1
|
Yang Q, Yu W, Wu H, Zhang C, Sun SS, Liu Q. Lysine biofortification in rice by modulating feedback inhibition of aspartate kinase and dihydrodipicolinate synthase. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:490-501. [PMID: 32945115 PMCID: PMC7955878 DOI: 10.1111/pbi.13478] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/21/2020] [Accepted: 09/01/2020] [Indexed: 05/27/2023]
Abstract
Lysine is the main limiting essential amino acid (EAA) in the rice seeds, which is a major energy and nutrition source for humans and livestock. In higher plants, the rate-limiting steps in lysine biosynthesis pathway are catalysed by two key enzymes, aspartate kinase (AK) and dihydrodipicolinate synthase (DHDPS), and both are extremely sensitive to feedback inhibition by lysine. In this study, two rice AK mutants (AK1 and AK2) and five DHDPS mutants (DHDPS1-DHDPS5), all single amino acid substitution, were constructed. Their protein sequences passed an allergic sequence-based homology alignment. Mutant proteins were recombinantly expressed in Escherichia coli, and all were insensitive to the lysine analog S-(2-aminoethyl)-l-cysteine (AEC) at concentrations up to 12 mm. The AK and DHDPS mutants were transformed into rice, and free lysine was elevated in mature seeds of transgenic plants, especially those expressing AK2 or DHDPS1, 6.6-fold and 21.7-fold higher than the wild-type (WT) rice, respectively. We then engineered 35A2D1L plants by simultaneously expressing modified AK2 and DHDPS1, and inhibiting rice LKR/SDH (lysine ketoglutaric acid reductase/saccharopine dehydropine dehydrogenase). Free lysine levels in two 35A2D1L transgenic lines were 58.5-fold and 39.2-fold higher than in WT and transgenic rice containing native AK and DHDPS, respectively. Total free amino acid and total protein content were also elevated in 35A2D1L transgenic rice. Additionally, agronomic performance analysis indicated that transgenic lines exhibited normal plant growth, development and seed appearance comparable to WT plants. Thus, AK and DHDPS mutants may be used to improve the nutritional quality of rice and other cereal grains.
Collapse
Affiliation(s)
- Qing‐Qing Yang
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouChina
- State Key Laboratory of AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong KongChina
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Wai‐Han Yu
- State Key Laboratory of AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong KongChina
| | - Hong‐Yu Wu
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouChina
| | - Chang‐Quan Zhang
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouChina
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Samuel Sai‐Ming Sun
- State Key Laboratory of AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong KongChina
| | - Qiao‐Quan Liu
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouChina
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of EducationYangzhou UniversityYangzhouChina
| |
Collapse
|
2
|
Meybodi NM, Mirmoghtadaie L, Sheidaei Z, Mortazavian AM. Wheat Bread: Potential Approach to Fortify its Lysine Content. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401315666190228125241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wheat bread is the main foodstuff and supply of dietary energy/protein in most developing
countries. Wheat based diets are poor regarding essential amino acid content especially lysine as the
first limiting amino acid. Since human body is unable to build lysine, it is necessary to be taken via
food and/or supplements. Recommended daily intake of lysine is estimated to be around 30-64
mg/kg body weight. Inadequate intake of lysine results in a syndrome called ‘protein energy malnutrition’
which is suspected to be more prevalent in developing countries. Since lysine is provided by
different sources (especially meat), there is no published data about the lack of lysine, however it is
estimated to be prevalent in developing countries where the lysine-rich sources are generally expensive
and low accessible there. The lysine fortification of wheat bread is conducted mainly to provide
an accessible lysine-rich source. Biofortification, using lysine rich sources (either as flour or protein
concentrates) and directly addition of lysine amino acid and its derivative have been investigated in
different studies. The aim of this article is to review the potential strategies to improve the lysine
content of wheat bread from both nutritional and technological points of view.
Collapse
Affiliation(s)
- Neda Mollakhalili Meybodi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Leila Mirmoghtadaie
- Department of Food Science and Technology, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, National Nutrition and Food Technology Research Institute, P.O. Box 193954741, Tehran, Iran
| | - Zhaleh Sheidaei
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Amir Mohammad Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, National Nutrition and Food Technology Research Institute, P.O. Box 193954741, Tehran, Iran
| |
Collapse
|
3
|
Reduction of nitrogen excretion and emissions from poultry: a review for conventional poultry. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Wen W, Jin M, Li K, Liu H, Xiao Y, Zhao M, Alseekh S, Li W, de Abreu E Lima F, Brotman Y, Willmitzer L, Fernie AR, Yan J. An integrated multi-layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1116-1128. [PMID: 29381266 DOI: 10.1111/tpj.13835] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
Primary metabolism plays a pivotal role in normal plant growth, development and reproduction. As maize is a major crop worldwide, the primary metabolites produced by maize plants are of immense importance from both calorific and nutritional perspectives. Here a genome-wide association study (GWAS) of 61 primary metabolites using a maize association panel containing 513 inbred lines identified 153 significant loci associated with the level of these metabolites in four independent tissues. The genome-wide expression level of 760 genes was also linked with metabolite levels within the same tissue. On average, the genetic variants at each locus or transcriptional variance of each gene identified here were estimated to have a minor effect (4.4-7.8%) on primary metabolic variation. Thirty-six loci or genes were prioritized as being worthy of future investigation, either with regard to functional characterization or for their utility for genetic improvement. This target list includes the well-known opaque 2 (O2) and lkr/sdh genes as well as many less well-characterized genes. During our investigation of these 36 loci, we analyzed the genetic components and variations underlying the trehalose, aspartate and aromatic amino acid pathways, thereby functionally characterizing four genes involved in primary metabolism in maize.
Collapse
Affiliation(s)
- Weiwei Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingchao Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Guo X, Duan X, Wu Y, Cheng J, Zhang J, Zhang H, Li B. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1670-1677. [PMID: 29394054 DOI: 10.1021/acs.jafc.7b05390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cell-wall invertase plays important roles in the grain filling of crop plants. However, its functions in the improvement of grain nutrients have not been investigated. In this work, the stable expression of cell-wall-invertase-encoding genes from different plant species and the contents of total starch, protein, amino acid, nitrogen, lipid, and phosphorus were examined in transgenic maize plants. High expressions of the cell-wall-invertase gene conferred enhanced invertase activity and sugar content in transgenic plants, leading to increased grain yield and improved grain nutrients. Transgenic plants with high expressions of the transgene produced more total starch, protein, nitrogen, and essential amino acids in the seeds. Overall, the results indicate that the cell-wall-invertase gene can be used as a potential candidate for the genetic breeding of grain crops with both improved grain yield and quality.
Collapse
Affiliation(s)
- Xiaotong Guo
- College of Agriculture, Ludong University , 186 Hongqizhong Road, Yantai 264025, China
| | - Xiaoguang Duan
- School of Life Science and Technology, ShanghaiTech University , 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Yongzhen Wu
- College of Agriculture, Ludong University , 186 Hongqizhong Road, Yantai 264025, China
| | - Jieshan Cheng
- College of Agriculture, Ludong University , 186 Hongqizhong Road, Yantai 264025, China
| | - Juan Zhang
- College of Agriculture, Ludong University , 186 Hongqizhong Road, Yantai 264025, China
| | - Hongxia Zhang
- College of Agriculture, Ludong University , 186 Hongqizhong Road, Yantai 264025, China
| | - Bei Li
- College of Agriculture, Ludong University , 186 Hongqizhong Road, Yantai 264025, China
| |
Collapse
|
6
|
Yu S, Tian L. Breeding Major Cereal Grains through the Lens of Nutrition Sensitivity. MOLECULAR PLANT 2018; 11:23-30. [PMID: 28827167 DOI: 10.1016/j.molp.2017.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 05/18/2023]
Abstract
Cereal grains are the common food staples that collectively provide over 50% of dietary calories and proteins for the world's population. Although the Green Revolution has greatly increased the yield of commercial cereal crops, they often lack nutrients essential for human health in the edible tissues. In developing nutrition-sensitive agriculture, the nutritional quality of cereal grains has been a major target for improvement using breeding and biotechnology approaches. This review examines recent progress on biofortification of micronutrients (provitamin A and folates) and an essential amino acid (lysine) in three major cereal grains, wheat, rice, and maize, through plant breeding. In addition, how natural variations, induced mutations, and the advanced genome-editing technologies can be applied to improving the nutrient content and stability in these cereal grains are discussed. High-yield cereal crops pyramided with improved (micro)nutrient contents hold great promise to meet the increasing demand of nutritionally limited populations and to contribute to achieving sustainable nutrition security.
Collapse
Affiliation(s)
- Shu Yu
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA; Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| |
Collapse
|
7
|
Abstract
Promoters regulate gene expression, and are essential biotechnology tools. Since its introduction in the mid-1990s, biotechnology has greatly enhanced maize productivity primarily through the development of insect control and herbicide tolerance traits. Additional biotechnology applications include improving seed nutrient composition, industrial protein production, therapeutic production, disease resistance, abiotic stress resistance, and yield enhancement. Biotechnology has also greatly expanded basic research into important mechanisms that govern plant growth and reproduction. Many novel promoters have been developed to facilitate this work, but only a few are widely used. Transgene optimization includes a variety of strategies some of which effect promoter structure. Recent reviews examine the state of the art with respect to transgene design for biotechnology applications. This chapter examines the use of transgene technology in maize, focusing on the way promoters are selected and used. The impact of new developments in genomic technology on promoter structure is also discussed.
Collapse
|
8
|
Yang QQ, He XY, Wu HY, Zhang CQ, Zou SY, Lang TQ, Sun SSM, Liu QQ. Subchronic feeding study of high-free-lysine transgenic rice in Sprague-Dawley rats. Food Chem Toxicol 2017; 105:214-222. [PMID: 28442410 DOI: 10.1016/j.fct.2017.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022]
Abstract
Lysine is considered to be the first essential amino acid in rice. An elite High-Free-Lysine transgenic line HFL1 was previously produced by metabolic engineering to regulate lysine metabolism. In this study, a 90-day toxicology experiment was undertaken to investigate the potential health effect of feeding different doses of HFL1 rice to Sprague-Dawley rats. During the trial, body weight gain, food consumption and food efficiency were recorded, and no adverse effect was observed in rats fed transgenic (T) rice diets compared with non-transgenic (N) or control diets. At both midterm and final assessments, hematological parameters and serum chemistry were measured, and organ weights and histopathology were examined at the end of the trial. There was no diet-related difference in most hematological or serum chemistry parameters or organ weights between rats fed the T diets and those fed the N or control diets. Some parameters were found to differ between T groups and their corresponding N and/or control groups, but no adverse histological effect was observed. Taken together, the data from the current trial demonstrates that high lysine transgenic rice led to no adverse effect in Sprague-Dawley rats given a diet containing up to 70% HFL1 rice in 90 days.
Collapse
Affiliation(s)
- Qing-Qing Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiao-Yun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hong-Yu Wu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Shi-Ying Zou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tian-Qi Lang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Samuel Sai-Ming Sun
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
9
|
Kumar P, Jander G. Concurrent Overexpression of Arabidopsis thaliana Cystathionine γ-Synthase and Silencing of Endogenous Methionine γ-Lyase Enhance Tuber Methionine Content in Solanum tuberosum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2737-2742. [PMID: 28294619 DOI: 10.1021/acs.jafc.7b00272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Potatoes (Solanum tuberosum) are deficient in methionine, an essential amino acid in human and animal diets. Higher methionine levels increase the nutritional quality and promote the typically pleasant aroma associated with baked and fried potatoes. Several attempts have been made to elevate tuber methionine levels by genetic engineering of methionine biosynthesis and catabolism. Overexpressing Arabidopsis thaliana cystathionine γ-synthase (AtCGS) in S. tuberosum up-regulates a rate-limiting step of methionine biosynthesis and increases tuber methionine levels. Alternatively, silencing S. tuberosum methionine γ-lyase (StMGL), which causes decreased degradation of methionine into 2-ketobutyrate, also increases methionine levels. Concurrently enhancing biosynthesis and reducing degradation were predicted to provide further increases in tuber methionine content. Here we report that S. tuberosum cv. Désirée plants with AtCGS overexpression and StMGL silenced by RNA interference are morphologically normal and accumulate higher free methionine levels than either single-transgenic line.
Collapse
Affiliation(s)
- Pavan Kumar
- Boyce Thompson Institute for Plant Research , 533 Tower Road, Ithaca, New York 14853, United States
| | - Georg Jander
- Boyce Thompson Institute for Plant Research , 533 Tower Road, Ithaca, New York 14853, United States
| |
Collapse
|
10
|
Yang QQ, Zhang CQ, Chan ML, Zhao DS, Chen JZ, Wang Q, Li QF, Yu HX, Gu MH, Sun SSM, Liu QQ. Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4285-96. [PMID: 27252467 PMCID: PMC5301931 DOI: 10.1093/jxb/erw209] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rice (Oryza sativa L.), a major staple crop worldwide, has limited levels of the essential amino acid lysine. We previously produced engineered rice with increased lysine content by expressing bacterial aspartate kinase and dihydrodipicolinate synthase and inhibiting rice lysine ketoglutarate reductase/saccharopine dehydrogenase activity. However, the grain quality, field performance, and integration patterns of the transgenes in these lysine-enriched lines remain unclear. In the present study, we selected several elite transgenic lines with endosperm-specific or constitutive regulation of the above key enzymes but lacking the selectable marker gene. All target transgenes were integrated into the intragenic region in the rice genome. Two pyramid transgenic lines (High Free Lysine; HFL1 and HFL2) with free lysine levels in seeds up to 25-fold that of wild type were obtained via a combination of the above two transgenic events. We observed a dramatic increase in total free amino acids and a slight increase in total protein content in both pyramid lines. Moreover, the general physicochemical properties were improved in pyramid transgenic rice, but the starch composition was not affected. Field trials indicated that the growth of HFL transgenic rice was normal, except for a slight difference in plant height and grain colour. Taken together, these findings will be useful for the potential commercialization of high-lysine transgenic rice.
Collapse
Affiliation(s)
- Qing-Qing Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Man-Ling Chan
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Dong-Sheng Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Jin-Zhu Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qing Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qian-Feng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Heng-Xiu Yu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Ming-Hong Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Samuel Sai-Ming Sun
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Galili G, Amir R, Fernie AR. The Regulation of Essential Amino Acid Synthesis and Accumulation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:153-78. [PMID: 26735064 DOI: 10.1146/annurev-arplant-043015-112213] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although amino acids are critical for all forms of life, only proteogenic amino acids that humans and animals cannot synthesize de novo and therefore must acquire in their diets are classified as essential. Nine amino acids-lysine, methionine, threonine, phenylalanine, tryptophan, valine, isoleucine, leucine, and histidine-fit this definition. Despite their nutritional importance, several of these amino acids are present in limiting quantities in many of the world's major crops. In recent years, a combination of reverse genetic and biochemical approaches has been used to define the genes encoding the enzymes responsible for synthesizing, degrading, and regulating these amino acids. In this review, we describe recent advances in our understanding of the metabolism of the essential amino acids, discuss approaches for enhancing their levels in plants, and appraise efforts toward their biofortification in crop plants.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Rachel Amir
- Laboratory of Plant Science, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel;
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
12
|
Chang Y, Shen E, Wen L, Yu J, Zhu D, Zhao Q. Seed-Specific Expression of the Arabidopsis AtMAP18 Gene Increases both Lysine and Total Protein Content in Maize. PLoS One 2015; 10:e0142952. [PMID: 26580206 PMCID: PMC4651559 DOI: 10.1371/journal.pone.0142952] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022] Open
Abstract
Lysine is the most limiting essential amino acid for animal nutrition in maize grains. Expression of naturally lysine-rich protein genes can increase the lysine and protein contents in maize seeds. AtMAP18 from Arabidopsis thaliana encoding a microtubule-associated protein with high-lysine content was introduced into the maize genome with the seed-specific promoter F128. The protein and lysine contents of different transgenic offspring were increased prominently in the six continuous generations investigated. Expression of AtMAP18 increased both zein and non-zein protein in the transgenic endosperm. Compared with the wild type, more protein bodies were observed in the endosperm of transgenic maize. These results implied that, as a cytoskeleton binding protein, AtMAP18 facilitated the formation of protein bodies, which led to accumulation of both zein and non-zein proteins in the transgenic maize grains. Furthermore, F1 hybrid lines with high lysine, high protein and excellent agronomic traits were obtained by hybridizing T6 transgenic offspring with other wild type inbred lines. This article provides evidence supporting the use of cytoskeleton-associated proteins to improve the nutritional value of maize.
Collapse
Affiliation(s)
- Yujie Chang
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Erli Shen
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liuying Wen
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengyun Zhu
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qian Zhao
- State Key Laboratory of Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
13
|
Kiyota E, Pena IA, Arruda P. The saccharopine pathway in seed development and stress response of maize. PLANT, CELL & ENVIRONMENT 2015; 38:2450-61. [PMID: 25929294 DOI: 10.1111/pce.12563] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 05/10/2023]
Abstract
Lysine is catabolized in developing plant tissues through the saccharopine pathway. In this pathway, lysine is converted into α-aminoadipic semialdehyde (AASA) by the bifunctional enzyme lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH). AASA is then converted into aminoadipic acid (AAA) by aminoadipic semialdehyde dehydrogenase (AASADH). Here, we show that LKR/SDH and AASADH are co-expressed in the sub-aleurone cell layers of the developing endosperm; however, although AASADH protein is produced in reproductive and vegetative tissues, the LKR/SDH protein is detectable only in the developing endosperm. AASADH showed an optimum pH of 7.4 and Kms for AASA and NAD(+) in the micromolar range. In the developing endosperm, the saccharopine pathway is induced by exogenous lysine and repressed by salt stress, whereas proline and pipecolic acid synthesis are significantly repressed by lysine. In young coleoptiles, the LKR/SDH and AASADH transcriptions are induced by abiotic stress, but while the AASADH protein accumulates in the stressed tissues, the LKR/SDH protein is not produced. In the developing seeds, the saccharopine pathway is used for pipecolic acid synthesis although proline may play a major role in abiotic stress response. The results indicate that the saccharopine pathway in maize seed development and stress responses significantly differ from that observed for dicot plants.
Collapse
Affiliation(s)
- Eduardo Kiyota
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
| | - Izabella Agostinho Pena
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
| |
Collapse
|
14
|
Huang T, Joshi V, Jander G. The catabolic enzyme methionine gamma-lyase limits methionine accumulation in potato tubers. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:883-93. [PMID: 24738868 DOI: 10.1111/pbi.12191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/07/2014] [Accepted: 03/17/2014] [Indexed: 05/07/2023]
Abstract
Increasing methionine in potato tubers is desirable, both to increase the availability of this limiting essential amino acid and to enhance the aroma of baked and fried potatoes. Previous attempts to elevate potato methionine content using transgenic approaches have focused on increasing methionine biosynthesis. Higher isoleucine accumulation in these transgenic tubers suggested that the potatoes compensate for increased methionine biosynthesis with enhanced catabolism via methionine gamma-lyase (MGL), thereby producing 2-ketybutyrate for isoleucine biosynthesis. In the current study, we show that potato StMGL1 encodes a functional MGL in potato tubers. In planta silencing of StMGL1 results in an increased methionine to isoleucine ratio in the free amino acid profile of potato tubers and, in some transgenic lines, elevated accumulation of free methionine. In both wild-type and transgenic tubers, the ratio of methionine to isoleucine is negatively correlated with the level of StMGL1 transcript. A three-dimensional distribution of free amino acids in potato tubers is also described.
Collapse
Affiliation(s)
- Tengfang Huang
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | | | | |
Collapse
|
15
|
Yue J, Li C, Zhao Q, Zhu D, Yu J. Seed-specific expression of a lysine-rich protein gene, GhLRP, from cotton significantly increases the lysine content in maize seeds. Int J Mol Sci 2014; 15:5350-65. [PMID: 24681583 PMCID: PMC4013568 DOI: 10.3390/ijms15045350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 11/16/2022] Open
Abstract
Maize seed storage proteins are a major source of human and livestock consumption. However, these proteins have poor nutritional value, because they are deficient in lysine and tryptophan. Much research has been done to elevate the lysine content by reducing zein content or regulating the activities of key enzymes in lysine metabolism. Using the naturally lysine-rich protein genes, sb401 and SBgLR, from potato, we previously increased the lysine and protein contents of maize seeds. Here, we examined another natural lysine-rich protein gene, GhLRP, from cotton, which increased the lysine content of transgenic maize seeds at levels varying from 16.2% to 65.0% relative to the wild-type. The total protein content was not distinctly different, except in the six transgenic lines. The lipid and starch levels did not differ substantially in Gossypium hirsutum L. lysine-rich protein (GhLRP) transgenic kernels when compared to wild-type. The agronomic characteristics of all the transgenic maize were also normal. GhLRP is a high-lysine protein candidate gene for increasing the lysine content of maize. This study provided a valuable model system for improving maize lysine content.
Collapse
Affiliation(s)
- Jing Yue
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Cong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Qian Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Dengyun Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Metabolic network flux analysis for engineering plant systems. Curr Opin Biotechnol 2013; 24:247-55. [PMID: 23395406 DOI: 10.1016/j.copbio.2013.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/26/2012] [Accepted: 01/07/2013] [Indexed: 11/21/2022]
Abstract
Metabolic network flux analysis (NFA) tools have proven themselves to be powerful aids to metabolic engineering of microbes by providing quantitative insights into the flows of material and energy through cellular systems. The development and application of NFA tools to plant systems has advanced in recent years and are yielding significant insights and testable predictions. Plants present substantial opportunities for the practical application of NFA but they also pose serious challenges related to the complexity of plant metabolic networks and to deficiencies in our knowledge of their structure and regulation. By considering the tools available and selected examples, this article attempts to assess where and how NFA is most likely to have a real impact on plant biotechnology.
Collapse
|
17
|
Galili G, Amir R. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:211-22. [PMID: 23279001 DOI: 10.1111/pbi.12025] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/27/2012] [Accepted: 10/12/2012] [Indexed: 05/03/2023]
Abstract
Humans, as well as farm animals, cannot synthesize a number of essential amino acids, which are critical for their survival. Hence, these organisms must obtain these essential amino acids from their diets. Cereal and legume crops, which represent the major food and feed sources for humans and livestock worldwide, possess limiting levels of some of these essential amino acids, particularly Lys and Met. Extensive efforts were made to fortify crop plants with these essential amino acids using traditional breeding and mutagenesis. However, aside from some results obtained with maize, none of these approaches was successful. Therefore, additional efforts using genetic engineering approaches concentrated on increasing the synthesis and reducing the catabolism of these essential amino acids and also on the expression of recombinant proteins enriched in them. In the present review, we discuss the basic biological aspects associated with the synthesis and accumulation of these amino acids in plants and also describe recent developments associated with the fortification of crop plants with essential amino acids by genetic engineering approaches.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Science, The Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
18
|
Arruda P, Neshich IP. Nutritional‐rich and stress‐tolerant crops by saccharopine pathway manipulation. Food Energy Secur 2012. [DOI: 10.1002/fes3.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética Universidade Estadual de Campinas Campinas Sao Paulo Brazil
- Departamento de Genética e Evolução, IB Universidade Estadual de Campinas Campinas Sao Paulo Brazil
| | - Izabella Pena Neshich
- Centro de Biologia Molecular e Engenharia Genética Universidade Estadual de Campinas Campinas Sao Paulo Brazil
| |
Collapse
|
19
|
Angelovici R, Fait A, Fernie AR, Galili G. A seed high-lysine trait is negatively associated with the TCA cycle and slows down Arabidopsis seed germination. THE NEW PHYTOLOGIST 2011; 189:148-59. [PMID: 20946418 DOI: 10.1111/j.1469-8137.2010.03478.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
• Lysine is a nutritionally important essential amino acid, but significant elevation of its levels in Arabidopsis seeds, by enhancing its synthesis and blocking its catabolism, causes a retardation of germination. Here, we hypothesized that this negative effect is associated with changes in primary metabolism and gene expression programs that are essential for early germination. • Seeds at different stages of germination sensu stricto of the seed-high-lysine genotype were subjected to detailed analysis of primary metabolism, using GC-MS, as well as microarray analysis and two-dimensional, isoelectric focusing, sodium dodecylsulfate polyacrylamide gel electrophoresis, to detect storage protein mobilization. • Our results exposed a major negative effect of the seed-specific increased lysine synthesis and knockout of its catabolism on the levels of a number of TCA cycle metabolites. This metabolic alteration also influences significantly the transcriptome, primarily attenuating the boost of specific transcriptional programs that are essential for seedling establishment, such as the onset of photosynthesis, as well as the turnover of specific transcriptional programs associated with seed embryonic traits. • Our results indicate that catabolism of the aspartic acid family of amino acids is an important contributor to the energy status of plants, and hence to the onset of autotrophic growth-associated processes during germination.
Collapse
Affiliation(s)
- Ruthie Angelovici
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
20
|
Abstract
Plants have evolved a variety of gene silencing pathways mediated by small RNAs. Mostly 21 or 24 nt in size, these small RNAs repress the expression of sequence homologous genes at the transcriptional, post-transcriptional and translational levels. These pathways, also referred as RNA silencing pathways, play important roles in regulating growth and development as well as in response to both biotic and abiotic stress. Although the molecular basis of these complicated and interconnected pathways has become clear only in recent years, RNA silencing effects were observed and utilized in transgenic plants early in the plant biotechnology era, more than two decades ago. Today, with a better understanding of the pathways, various genetic engineering approaches have been developed to apply RNA silencing more effectively and broadly. In addition to summarizing the current models of RNA silencing, this review discusses examples of its potential uses and related issues concerning its application in plant biotechnology.
Collapse
Affiliation(s)
- Alessandra Frizzi
- Calgene Campus, Monsanto Company, 1920 Fifth Street, Davis, CA 95616, USA
| | | |
Collapse
|
21
|
Anderson OD, Coleman-Derr D, Gu YQ, Heath S. Structural and transcriptional analysis of plant genes encoding the bifunctional lysine ketoglutarate reductase saccharopine dehydrogenase enzyme. BMC PLANT BIOLOGY 2010; 10:113. [PMID: 20565711 PMCID: PMC3017810 DOI: 10.1186/1471-2229-10-113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 06/16/2010] [Indexed: 05/14/2023]
Abstract
BACKGROUND Among the dietary essential amino acids, the most severely limiting in the cereals is lysine. Since cereals make up half of the human diet, lysine limitation has quality/nutritional consequences. The breakdown of lysine is controlled mainly by the catabolic bifunctional enzyme lysine ketoglutarate reductase - saccharopine dehydrogenase (LKR/SDH). The LKR/SDH gene has been reported to produce transcripts for the bifunctional enzyme and separate monofunctional transcripts. In addition to lysine metabolism, this gene has been implicated in a number of metabolic and developmental pathways, which along with its production of multiple transcript types and complex exon/intron structure suggest an important node in plant metabolism. Understanding more about the LKR/SDH gene is thus interesting both from applied standpoint and for basic plant metabolism. RESULTS The current report describes a wheat genomic fragment containing an LKR/SDH gene and adjacent genes. The wheat LKR/SDH genomic segment was found to originate from the A-genome of wheat, and EST analysis indicates all three LKR/SDH genes in hexaploid wheat are transcriptionally active. A comparison of a set of plant LKR/SDH genes suggests regions of greater sequence conservation likely related to critical enzymatic functions and metabolic controls. Although most plants contain only a single LKR/SDH gene per genome, poplar contains at least two functional bifunctional genes in addition to a monofunctional LKR gene. Analysis of ESTs finds evidence for monofunctional LKR transcripts in switchgrass, and monofunctional SDH transcripts in wheat, Brachypodium, and poplar. CONCLUSIONS The analysis of a wheat LKR/SDH gene and comparative structural and functional analyses among available plant genes provides new information on this important gene. Both the structure of the LKR/SDH gene and the immediately adjacent genes show lineage-specific differences between monocots and dicots, and findings suggest variation in activity of LKR/SDH genes among plants. Although most plant genomes seem to contain a single conserved LKR/SDH gene per genome, poplar possesses multiple contiguous genes. A preponderance of SDH transcripts suggests the LKR region may be more rate-limiting. Only switchgrass has EST evidence for LKR monofunctional transcripts. Evidence for monofunctional SDH transcripts shows a novel intron in wheat, Brachypodium, and poplar.
Collapse
Affiliation(s)
- Olin D Anderson
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - Devin Coleman-Derr
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
- Department of Plant Sciences, University of California, Berkeley, CA 94720, USA
| | - Yong Q Gu
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - Sekou Heath
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
- 783 Euclid Avenue, Berkeley, CA 94708, USA
| |
Collapse
|
22
|
Araújo WL, Ishizaki K, Nunes-Nesi A, Larson TR, Tohge T, Krahnert I, Witt S, Obata T, Schauer N, Graham IA, Leaver CJ, Fernie AR. Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. THE PLANT CELL 2010; 22:1549-63. [PMID: 20501910 PMCID: PMC2899879 DOI: 10.1105/tpc.110.075630] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/05/2010] [Accepted: 05/10/2010] [Indexed: 05/17/2023]
Abstract
The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route.
Collapse
Affiliation(s)
- Wagner L. Araújo
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | | | - Adriano Nunes-Nesi
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Tony R. Larson
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York YO10 5YW, United Kingdom
| | - Takayuki Tohge
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Ina Krahnert
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Sandra Witt
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Toshihiro Obata
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Nicolas Schauer
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Ian A. Graham
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York YO10 5YW, United Kingdom
| | | | - Alisdair R. Fernie
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
- Address correspondence to
| |
Collapse
|
23
|
High-lysine maize: the key discoveries that have made it possible. Amino Acids 2010; 39:979-89. [PMID: 20373119 DOI: 10.1007/s00726-010-0576-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
Forty-five years ago, a paper published by Mertz et al. (Science 145:279-280, 1964) initiated a revolution in the history of plant protein quality and affected dramatically the study of cereal crop storage proteins. The observation of the high lysine content of the endosperm of the opaque-2 (o2) maize mutant was a key factor in bringing about a new concept in the production of cereal seeds with a high nutritional value. It has been a long and very interesting road with astonishing results over these 45 years. We are now probably about to see the release of commercially engineered high-lysine maize lines. We have decided to pinpoint some key contributions to the science behind high-lysine plants and concentrated on the research done on maize, which is possibly the most complete and simple example to illustrate the advances achieved. However, studies on other plant species such as barley and model species such as tobacco are totally relevant and will be briefly addressed.
Collapse
|
24
|
Sands DC, Morris CE, Dratz EA, Pilgeram A. Elevating optimal human nutrition to a central goal of plant breeding and production of plant-based foods. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2009; 177:377-89. [PMID: 20467463 PMCID: PMC2866137 DOI: 10.1016/j.plantsci.2009.07.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
High-yielding cereals and other staples have produced adequate calories to ward off starvation for much of the world over several decades. However, deficiencies in certain amino acids, minerals, vitamins and fatty acids in staple crops, and animal diets derived from them, have aggravated the problem of malnutrition and the increasing incidence of certain chronic diseases in nominally well-nourished people (the so-called diseases of civilization). Enhanced global nutrition has great potential to reduce acute and chronic disease, the need for health care, the cost of health care, and to increase educational attainment, economic productivity and the quality of life. However, nutrition is currently not an important driver of most plant breeding efforts, and there are only a few well-known efforts to breed crops that are adapted to the needs of optimal human nutrition. Technological tools are available to greatly enhance the nutritional value of our staple crops. However, enhanced nutrition in major crops might only be achieved if nutritional traits are introduced in tandem with important agronomic yield drivers, such as resistance to emerging pests or diseases, to drought and salinity, to herbicides, parasitic plants, frost or heat. In this way we might circumvent a natural tendency for high yield and low production cost to effectively select against the best human nutrition. Here we discuss the need and means for agriculture, food processing, food transport, sociology, nutrition and medicine to be integrated into new approaches to food production with optimal human nutrition as a principle goal.
Collapse
Affiliation(s)
- David C Sands
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT, USA.
| | | | | | | |
Collapse
|