, and seizures. However, patients with MDS have larger deletions than patients with ILS, resulting in additional symptoms such as poor muscle tone, congenital anomalies, abnormal spasticity, and craniofacial dysmorphisms. In contrast to microdeletions in 17p13.3, recent studies have attracted considerable attention to a condition known as a 17p13.3 microduplication syndrome. Depending on the genes involved in their microduplication, patients with 17p13.3 microduplication syndrome may be categorized into either class I or class II. Individuals in class I have microduplications of the YWHAE gene encoding 14-3-3ε, as well as other genes in the region. However, the PAFAH1B1 gene encoding LIS1 is never duplicated in these patients. Class I microduplications generally result in learning disabilities, autism, and developmental delays, among other disorders. Individuals in class II always have microduplications of the PAFAH1B1 gene, which may include YWHAE and other genetic microduplications. Class II microduplications generally result in smaller body size, developmental delays, microcephaly, and other brain malformations. Here, we review the phenotypes associated with copy number variations (CNVs) of chromosome 17p13.3 and detail their developmental connection to particular microdeletions or microduplications. We also focus on existing single and double knockout mouse models that have been used to study human phenotypes, since the highly limited number of patients makes a study of these conditions difficult in humans. These models are also crucial for the study of brain development at a mechanistic level since this cannot be accomplished in humans. Finally, we emphasize the usefulness of the CRISPR/Cas9 system and next generation sequencing in the study of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Trevor H Smith
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
9
|
Polex-Wolf J, Lam BY, Larder R, Tadross J, Rimmington D, Bosch F, Cenzano VJ, Ayuso E, Ma MK, Rainbow K, Coll AP, O’Rahilly S, Yeo GS. Hypothalamic loss of Snord116 recapitulates the hyperphagia of Prader-Willi syndrome. J Clin Invest 2018; 128:960-969. [PMID: 29376887 PMCID: PMC5824864 DOI: 10.1172/jci97007] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022] Open
Abstract
Profound hyperphagia is a major disabling feature of Prader-Willi syndrome (PWS). Characterization of the mechanisms that underlie PWS-associated hyperphagia has been slowed by the paucity of animal models with increased food intake or obesity. Mice with a microdeletion encompassing the Snord116 cluster of noncoding RNAs encoded within the Prader-Willi minimal deletion critical region have previously been reported to show growth retardation and hyperphagia. Here, consistent with previous reports, we observed growth retardation in Snord116+/-P mice with a congenital paternal Snord116 deletion. However, these mice neither displayed increased food intake nor had reduced hypothalamic expression of the proprotein convertase 1 gene PCSK1 or its upstream regulator NHLH2, which have recently been suggested to be key mediators of PWS pathogenesis. Specifically, we disrupted Snord116 expression in the mediobasal hypothalamus in Snord116fl mice via bilateral stereotaxic injections of a Cre-expressing adeno-associated virus (AAV). While the Cre-injected mice had no change in measured energy expenditure, they became hyperphagic between 9 and 10 weeks after injection, with a subset of animals developing marked obesity. In conclusion, we show that selective disruption of Snord116 expression in the mediobasal hypothalamus models the hyperphagia of PWS.
Collapse
Affiliation(s)
- Joseph Polex-Wolf
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Brian Y.H. Lam
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rachel Larder
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - John Tadross
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Debra Rimmington
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Fàtima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Verónica Jiménez Cenzano
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Eduard Ayuso
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Marcella K.L. Ma
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Kara Rainbow
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Anthony P. Coll
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Stephen O’Rahilly
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Giles S.H. Yeo
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
10
|
Cuervo H, Pereira B, Nadeem T, Lin M, Lee F, Kitajewski J, Lin CS. PDGFRβ-P2A-CreER T2 mice: a genetic tool to target pericytes in angiogenesis. Angiogenesis 2017; 20:655-662. [PMID: 28752390 DOI: 10.1007/s10456-017-9570-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
Abstract
Pericytes are essential mural cells distinguished by their association with small caliber blood vessels and the presence of a basement membrane shared with endothelial cells. Pericyte interaction with the endothelium plays an important role in angiogenesis; however, very few tools are currently available that allow for the targeting of pericytes in mouse models, limiting our ability to understand their biology. We have generated a novel mouse line expressing tamoxifen-inducible Cre-recombinase under the control of the platelet-derived growth factor receptor β promoter: PDGFRβ-P2A-CreER T2 . We evaluated the expression of the PDGFRβ-P2A-CreER T2 line by crossing it with fluorescent reporter lines and analyzed reporter signal in the angiogenic retina and brain at different time points after tamoxifen administration. Reporter lines showed labeling of NG2+, desmin+, PDGFRβ+ perivascular cells in the retina and the brain, indicating successful targeting of pericytes; however, signal from reporter lines was also observed in a small subset of glial cells both in the retina and the brain. We also evaluated recombination in tumors and found efficient recombination in perivascular cells associated with tumor vasculature. As a proof of principle, we used our newly generated driver to delete Notch signaling in perivascular cells and observed a loss of smooth muscle cells in retinal arteries, consistent with previously published studies evaluating Notch3 null mice. We conclude that the PDGFRβ-P2A-CreER T2 line is a powerful new tool to target pericytes and will aid the field in gaining a deeper understanding of the role of these cells in physiological and pathological settings.
Collapse
Affiliation(s)
- Henar Cuervo
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave. E-202, Chicago, IL, 60612, USA.
| | - Brianna Pereira
- Department of Obstetrics/Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Taliha Nadeem
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave. E-202, Chicago, IL, 60612, USA
| | - Mika Lin
- Transgenic Mouse Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 1130 St. Nicholas Avenue, ICRC604, New York, NY, 10032, USA.,Department of Biology, Wellesley College, Wellesley, MA, USA
| | - Frances Lee
- Transgenic Mouse Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 1130 St. Nicholas Avenue, ICRC604, New York, NY, 10032, USA.,Northwell Health-Lenox Health Greenwich Village, New York, NY, USA
| | - Jan Kitajewski
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave. E-202, Chicago, IL, 60612, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, 1130 St. Nicholas Avenue, ICRC604, New York, NY, 10032, USA.,Department of Obstetrics/Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University Medical Center, 1130 St. Nicholas Avenue, ICRC604, New York, NY, 10032, USA. .,Transgenic Mouse Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 1130 St. Nicholas Avenue, ICRC604, New York, NY, 10032, USA.
| |
Collapse
|
11
|
Yang H, Zhang W, Lu S, Lu G, Zhang H, Zhuang Y, Wang Y, Dong M, Zhang Y, Zhou X, Wang P, Yu L, Wang F, Chen L. Mup-knockout mice generated through CRISPR/Cas9-mediated deletion for use in urinary protein analysis. Acta Biochim Biophys Sin (Shanghai) 2016; 48:468-73. [PMID: 26851484 DOI: 10.1093/abbs/gmw003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 12/30/2015] [Indexed: 11/14/2022] Open
Abstract
Major urinary proteins (MUPs) are the most abundant protein species in mouse urine, accounting for more than 90% of total protein content. Twenty-one Mup genes and 21 pseudogenes are clustered in a region of around 2 megabase pairs (Mbp) on chromosome 4. A Mup-knockout mouse model would greatly facilitate researches in the field of proteomic analysis of mouse urine. Here, we report the successful knockout of the Mup gene cluster of 2.2 Mbp using the CRISPR/Cas9 system. Homozygous Mup-knockout mice survived to adulthood and exhibited no obvious defects. The patterns of the proteomes of non-MUP urinary proteins in homozygous Mup-knockout mice were similar to those of wild-type mice judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The sensitivity of enzyme-linked immunosorbent assay to detect non-MUP urinary protein was significantly enhanced in Mup-knockout mice. In short, we have developed a Mup-knockout mouse model. This mouse model will be useful for the research of urinary biomarker testing that may have relevance for humans.
Collapse
Affiliation(s)
- Haixia Yang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Wei Zhang
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Shan Lu
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Guangqing Lu
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Hongjuan Zhang
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Yinghua Zhuang
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Yue Wang
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Mengqiu Dong
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Yu Zhang
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | | | - Peng Wang
- Beijing Ditan Hospital, Beijing 100015, China
| | - Lei Yu
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Liang Chen
- National Institute of Biological Sciences, Beijing, Beijing 102206, China National Institute of Biological Sciences, Collaborative Innovation Center for Cancer Medicine, Beijing 102206, China
| |
Collapse
|
12
|
Murata M, Shibata F, Hironaka A, Kashihara K, Fujimoto S, Yokota E, Nagaki K. Generation of an artificial ring chromosome in Arabidopsis by Cre/LoxP-mediated recombination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:363-371. [PMID: 23360080 DOI: 10.1111/tpj.12128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 06/01/2023]
Abstract
A eukaryotic chromosome consists of a centromere, two telomeres and a number of replication origins, and 'artificial chromosomes' may be created in yeast and mammals when these three elements are artificially joined and introduced into cells. Plant artificial chromosomes (PACs) have been suggested as new vectors for the development of new crops and as tools for basic research on chromosomes. However, indisputable PAC formation has not yet been confirmed. Here, we present a method for generating PACs in the model plant Arabidopsis thaliana using the Cre/LoxP and Activator/Dissociation element systems. The successfully generated PAC, designated AtARC1 (A. thaliana artificial ring chromosome 1), originated from a centromeric edge of the long arm of chromosome 2, but its size (2.85 Mb) is much smaller than that of the original chromosome (26.3 Mb). Although AtARC1 contains only a short centromere domain consisting of 180 bp repeats approximately 250 kb in length, compared with the 3 Mb domain on the original chromosome 2, centromere-specific histone H3 (HTR12) was detected on the centromeric region. This result supported the observed stability of the PAC during mitosis in the absence of selection, and transmission of the PAC to the next generation through meiosis. Because AtARC1 contains a unique LoxP site driven by the CaMV 35S promoter, it is possible to introduce a selectable marker and desired transgenes into AtARC1 at the LoxP site using Cre recombinase. Therefore, AtARC1 meets the criteria for a PAC and is a promising vector.
Collapse
Affiliation(s)
- Minoru Murata
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kapusi E, Kempe K, Rubtsova M, Kumlehn J, Gils M. phiC31 integrase-mediated site-specific recombination in barley. PLoS One 2012; 7:e45353. [PMID: 23024817 PMCID: PMC3443236 DOI: 10.1371/journal.pone.0045353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 08/17/2012] [Indexed: 12/28/2022] Open
Abstract
The Streptomyces phage phiC31 integrase was tested for its feasibility in excising transgenes from the barley genome through site-specific recombination. We produced transgenic barley plants expressing an active phiC31 integrase and crossed them with transgenic barley plants carrying a target locus for recombination. The target sequence involves a reporter gene encoding green fluorescent protein (GFP), which is flanked by the attB and attP recognition sites for the phiC31 integrase. This sequence disruptively separates a gusA coding sequence from an upstream rice actin promoter. We succeeded in producing site-specific recombination events in the hybrid progeny of 11 independent barley plants carrying the above target sequence after crossing with plants carrying a phiC31 expression cassette. Some of the hybrids displayed fully executed recombination. Excision of the GFP gene fostered activation of the gusA gene, as visualized in tissue of hybrid plants by histochemical staining. The recombinant loci were detected in progeny of selfed F(1), even in individuals lacking the phiC31 transgene, which provides evidence of stability and generative transmission of the recombination events. In several plants that displayed incomplete recombination, extrachromosomal excision circles were identified. Besides the technical advance achieved in this study, the generated phiC31 integrase-expressing barley plants provide foundational stock material for use in future approaches to barley genetic improvement, such as the production of marker-free transgenic plants or switching transgene activity.
Collapse
Affiliation(s)
- Eszter Kapusi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Katja Kempe
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Myroslava Rubtsova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Mario Gils
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
- * E-mail:
| |
Collapse
|
14
|
Abstract
Cre/loxP recombination enables cellular specificity and, in the case of inducible systems, temporal control of genomic deletions. Here we used a SM22α tamoxifen-inducible Cre line to inactivate β1 integrin in adult smooth muscle. Interestingly, analysis of two distinct β1 loxP transgenic mice revealed vastly different outcomes after β1 integrin deletion. Lethality occurred 4 weeks postinduction in one Cre/loxP line, while no apparent phenotype was seen in the other line. Genetic analysis revealed appropriate DNA excision in both cases; however, differences were found in the degree of protein loss with absolutely no change in protein levels in the model that lacked a phenotype. Seeking to understand protein persistence despite appropriate recombination, we first validated the flox allele using a constitutive Cre line and demonstrated its ability to mediate effective protein inactivation. We then examined the possibility of heterozygous cell selection, protein turnover, and deletion efficiency with no success for explaining the phenotype. Finally, we documented the presence of the Cre-recombination episomal product, which persisted in tissue samples with no protein loss. The product was only noted in cells with low proliferative capacity. These findings highlight the potential for protein expression from the products of Cre-recombinase excised genes, particularly when deletion occurs in low turnover populations.
Collapse
|
15
|
Kempe K, Rubtsova M, Berger C, Kumlehn J, Schollmeier C, Gils M. Transgene excision from wheat chromosomes by phage phiC31 integrase. PLANT MOLECULAR BIOLOGY 2010; 72:673-687. [PMID: 20127141 DOI: 10.1007/s11103-010-9606-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 01/17/2010] [Indexed: 05/28/2023]
Abstract
The Streptomyces phage phiC31 integrase was tested for its ability to excise transgenic DNA from the wheat genome by site-specific recombination. Plants that stably express phiC31 integrase were crossed to plants carrying a target construct bearing the phiC31 recognition sites, attP and attB. In the progeny, phiC31 recombinase mediates recombination between the att sites of the target locus, which results in excision of the intervening DNA. Recombination events could be identified in 34 independent wheat lines by PCR and Southern blot analysis and by sequencing of the excision footprints. Recombinant loci were inherited to the subsequent generation. The results presented here establish the integrase-att system as a tool for catalysing the precise elimination of DNA sequences from wheat chromosomes.
Collapse
Affiliation(s)
- Katja Kempe
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstr. 3, 06466, Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
16
|
De Paepe A, De Buck S, Hoorelbeke K, Nolf J, Peck I, Depicker A. High frequency of single-copy T-DNA transformants produced by floral dip in CRE-expressing Arabidopsis plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:517-527. [PMID: 19392707 DOI: 10.1111/j.1365-313x.2009.03889.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
For genetic transformation of plants, floral dip with Agrobacterium often results in integration of multiple T-DNA copies at a single locus and frequently in low and unstable transgene expression. To obtain efficient single-copy T-DNA transformants, two CRE/loxP recombinase-based simplifying strategies for complex T-DNA loci were compared. A T-DNA vector with oppositely oriented loxP sites was transformed into CRE-expressing and wild-type control Arabidopsis thaliana plants. Of the primary CRE-expressing transformants, 55% harboured a single copy of the introduced T-DNA, but only 15% in the wild-type plants. However, 73% of the single-copy transformants in the CRE background showed continuous somatic inversion of the DNA segment between the two loxP sites. To avoid inversion of the loxP-flanked T-DNA segment, two T-DNA vectors harbouring only one loxP site were investigated for their suitability for CRE/loxP recombinase-mediated resolution upon floral-dip transformation into CRE-expressing plants. On average, 70% of the transformants in the CRE background were single-copy transformants, whereas the single-copy T-DNA frequency was only 11% for both vectors in the wild-type background. Both resolution strategies yielded mostly Cre transformants in which the 35S-driven transgene expression was stable and uniform in the progeny and remarkably, also in Cre transformants with multiple T-DNA copies. Therefore, a role is proposed for the CRE recombinase in preventing inverted T-DNA repeat formation or modifying the locus chromatin structure, resulting in a reduced sensitivity for silencing.
Collapse
Affiliation(s)
- Annelies De Paepe
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
De Buck S, Peck I, De Wilde C, Marjanac G, Nolf J, De Paepe A, Depicker A. Generation of single-copy T-DNA transformants in Arabidopsis by the CRE/loxP recombination-mediated resolution system. PLANT PHYSIOLOGY 2007; 145:1171-82. [PMID: 17693537 PMCID: PMC2151725 DOI: 10.1104/pp.107.104067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We investigated whether complex T-DNA loci, often resulting in low transgene expression, can be resolved efficiently into single copies by CRE/loxP-mediated recombination. An SB-loxP T-DNA, containing two invertedly oriented loxP sequences located inside and immediately adjacent to the T-DNA border ends, was constructed. Regardless of the orientation and number of SB-loxP-derived T-DNAs integrated at one locus, recombination between the outermost loxP sequences in direct orientation should resolve multiple copies into a single T-DNA copy. Seven transformants with a complex SB-loxP locus were crossed with a CRE-expressing plant. In three hybrids, the complex T-DNA locus was reduced efficiently to a single-copy locus. Upon segregation of the CRE recombinase gene, only the simplified T-DNA locus was found in the progeny, demonstrating DNA had been excised efficiently in the progenitor cells of the gametes. In the two transformants with an inverted T-DNA repeat, the T-DNA resolution was accompanied by at least a 10-fold enhanced transgene expression. Therefore, the resolution of complex loci to a single-copy T-DNA insert by the CRE/loxP recombination system can become a valuable method for the production of elite transgenic Arabidopsis thaliana plants that are less prone to gene silencing.
Collapse
Affiliation(s)
- Sylvie De Buck
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, and Department of Molecular Genetics, Ghent University, 9052 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
18
|
Djukanovic V, Orczyk W, Gao H, Sun X, Garrett N, Zhen S, Gordon-Kamm W, Barton J, Lyznik LA. Gene conversion in transgenic maize plants expressing FLP/FRT and Cre/loxP site-specific recombination systems. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:345-57. [PMID: 17147640 DOI: 10.1111/j.1467-7652.2006.00186.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
DNA recombination reactions (site-specific and homologous) were monitored in the progeny of transgenic maize plants by bringing together two recombination substrates (docking sites and shuttle vectors) in the zygotes. In one combination of transgenic events, the recombination marker gene (yellow fluorescent protein gene, YFP) was activated in 1%-2% of the zygotes receiving both substrates. In other crosses, chimeric embryos and plants were identified, indicative of late recombination events taking place after the first mitotic division of the zygotes. The docking site structure remained unchanged; therefore, all recovered recombination events were classified as gene conversions. The recombinant YFP-r gene segregated as a single locus in subsequent generations. The recombination products showed evidence of homologous recombination at the 5' end of the YFP marker gene and recombinational rearrangements at the other end, consistent with the conclusion that DNA replication was involved in generation of the recombination products. Here, we demonstrate that maize zygotes are efficient at generating homologous recombination products and that the homologous recombination pathways may successfully compete with other possible DNA repair/recombination mechanisms such as site-specific recombination. These results indicate that maize zygotes provide a permissive environment for homologous recombination, offering a new strategy for gene targeting in maize.
Collapse
Affiliation(s)
- Vesna Djukanovic
- Pioneer Hi-Bred International, A DuPont Business, Research Center, 7300 NW 62nd Avenue, Johnston, IA 50131-1004, USA
| | | | | | | | | | | | | | | | | |
Collapse
|