1
|
Nair AV, Singh A, Chakravortty D. Defence Warriors: Exploring the crosstalk between polyamines and oxidative stress during microbial pathogenesis. Redox Biol 2025; 83:103648. [PMID: 40288044 DOI: 10.1016/j.redox.2025.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Microbial infections have been a widely studied area of disease research since historical times, yet they are a cause of severe illness and deaths worldwide. Furthermore, infections by pathogens are not just restricted to humans; instead, a diverse range of hosts, including plants, livestock, marine organisms and fish, cause significant economic losses and pose threats to humans through their transmission in the food chain. It is now believed that both the pathogen and the host contribute to the outcomes of a disease pathology. Researchers have unravelled numerous aspects of host-pathogen interactions, offering valuable insights into the physiological, cellular and molecular processes and factors that contribute to the development of infectious diseases. Polyamines are key factors regulating cellular processes and human ageing and health. However, they are often overlooked in the context of host-pathogen interactions despite playing a dynamic role as a defence molecule from the perspective of the host as well as the pathogen. They form a complex network interacting with several molecules within the cell, with reactive oxygen species being a key component. This review presents a thorough overview of the current knowledge of polyamines and their intricate interactions with reactive oxygen species in the infection of multiple pathogens in diverse hosts. Interestingly, the review covers the interplay of the commensals and pathogen infection involving polyamines and reactive oxygen species, highlighting an unexplored area within this field. From a future perspective, the dynamic interplay of polyamines and oxidative stress in microbial pathogenesis is a fascinating area that widens the scope of developing therapeutic strategies to combat deadly infections.
Collapse
Affiliation(s)
- Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India; Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| |
Collapse
|
2
|
Pretorius CJ, Steenkamp PA, Dubery IA. Metabolome profiling dissects the oat (Avena sativa L.) innate immune response to Pseudomonas syringae pathovars. PLoS One 2025; 20:e0311226. [PMID: 39899505 PMCID: PMC11790117 DOI: 10.1371/journal.pone.0311226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 02/05/2025] Open
Abstract
One of the most important characteristics of successful plant defence is the ability to rapidly identify potential threats in the surrounding environment. Plants rely on the perception of microbe-derived molecular pattern chemicals for this recognition, which initiates a number of induced defence reactions that ultimately increase plant resistance. The metabolome acts as a metabolic fingerprint of the biochemical activities of a biological system under particular conditions, and therefore provides a functional readout of the cellular mechanisms involved. Untargeted metabolomics was applied to decipher the biochemical processes related to defence responses of oat plants inoculated with pathovars of Pseudomonas syringae (pathogenic and non-pathogenic on oat) and thereby identify signatory markers that are involved in host or nonhost defence responses. The strains were P. syringae pv. coronafaciens (Ps-c), P. syringae pv. tabaci, P. syringae pv. tomato DC3000 and the hrcC mutant of DC3000. At the seedling growth stage, metabolic alterations in the Dunnart oat cultivar (tolerant to Ps-c) in response to inoculation with the respective P. syringae pathovars were examined following perception and response assays. Following inoculation, plants were monitored for symptom development and harvested at 2-, 4- and 6 d.p.i. Methanolic leaf extracts were analysed by ultra-high-performance liquid chromatography (UHPLC) connected to high-definition mass spectrometry. Chemometric modelling and multivariate statistical analysis indicated time-related metabolic reconfigurations that point to host and nonhost interactions in response to bacterial inoculation/infection. Metabolic profiles derived from further multivariate data analyses revealed a range of metabolite classes involved in the respective defence responses, including fatty acids, amino acids, phenolic acids and phenolic amides, flavonoids, saponins, and alkaloids. The findings in this study allowed the elucidation of metabolic changes involved in oat defence responses to a range of pathovars of P. syringae and ultimately contribute to a more comprehensive view of the oat plant metabolism under biotic stress during host vs nonhost interactions.
Collapse
Affiliation(s)
- Chanel J. Pretorius
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Johannesburg, South Africa
| | - Paul A. Steenkamp
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Johannesburg, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
3
|
Burke R, Nicotra D, Phelan J, Downey F, McCabe PF, Kacprzyk J. Spermine and spermidine inhibit or induce programmed cell death in Arabidopsis thaliana in vitro and in vivo in a dose-dependent manner. FEBS J 2024; 291:3665-3685. [PMID: 38808914 DOI: 10.1111/febs.17165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Polyamines are ubiquitous biomolecules with a number of established functions in eukaryotic cells. In plant cells, polyamines have previously been linked to abiotic and biotic stress tolerance, as well as to the modulation of programmed cell death (PCD), with contrasting reports on their pro-PCD and pro-survival effects. Here, we used two well-established platforms for the study of plant PCD, Arabidopsis thaliana suspension cultures cells and the root hair assay, to examine the roles of the polyamines spermine and spermidine in the regulation of PCD. Using these systems for precise quantification of cell death rates, we demonstrate that both polyamines can trigger PCD when applied exogenously at higher doses, whereas at lower concentrations they inhibit PCD induced by both biotic and abiotic stimuli. Furthermore, we show that concentrations of polyamines resulting in inhibition of PCD generated a transient ROS burst in our experimental system, and activated the expression of oxidative stress- and pathogen response-associated genes. Finally, we examined PCD responses in existing Arabidopsis polyamine synthesis mutants, and identified a subtle PCD phenotype in Arabidopsis seedlings deficient in thermo-spermine. The presented data show that polyamines can have a role in PCD regulation; however, that role is dose-dependent and consequently they may act as either inhibitors, or inducers, of PCD in Arabidopsis.
Collapse
Affiliation(s)
- Rory Burke
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Daniele Nicotra
- School of Biology and Environmental Science, University College Dublin, Ireland
- Department of Agriculture, Food and Environment, University of Catania, Italy
| | - Jim Phelan
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Frances Downey
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Ireland
| |
Collapse
|
4
|
Alfaro-Quezada JF, Martínez JP, Molinett S, Valenzuela M, Montenegro I, Ramírez I, Dorta F, Ávila-Valdés A, Gharbi E, Zhou M, Dailly H, Quinet M, Lutts S, Seeger M. Rootstock increases the physiological defence of tomato plants against Pseudomonas syringae pv. tomato infection. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2891-2911. [PMID: 36723875 DOI: 10.1093/jxb/erad040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/30/2023] [Indexed: 06/06/2023]
Abstract
Climate change has intensified the infection of tomato plants by pathogens such as Pseudomonas syringae pv. tomato (Pst). Rootstocks may increase plant tolerance to leaf phytopathogens. The aim of this study was to evaluate the effects of the tolerant Poncho Negro (R) tomato rootstock on physiological defence and the role of hydrogen sulfide (H2S) in susceptible Limachino (L) tomato plant responses to Pst attack. Ungrafted (L), self-grafted (L/L), and grafted (L/R) plants were infected with Pst. Rootstock increased the concentration of antioxidant compounds including ascorbate in the scion. Tolerant rootstock induced an increase of H2S in the scion, which correlated with enhanced expression of the SlAPX2 gene. A high accumulation of salicylic acid was observed in Pst-inoculated grafted L/L and L/R plants, but this was higher in L/R plants. The increase of H2S during Pst infection was associated with a reduction of ethylene in L/R plants. Our study indicates that the Poncho Negro rootstock reduced the symptoms of bacterial speck disease in the Limachino tomato plants, conferring tolerance to Pst infection. This study provides new knowledge about the impact of rootstock in the defence of tomato plants against leaf pathogens that could be used in sustainable management of tomato cultivation.
Collapse
Affiliation(s)
- Juan Felipe Alfaro-Quezada
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional La Cruz, Chorrillos 86, La Cruz, Chile
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
- Laboratorio de Fitopatología de Frutales, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional Quilamapu, Avenida Vicente Méndez 515, Chillán, Chile
| | - Juan Pablo Martínez
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional La Cruz, Chorrillos 86, La Cruz, Chile
| | - Sebastian Molinett
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional La Cruz, Chorrillos 86, La Cruz, Chile
| | - Miryam Valenzuela
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - Ivan Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar, Chile
| | - Ingrid Ramírez
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - Fernando Dorta
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - Andrea Ávila-Valdés
- Graduate School, Faculty of Agricultural Sciences & Centro de Investigación en Suelos Volcánicos, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Emna Gharbi
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mingxi Zhou
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Ceske Budejovice, 37005, Czech Republic
| | - Hélène Dailly
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| |
Collapse
|
5
|
Shahbaz E, Ali M, Shafiq M, Atiq M, Hussain M, Balal RM, Sarkhosh A, Alferez F, Sadiq S, Shahid MA. Citrus Canker Pathogen, Its Mechanism of Infection, Eradication, and Impacts. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010123. [PMID: 36616252 PMCID: PMC9824702 DOI: 10.3390/plants12010123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 05/16/2023]
Abstract
Citrus canker is a ravaging bacterial disease threatening citrus crops. Its major types are Asiatic Canker, Cancrosis B, and Cancrosis C, caused by Xanthomonas citri pv. citri (Xcc), Xanthomonas citri pv. aurantifolii pathotype-B (XauB), and pathotype-C (XauC), respectively. The bacterium enters its host through stomata and wounds, from which it invades the intercellular spaces in the apoplast. It produces erumpent corky necrotic lesions often surrounded by a chlorotic halo on the leaves, young stems, and fruits, which causes dark spots, defoliation, reduced photosynthetic rate, rupture of leaf epidermis, dieback, and premature fruit drop in severe cases. Its main pathogenicity determinant gene is pthA, whose variants are present in all citrus canker-causing pathogens. Countries where citrus canker is not endemic adopt different methods to prevent the introduction of the pathogen into the region, eradicate the pathogen, and minimize its dissemination, whereas endemic regions require an integrated management program to control the disease. The main aim of the present manuscript is to shed light on the pathogen profile, its mechanism of infection, and fruitful strategies for disease management. Although an adequate method to completely eradicate citrus canker has not been introduced so far, many new methods are under research to abate the disease.
Collapse
Affiliation(s)
- Esha Shahbaz
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Mobeen Ali
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mujahid Hussain
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
| | - Rashad Mukhtar Balal
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Fernando Alferez
- Horticultural Science Department, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142, USA
| | - Saleha Sadiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
- Correspondence:
| |
Collapse
|
6
|
Xi Y, Hu W, Zhou Y, Liu X, Qian Y. Genome-Wide Identification and Functional Analysis of Polyamine Oxidase Genes in Maize Reveal Essential Roles in Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:950064. [PMID: 35991458 PMCID: PMC9386529 DOI: 10.3389/fpls.2022.950064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Polyamines (PAs) play a critical role in growth and developmental processes and stress responses in plants. Polyamine oxidase (PAO) is a flavin adenine dinucleotide (FAD)-dependent enzyme that plays a major role in PA catabolism. Here, for the first time, PAO genes in maize were screened for the whole genome-wide and nine ZmPAO genes were identified in this study, named as ZmPAO1-9. Based on structural characteristics and a comparison of phylogenetic relationships of PAO gene families from seven representative species, all nine PAO proteins in maize were categorized into three distinct subfamilies. Further, chromosome location and schematic structure revealed an unevenly distribution on chromosomes and evolutionarily conserved structure features of ZmPAO genes in maize, respectively. Furthermore, transcriptome analysis demonstrated that ZmPAO genes showed differential expression patterns at diverse developmental stages of maize, suggesting that these genes may play functional developmental roles in multiple tissues. Further, through qRT-PCR validation, these genes were confirmed to be responsive to heat, drought and salinity stress treatments in three various tissues, indicating their potential roles in abiotic stress responses. Eventually, to verify the biological function of ZmPAO genes, the transgenic Arabidopsis plants overexpressing ZmPAO6 gene were constructed as a typical representative to explore functional roles in plants. The results demonstrated that overexpression of ZmPAO6 can confer enhanced heat tolerance through mediating polyamine catabolism in transgenic Arabidopsis, which might result in reduced H2O2 and MDA accumulation and alleviated chlorophyll degradation under heat stress treatment, indicating that ZmPAO6 may play a crucial role in enhancing heat tolerance of transgenic Arabidopsis through the involvement in various physiological processes. Further, the expression analysis of related genes of antioxidant enzymes including glutathione peroxidase (GPX) and ascorbate peroxidase (APX) demonstrated that ZmPAO6 can enhance heat resistance in transgenic Arabidopsis through modulating heat-induced H2O2 accumulation in polyamine catabolism. Taken together, our results are the first to report the ZmPAO6 gene response to heat stress in plants and will serve to present an important theoretical basis for further unraveling the function and regulatory mechanism of ZmPAO genes in growth, development and adaptation to abiotic stresses in maize.
Collapse
|
7
|
Dmochowska-Boguta M, Kloc Y, Orczyk W. Polyamine Oxidation Is Indispensable for Wheat (Triticum aestivum L.) Oxidative Response and Necrotic Reactions during Leaf Rust (Puccinia triticina Eriks.) Infection. PLANTS 2021; 10:plants10122787. [PMID: 34961257 PMCID: PMC8703351 DOI: 10.3390/plants10122787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Hydrogen peroxide is a signal and effector molecule in the plant response to pathogen infection. Wheat resistance to Puccinia triticina Eriks. is associated with necrosis triggered by oxidative burst. We investigated which enzyme system dominated in host oxidative reaction to P. triticina infection. The susceptible Thatcher cultivar and isogenic lines with defined resistance genes were inoculated with P. triticina spores. Using diamine oxidase (DAO) and polyamine oxidase (PAO) inhibitors, accumulation of H2O2 was analyzed in the infection sites. Both enzymes participated in the oxidative burst during compatible and incompatible interactions. Accumulation of H2O2 in guard cells, i.e., the first phase of the response, depended on DAO and the role of PAO was negligible. During the second phase, the patterns of H2O2 accumulation in the infection sites were more complex. Accumulation of H2O2 during compatible interaction (Thatcher and TcLr34 line) moderately depended on DAO and the reaction of TcLr34 was stronger than that of Thatcher. Accumulation of H2O2 during incompatible interaction of moderately resistant plants (TcLr24, TcLr25 and TcLr29) was DAO-dependent in TcLr29, while the changes in the remaining lines were not statistically significant. A strong oxidative burst in resistant plants (TcLr9, TcLr19, TcLr26) was associated with both enzymes’ activities in TcLr9 and only with DAO in TcLr19 and TcLr26. The results are discussed in relation to other host oxidative systems, necrosis, and resistance level.
Collapse
|
8
|
Rossi FR, Gárriz A, Marina M, Pieckenstain FL. Modulation of polyamine metabolism in Arabidopsis thaliana by salicylic acid. PHYSIOLOGIA PLANTARUM 2021; 173:843-855. [PMID: 34109645 DOI: 10.1111/ppl.13478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Polyamines (PAs) play important roles in plant defense against pathogens, but the regulation of PA metabolism by hormone-mediated defense signaling pathways has not been studied in depth. In this study, the modulation of PA metabolism by salicylic acid (SA) was analyzed in Arabidopsis by combining the exogenous application of this hormone with PA biosynthesis and SA synthesis/signaling mutants. SA induced notable modifications of PA metabolism, mainly consisting in putrescine (Put) accumulation both in whole-plant extracts and apoplastic fluids. Put was accumulated at the expense of increased biosynthesis by ARGININE DECARBOXYLASE 2 and decreased oxidation by copper amine oxidase. Enhancement of Put levels by SA was independent of the regulatory protein NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and the signaling kinases MKK4 and MPK3, but depended on MPK6. However, plant infection by Pseudomonas syringae pv. tomato DC3000 elicited Put accumulation in an SA-dependent way. The present study demonstrates a clear connection between SA signaling and plant PA metabolism in Arabidopsis and contributes to understanding the mechanisms by which SA modulates PA levels during plant-pathogen interactions.
Collapse
Affiliation(s)
- Franco R Rossi
- Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Andrés Gárriz
- Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - María Marina
- Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Fernando L Pieckenstain
- Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| |
Collapse
|
9
|
Kofsky J, Zhang H, Song BH. Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean. Sci Rep 2021; 11:7967. [PMID: 33846373 PMCID: PMC8041904 DOI: 10.1038/s41598-021-86793-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Soybean cyst nematode (SCN, Heterodera glycine Ichinohe) is the most damaging soybean pest worldwide and management of SCN remains challenging. The current SCN resistant soybean cultivars, mainly developed from the cultivated soybean gene pool, are losing resistance due to SCN race shifts. The domestication process and modern breeding practices of soybean cultivars often involve strong selection for desired agronomic traits, and thus, decreased genetic variation in modern cultivars, which consequently resulted in limited sources of SCN resistance. Wild soybean (Glycine soja) is the wild ancestor of cultivated soybean (Glycine max) and it's gene pool is indisputably more diverse than G. max. Our aim is to identify novel resistant genetic resources from wild soybean for the development of new SCN resistant cultivars. In this study, resistance response to HG type 2.5.7 (race 5) of SCN was investigated in a newly identified SCN resistant ecotype, NRS100. To understand the resistance mechanism in this ecotype, we compared RNA seq-based transcriptomes of NRS100 with two SCN-susceptible accessions of G. soja and G. max, as well as an extensively studied SCN resistant cultivar, Peking, under both control and nematode J2-treated conditions. The proposed mechanisms of resistance in NRS100 includes the suppression of the jasmonic acid (JA) signaling pathway in order to allow for salicylic acid (SA) signaling-activated resistance response and polyamine synthesis to promote structural integrity of root cell walls. Our study identifies a set of novel candidate genes and associated pathways involved in SCN resistance and the finding provides insight into the mechanism of SCN resistance in wild soybean, advancing the understanding of resistance and the use of wild soybean-sourced resistance for soybean improvement.
Collapse
Affiliation(s)
- Janice Kofsky
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Hengyou Zhang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
10
|
Zhu L, Qian N, Sun Y, Lu X, Duan H, Qian L. Pseudomonas fluorescens DN16 Enhances Cucumber Defense Responses Against the Necrotrophic Pathogen Botrytis cinerea by Regulating Thermospermine Catabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:645338. [PMID: 33692821 PMCID: PMC7937916 DOI: 10.3389/fpls.2021.645338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Plants can naturally interact with beneficial rhizobacteria to mediate defense responses against foliar pathogen infection. However, the mechanisms of rhizobacteria-mediated defense enhancement remain rarely clear. In this study, beneficial rhizobacterial strain Pseudomonas fluorescens DN16 greatly increased the resistance of cucumber plants against Botrytis cinerea infection. RNA-sequencing analyses showed that several polyamine-associated genes including a thermospermine (TSpm) synthase gene (CsACL5) and polyamine catabolic genes (CsPAO1, CsPAO5, and CsCuAO1) were notably induced by DN16. The associations of TSpm metabolic pathways with the DN16-mediated cucumber defense responses were further investigated. The inoculated plants exhibited the increased leaf TSpm levels compared with the controls. Accordantly, overexpression of CsACL5 in cucumber plants markedly increased leaf TSpm levels and enhanced defense against B. cinerea infection. The functions of TSpm catabolism in the DN16-mediated defense responses of cucumber plants to B. cinerea were further investigated by pharmacological approaches. Upon exposure to pathogen infection, the changes of leaf TSpm levels were positively related to the enhanced activities of polyamine catabolic enzymes including polyamine oxidases (PAOs) and copper amine oxidases (CuAOs), which paralleled the transcription of several defense-related genes such as pathogenesis-related protein 1 (CsPR1) and defensin-like protein 1 (CsDLP1). However, the inhibited activities of polyamine catabolic enzymes abolished the DN16-induced cucumber defense against B. cinerea infection. This was in line with the impaired expression of defense-related genes in the inoculated plants challenged by B. cinerea. Collectively, our findings unraveled a pivotal role of TSpm catabolism in the regulation of the rhizobacteria-primed defense states by mediating the immune responses in cucumber plants after B. cinerea infection.
Collapse
Affiliation(s)
- Lin Zhu
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Nana Qian
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Yujun Sun
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
- College of Life science, Anhui Agricultural University, Hefei, China
| | - Xiaoming Lu
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Haiming Duan
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Lisheng Qian
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
- College of Life science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Ahanger MA, Bhat JA, Siddiqui MH, Rinklebe J, Ahmad P. Integration of silicon and secondary metabolites in plants: a significant association in stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6758-6774. [PMID: 32585681 DOI: 10.1093/jxb/eraa291] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/16/2020] [Indexed: 05/03/2023]
Abstract
As sessile organisms, plants are unable to avoid being subjected to environmental stresses that negatively affect their growth and productivity. Instead, they utilize various mechanisms at the morphological, physiological, and biochemical levels to alleviate the deleterious effects of such stresses. Amongst these, secondary metabolites produced by plants represent an important component of the defense system. Secondary metabolites, namely phenolics, terpenes, and nitrogen-containing compounds, have been extensively demonstrated to protect plants against multiple stresses, both biotic (herbivores and pathogenic microorganisms) and abiotic (e.g. drought, salinity, and heavy metals). The regulation of secondary metabolism by beneficial elements such as silicon (Si) is an important topic. Silicon-mediated alleviation of both biotic and abiotic stresses has been well documented in numerous plant species. Recently, many studies have demonstrated the involvement of Si in strengthening stress tolerance through the modulation of secondary metabolism. In this review, we discuss Si-mediated regulation of the synthesis, metabolism, and modification of secondary metabolites that lead to enhanced stress tolerance, with a focus on physiological, biochemical, and molecular aspects. Whilst mechanisms involved in Si-mediated regulation of pathogen resistance via secondary metabolism have been established in plants, they are largely unknown in the case of abiotic stresses, thus leaving an important gap in our current knowledge.
Collapse
Affiliation(s)
| | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Manzer H Siddiqui
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal, Germany
- Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| |
Collapse
|
12
|
Chávez-Martínez AI, Ortega-Amaro MA, Torres M, Serrano M, Jiménez-Bremont JF. Arabidopsis adc-silenced line exhibits differential defense responses to Botrytis cinerea and Pseudomonas syringae infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:494-503. [PMID: 33049445 DOI: 10.1016/j.plaphy.2020.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 09/26/2020] [Indexed: 05/19/2023]
Abstract
During plant-microbe interactions, polyamines participate in the plant defense response. Previously, we reported that silencing of ADC genes in Arabidopsis thaliana causes a drastic reduction of polyamine levels as well as increments in reactive oxygen species content. In this study, we examined the response of the adc-silenced line to Botrytis cinerea and Pseudomonas syringae infection. The adc-silenced line was more susceptible to Botrytis cinerea, showing larger lesion length and a higher incidence of fungal infection. Pre-treatments with putrescine reestablished the response of the adc-silenced line to Botrytis cinerea, resulting in a similar phenotype to the parental plant. Expression levels of defense-related genes were analyzed during fungal infection showing that the salicylic acid-induced gene PR1 was up-regulated, while the jasmonic acid-related genes LOX3 and PDF1.2, as well as, the camalexin biosynthetic gene PAD3 were down-regulated in the adc-silenced line. Furthermore, methyl jasmonate pre-treatments reduced Botrytis cinerea infection in the adc-silenced line. On the other hand, the adc-silenced line showed an increased resistance to Pseudomonas syringae infection. SA-related genes such as PR1, ZAT1.2, WRKY54 and WRKY70 were highly expressed in the adc-silenced line upon bacterial interaction. Our data show that the adc-silenced line has altered the defense-response against Botrytis cinerea and Pseudomonas syringae, that is consistent with deregulation of SA- and JA-mediated response pathways.
Collapse
Affiliation(s)
- Ana Isabel Chávez-Martínez
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa de San José, 2055, Lomas 4 sección, A.C, 78216, San Luis Potosí, Mexico
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa de San José, 2055, Lomas 4 sección, A.C, 78216, San Luis Potosí, Mexico
| | - Martha Torres
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62209, Cuernavaca, Morelos, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62209, Cuernavaca, Morelos, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa de San José, 2055, Lomas 4 sección, A.C, 78216, San Luis Potosí, Mexico.
| |
Collapse
|
13
|
Plett JM, Plett KL, Wong-Bajracharya J, de Freitas Pereira M, Costa MD, Kohler A, Martin F, Anderson IC. Mycorrhizal effector PaMiSSP10b alters polyamine biosynthesis in Eucalyptus root cells and promotes root colonization. THE NEW PHYTOLOGIST 2020; 228:712-727. [PMID: 32562507 DOI: 10.1111/nph.16759] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Pathogenic microbes are known to manipulate the defences of their hosts through the production of secreted effector proteins. More recently, mutualistic mycorrhizal fungi have also been described as using these secreted effectors to promote host colonization. Here we characterize a mycorrhiza-induced small secreted effector protein of 10 kDa produced by the ectomycorrhizal fungus Pisolithus albus, PaMiSSP10b. We demonstrate that PaMiSSP10b is secreted from fungal hyphae, enters the cells of its host, Eucalyptus grandis, and interacts with an S-adenosyl methionine decarboxylase (AdoMetDC) in the polyamine pathway. Plant polyamines are regulatory molecules integral to the plant immune system during microbial challenge. Using biochemical and transgenic approaches we show that expression of PaMiSSP10b influences levels of polyamines in the plant roots as it enhances the enzymatic activity of AdoMetDC and increases the biosynthesis of higher polyamines. This ultimately favours the colonization success of P. albus. These results identify a new mechanism by which mutualistic microbes are able to manipulate the host´s enzymatic pathways to favour colonization.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Johanna Wong-Bajracharya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Maíra de Freitas Pereira
- INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA GrandEst Nancy, Université de Lorraine, Champenoux, 54280, France
- Bolsista do CNPq, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Maurício Dutra Costa
- Bolsista do CNPq, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Annegret Kohler
- INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA GrandEst Nancy, Université de Lorraine, Champenoux, 54280, France
| | - Francis Martin
- INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA GrandEst Nancy, Université de Lorraine, Champenoux, 54280, France
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
14
|
The effect of phytoglobin overexpression on the plant proteome during nonhost response of barley (Hordeum vulgare) to wheat powdery mildew (Blumeria graminis f. sp. tritici). Sci Rep 2020; 10:9192. [PMID: 32513937 PMCID: PMC7280273 DOI: 10.1038/s41598-020-65907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/05/2020] [Indexed: 11/08/2022] Open
Abstract
Nonhost resistance, a resistance of plant species against all nonadapted pathogens, is considered the most durable and efficient immune system in plants. To increase our understanding of the response of barley plants to infection by powdery mildew, Blumeria graminis f. sp. tritici, we used quantitative proteomic analysis (LC-MS/MS). We compared the response of two genotypes of barley cultivar Golden Promise, wild type (WT) and plants with overexpression of phytoglobin (previously hemoglobin) class 1 (HO), which has previously been shown to significantly weaken nonhost resistance. A total of 8804 proteins were identified and quantified, out of which the abundance of 1044 proteins changed significantly in at least one of the four comparisons ('i' stands for 'inoculated')- HO/WT and HOi/WTi (giving genotype differences), and WTi/WT and HOi/HO (giving treatment differences). Among these differentially abundant proteins (DAP) were proteins related to structural organization, disease/defense, metabolism, transporters, signal transduction and protein synthesis. We demonstrate that quantitative changes in the proteome can explain physiological changes observed during the infection process such as progression of the mildew infection in HO plants that was correlated with changes in proteins taking part in papillae formation and preinvasion resistance. Overexpression of phytoglobins led to modification in signal transduction prominently by dramatically reducing the number of kinases induced, but also in the turnover of other signaling molecules such as phytohormones, polyamines and Ca2+. Thus, quantitative proteomics broaden our understanding of the role NO and phytoglobins play in barley during nonhost resistance against powdery mildew.
Collapse
|
15
|
Hafez YM, Mourad RY, Nasr EB, Attia KOTB, Abdelaal KA, Ghazy AI, Al-Ateeq TK, Ibrahim EI, Mohammed AA. Biochemical and molecular characterization of non-host resistance keys in food crops. Saudi J Biol Sci 2020; 27:1091-1099. [PMID: 32256170 PMCID: PMC7105668 DOI: 10.1016/j.sjbs.2019.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/24/2023] Open
Abstract
Generally, under normal conditions plants are resistant to many of the incompatible pathogens (viral, fungal and bacterial), and this is named "non-host resistance phenomenon". To understand this phenomenon, different types of food crops (faba bean, squash, barley and wheat) were inoculated with compatible and incompatible pathogens. Strong resistance symptoms were observed in the non-host/incompatible pathogen combinations as compared with host/compatible pathogen combinations, which showed severe infection (susceptibility). Reactive oxygen species (ROS) mostly hydrogen peroxide and superoxide were significantly increased early 24 and 48 h after inoculation (hai) in the non-host plants comparing to the host. Antioxidant enzymes activity (catalase, polyphenol oxidase and peroxidase) were not increased at the same early time 24, 48 hai in the non-host resistant and host resistant plants, however, it increased later at 72 and 168 hai. Electrolyte leakage decreased significantly in non-host resistant and host resistant/pathogen combinations. Catalase and peroxidase genes were significantly expressed in non-host resistant and in host resistant plants as compared to the host susceptible one, which did not show expression using RT-PCR technique. Furthermore, Yr5, Yr18 and Yr26 resistant genes were identified positively using PCR in all treatments either host susceptible or non-host resistant plants in which prove that no clear role of these resistant genes in resistance. Early accumulation of ROS could have a dual roles, first role is preventing the growth or killing the pathogens early in the non-host, second, stimulating the gene appearance of related genes in addition the activition of antioxidant enzymes later on which thereby, neutralize the harmful effect of ROS and consequently suppressing disease symptoms. The new finding from this study supporting the plant breeders with new source of resistance to develop new resistant cultivars and/or stop the breakdown of resistance in resistant cultivars.
Collapse
Affiliation(s)
- Yaser M. Hafez
- EPCRS Center of Excellence, Department of Agricultural Botany, Agriculture College, Kafrelsheikh University, Egypt
| | - Rasha Y. Mourad
- EPCRS Center of Excellence, Department of Agricultural Botany, Agriculture College, Kafrelsheikh University, Egypt
| | - El-Baghdady Nasr
- Department of Genetics, Agriculture College, Kafrelsheikh University, Egypt
| | - KOTB Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
- Rice Biotechnology Lab, Rice Research & Training Center, Field Crops Research Institute, Sakha, Kafr EL-Sheikh, Egypt
| | - Khaled A. Abdelaal
- EPCRS Center of Excellence, Department of Agricultural Botany, Agriculture College, Kafrelsheikh University, Egypt
| | - Abdelhalim I. Ghazy
- Plant Production Department, Food Science and Agriculture College, King Saud University, Riyadh, Saudi Arabia
| | - Talal K. Al-Ateeq
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| | - Eid I. Ibrahim
- Plant Production Department, Food Science and Agriculture College, King Saud University, Riyadh, Saudi Arabia
| | - Arif A. Mohammed
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Fraudentali I, Rodrigues-Pousada RA, Tavladoraki P, Angelini R, Cona A. Leaf-Wounding Long-Distance Signaling Targets AtCuAOβ Leading to Root Phenotypic Plasticity. PLANTS 2020; 9:plants9020249. [PMID: 32075218 PMCID: PMC7076439 DOI: 10.3390/plants9020249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/18/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023]
Abstract
The Arabidopsis gene AtCuAOβ (At4g14940) encodes an apoplastic copper amine oxidase (CuAO) highly expressed in guard cells of leaves and flowers and in root vascular tissues, especially in protoxylem and metaxylem precursors, where its expression is strongly induced by the wound signal methyl jasmonate (MeJA). The hydrogen peroxide (H2O2) derived by the AtCuAOβ-driven oxidation of the substrate putrescine (Put), mediates the MeJA-induced early root protoxylem differentiation. Considering that early root protoxylem maturation was also induced by both exogenous Put and leaf wounding through a signaling pathway involving H2O2, in the present study we investigated the role of AtCuAOβ in the leaf wounding-induced early protoxylem differentiation in combination with Put treatment. Quantitative and tissue specific analysis of AtCuAOβ gene expression by RT-qPCR and promoter::green fluorescent protein-β-glucuronidase fusion analysis revealed that wounding of the cotiledonary leaf induced AtCuAOβ gene expression which was particularly evident in root vascular tissues. AtCuAOβ loss-of-function mutants were unresponsive to the injury, not showing altered phenotype upon wounding in comparison to wild type seedlings. Exogenous Put and wounding did not show synergy in inducing early root protoxylem maturation, suggesting their involvement in a shared signaling pathway.
Collapse
Affiliation(s)
- Ilaria Fraudentali
- Department of Science, University “Roma Tre”, 00146 Rome, Italy; (I.F.); (P.T.); (R.A.)
| | | | - Paraskevi Tavladoraki
- Department of Science, University “Roma Tre”, 00146 Rome, Italy; (I.F.); (P.T.); (R.A.)
| | - Riccardo Angelini
- Department of Science, University “Roma Tre”, 00146 Rome, Italy; (I.F.); (P.T.); (R.A.)
| | - Alessandra Cona
- Department of Science, University “Roma Tre”, 00146 Rome, Italy; (I.F.); (P.T.); (R.A.)
- Correspondence: ; Tel.: +39-06-5733-6360
| |
Collapse
|
17
|
Tsaniklidis G, Pappi P, Tsafouros A, Charova SN, Nikoloudakis N, Roussos PA, Paschalidis KA, Delis C. Polyamine homeostasis in tomato biotic/abiotic stress cross-tolerance. Gene 2019; 727:144230. [PMID: 31743771 DOI: 10.1016/j.gene.2019.144230] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
Abstract
Adverse conditions and biotic strain can lead to significant losses and impose limitations on plant yield. Polyamines (PAs) serve as regulatory molecules for both abiotic/biotic stress responses and cell protection in unfavourable environments. In this work, the transcription pattern of 24 genes orchestrating PA metabolism was investigated in Cucumber Mosaic Virus or Potato Virus Y infected and cold stressed tomato plants. Expression analysis revealed a differential/pleiotropic pattern of gene regulation in PA homeostasis upon biotic, abiotic or combined stress stimuli, thus revealing a discrete response specific to diverse stimuli: (i) biotic stress-influenced genes, (ii) abiotic stress-influenced genes, and (iii) concurrent biotic/abiotic stress-regulated genes. The results support different roles for PAs against abiotic and biotic stress. The expression of several genes, significantly induced under cold stress conditions, is mitigated by a previous viral infection, indicating a possible priming-like mechanism in tomato plants pointing to crosstalk among stress signalling. Several genes and resulting enzymes of PA catabolism were stimulated upon viral infection. Hence, we suggest that PA catabolism resulting in elevated H2O2 levels could mediate defence against viral infection. However, after chilling, the activities of enzymes implicated in PA catabolism remained relatively stable or slightly reduced. This correlates to an increase in free PA content, designating a per se protective role of these compounds against abiotic stress.
Collapse
Affiliation(s)
- Georgios Tsaniklidis
- Institute of Olive Tree, Subtropical Plants and Viticulture, Laboratory of Vegetable Crops, Heraklion, Greece
| | - Polyxeni Pappi
- Institute of Olive Tree, Subtropical Plants and Viticulture, Laboratory of Vegetable Crops, Heraklion, Greece
| | - Athanasios Tsafouros
- Agricultural University of Athens, Department of Crop Science, Laboratory of Pomology, Iera Odos 75, Athens 118 55, Greece
| | - Spyridoula N Charova
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | - Nikolaos Nikoloudakis
- Cyprus University of Technology, Department of Agricultural Science, Biotechnology and Food Science, Athinon and Anexartisias 57, Limassol, Cyprus
| | - Petros A Roussos
- Agricultural University of Athens, Department of Crop Science, Laboratory of Pomology, Iera Odos 75, Athens 118 55, Greece
| | - Konstantinos A Paschalidis
- Hellenic Mediterranean University, Department of Agriculture, 71004, Estavromenos, Heraklion, Crete, Greece
| | - Costas Delis
- University of Peloponnese, Department of Agriculture, Antikalamos, Kalamata, 24100, Greece.
| |
Collapse
|
18
|
Li S, He Q, Peng Q, Fang X, Zhu T, Qiao T, Han S. Metabolomics responses of Bambusa pervariabilis × Dendrocalamopsis grandis varieties to Biotic (pathogenic fungus) stress. PHYTOCHEMISTRY 2019; 167:112087. [PMID: 31437664 DOI: 10.1016/j.phytochem.2019.112087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Bambusa pervariabilis × Dendrocalamopsis grandis blight, caused by Arthrinium phaeospermum, is one of the most common and serious diseases in bamboo and occurs in the newly born twigs. Bamboo has suffered large dead areas, including more than 3000 hm2, which greatly threatens the process of returning farmlands to forests and the construction of ecological barriers. To identify differential metabolites and metabolic pathways associated with B. pervariabilis × D. grandis to A. phaeospermum, ultra-performance liquid chromatography (UPLC) and quadrupole-time of flight (Q-TOF) Mass Spectrometry (MS) combined with a data-dependent acquisition method was used to analyse the entire sample spectrum. In total, 13223 positive ion peaks and 10616 negative ion peaks were extracted. OPLS-DA and several other analyses were performed using the original data. The OPLS-DA models showed good quality and had strong predictive power, indicating clear trends in the analyses of the treatment and control groups. Clustering and KEGG pathway analyses were used to screen the differential metabolites in the treatment and control groups from the three B. pervariabilis × D. grandis varieties and reflected their metabolic responses induced by A. phaeospermum infection. The results showed that the three B. pervariabilis × D. grandis varieties mode showed significant changes in the following six resistance-related metabolites after A. phaeospermum invasion in positive and negative ion modes: proline, glutamine, dictamnine, apigenin 7-O-neohesperidoside, glutamate, and cis-Aconitate. The following four main metabolic pathways are involved: Arginine and proline metabolism, Glyoxylate and dicarboxylate metabolism, Biosynthesis of alkaloids derived from shikimate pathway, and Flavone and flavonol biosynthesis. This study lays a foundation for the later detection of differential metabolites and metabolic pathways for targeting, and provides a theoretical basis for disease-resistant breeding and the control of B. pervariabilis × D. grandis blight.
Collapse
Affiliation(s)
- Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China.
| | - Qianqian He
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China.
| | - Qi Peng
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China.
| | - Xinmei Fang
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China.
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China.
| | - Tianmin Qiao
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China.
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China.
| |
Collapse
|
19
|
Genetically Modified Heat Shock Protein90s and Polyamine Oxidases in Arabidopsis Reveal Their Interaction under Heat Stress Affecting Polyamine Acetylation, Oxidation and Homeostasis of Reactive Oxygen Species. PLANTS 2019; 8:plants8090323. [PMID: 31484414 PMCID: PMC6783977 DOI: 10.3390/plants8090323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
One Sentence Summary Heat shock proteins90 (HSP90s) induce acetylation of polyamines (PAs) and interact with polyamine oxidases (PAOs) affecting oxidation of PAs and hydrogen peroxide (H2O2) homeostasis in Arabidopsis thaliana. Abstract The chaperones, heat shock proteins (HSPs), stabilize proteins to minimize proteotoxic stress, especially during heat stress (HS) and polyamine (PA) oxidases (PAOs) participate in the modulation of the cellular homeostasis of PAs and reactive oxygen species (ROS). An interesting interaction of HSP90s and PAOs was revealed in Arabidopsis thaliana by using the pLFY:HSP90RNAi line against the four AtHSP90 genes encoding cytosolic proteins, the T-DNA Athsp90-1 and Athsp90-4 insertional mutants, the Atpao3 mutant and pharmacological inhibitors of HSP90s and PAOs. Silencing of all cytosolic HSP90 genes resulted in several-fold higher levels of soluble spermidine (S-Spd), acetylated Spd (N8-acetyl-Spd) and acetylated spermine (N1-acetyl-Spm) in the transgenic Arabidopsis thaliana leaves. Heat shock induced increase of soluble-PAs (S-PAs) and soluble hydrolyzed-PAs (SH-PAs), especially of SH-Spm, and more importantly of acetylated Spd and Spm. The silencing of HSP90 genes or pharmacological inhibition of the HSP90 proteins by the specific inhibitor radicicol, under HS stimulatory conditions, resulted in a further increase of PA titers, N8-acetyl-Spd and N1-acetyl-Spm, and also stimulated the expression of PAO genes. The increased PA titers and PAO enzymatic activity resulted in a profound increase of PAO-derived hydrogen peroxide (H2O2) levels, which was terminated by the addition of the PAO-specific inhibitor guazatine. Interestingly, the loss-of-function Atpao3 mutant exhibited increased mRNA levels of selected AtHSP90 genes. Taken together, the results herein reveal a novel function of HSP90 and suggest that HSP90s and PAOs cross-talk to orchestrate PA acetylation, oxidation, and PA/H2O2 homeostasis.
Collapse
|
20
|
Metabolomic Profiling of the Host Response of Tomato ( Solanum lycopersicum) Following Infection by Ralstonia solanacearum. Int J Mol Sci 2019; 20:ijms20163945. [PMID: 31416118 PMCID: PMC6720392 DOI: 10.3390/ijms20163945] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Tomato (Solanum lycopersicum) is an important dietary source of bioactive phytochemicals and active breeding programs constantly produce new cultivars possessing superior and desirable traits. The phytopathogenic Ralstonia solanacearum, the causal agent of bacterial wilt, is a highly destructive bacterial disease with a high economic impact on tomato production. This study followed an untargeted metabolomic approach involving four tomato cultivars and aimed at the identification of secondary metabolites involved in plant defense after infection with R. solanacearum. Liquid chromatography coupled to mass spectrometry (LC-MS) in combination with multivariate data analysis and chemometric modelling were utilized for the identification of discriminant secondary metabolites. The total of 81 statistically selected features were annotated belonging to the metabolite classes of amino acids, organic acids, fatty acids, various derivatives of cinnamic acid and benzoic acids, flavonoids and steroidal glycoalkaloids. The results indicate that the phenylpropanoid pathway, represented by flavonoids and hydroxycinnamic acids, is of prime importance in the tomato defense response. The hydroxycinnamic acids esters of quinic acid, hexoses and glucaric acids were identified as signatory biomarkers, as well as the hydroxycinnamic acid amides to polyamines and tyramine. Interestingly, the rapid and differential accumulation of putrescine, dopamine, and tyramine derivatives, along with the presence of a newly documented metabolite, feruloyl serotonin, were documented in the infected plants. Metabolite concentration variability in the different cultivar tissues point to cultivar-specific variation in the speed and manner of resource redistribution between the host tissues. These metabolic phenotypes provide insights into the differential metabolic signatures underlying the defense metabolism of the four cultivars, defining their defensive capabilities to R. solanacearum.
Collapse
|
21
|
Differential Proteomics Based on TMT and PRM Reveal the Resistance Response of Bambusa pervariabilis × Dendrocalamopisis grandis Induced by AP-Toxin. Metabolites 2019; 9:metabo9080166. [PMID: 31405188 PMCID: PMC6724075 DOI: 10.3390/metabo9080166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/02/2023] Open
Abstract
Bambusa pervariabilis McClure × Dendrocalamopsis grandis (Q.H.Dai & X.l.Tao ex Keng f.) Ohrnb. blight is a widespread and dangerous forest fungus disease, and has been listed as a supplementary object of forest phytosanitary measures. In order to study the control of B. pervariabilis × D. grandis blight, this experiment was carried out. In this work, a toxin purified from the pathogen Arthrinium phaeospermum (Corda) Elli, which causes blight in B. pervariabilis × D. grandis, with homologous heterogeneity, was used as an inducer to increase resistance to B. pervariabilis × D. grandis. A functional analysis of the differentially expressed proteins after induction using a tandem mass tag labeling technique was combined with mass spectrometry and liquid chromatography mass spectrometry in order to effectively screen for the proteins related to the resistance of B. pervariabilis × D. grandis to blight. After peptide labeling, a total of 3320 unique peptides and 1791 quantitative proteins were obtained by liquid chromatography mass spectrometry analysis. Annotation and enrichment analysis of these peptides and proteins using the Gene ontology and Kyoto Encyclopedia of Genes and Genomes databases with bioinformatics software show that the differentially expressed protein functional annotation items are mainly concentrated on biological processes and cell components. Several pathways that are prominent in the Kyoto Encyclopedia of Genes and Genomes annotation and enrichment include metabolic pathways, the citrate cycle, and phenylpropanoid biosynthesis. In the Protein-protein interaction networks four differentially expressed proteins-sucrose synthase, adenosine triphosphate-citrate synthase beta chain protein 1, peroxidase, and phenylalanine ammonia-lyase significantly interact with multiple proteins and significantly enrich metabolic pathways. To verify the results of tandem mass tag, the candidate proteins were further verified by parallel reaction monitoring, and the results were consistent with the tandem mass tag data analysis results. It is confirmed that the data obtained by tandem mass tag technology are reliable. Therefore, the differentially expressed proteins and signaling pathways discovered here is the primary concern for subsequent disease resistance studies.
Collapse
|
22
|
Fortes AM, Agudelo-Romero P, Pimentel D, Alkan N. Transcriptional Modulation of Polyamine Metabolism in Fruit Species Under Abiotic and Biotic Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:816. [PMID: 31333688 PMCID: PMC6614878 DOI: 10.3389/fpls.2019.00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/06/2019] [Indexed: 05/29/2023]
Abstract
Polyamines are growth regulators that have been widely implicated in abiotic and biotic stresses. They are also associated with fruit set, ripening, and regulation of fruit quality-related traits. Modulation of their content confers fruit resilience, with polyamine application generally inhibiting postharvest decay. Changes in the content of free and conjugated polyamines in response to stress are highly dependent on the type of abiotic stress applied or the lifestyle of the pathogen. Recent studies suggest that exogenous application of polyamines or modulation of polyamine content by gene editing can confer tolerance to multiple abiotic and biotic stresses simultaneously. In this review, we explore data on polyamine synthesis and catabolism in fruit related to pre- and postharvest stresses. Studies of mutant plants, priming of stress responses, and treatments with polyamines and polyamine inhibitors indicate that these growth regulators can be manipulated to increase fruit productivity with reduced use of pesticides and therefore, under more sustainable conditions.
Collapse
Affiliation(s)
- Ana Margarida Fortes
- Faculdade de Ciências de Lisboa, Department of Plant Biology, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - Patricia Agudelo-Romero
- School of Molecular Science, The University of Western Australia, Perth, WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Diana Pimentel
- Faculdade de Ciências de Lisboa, Department of Plant Biology, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
23
|
The Copper Amine Oxidase AtCuAOδ Participates in Abscisic Acid-Induced Stomatal Closure in Arabidopsis. PLANTS 2019; 8:plants8060183. [PMID: 31226798 PMCID: PMC6630932 DOI: 10.3390/plants8060183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 01/06/2023]
Abstract
Plant copper amine oxidases (CuAOs) are involved in wound healing, defense against pathogens, methyl-jasmonate-induced protoxylem differentiation, and abscisic acid (ABA)-induced stomatal closure. In the present study, we investigated the role of the Arabidopsis thaliana CuAOδ (AtCuAOδ; At4g12290) in the ABA-mediated stomatal closure by genetic and pharmacological approaches. Obtained data show that AtCuAOδ is up-regulated by ABA and that two Atcuaoδ T-DNA insertional mutants are less responsive to this hormone, showing reduced ABA-mediated stomatal closure and H2O2 accumulation in guard cells as compared to the wild-type (WT) plants. Furthermore, CuAO inhibitors, as well as the hydrogen peroxide (H2O2) scavenger N,N1-dimethylthiourea, reversed most of the ABA-induced stomatal closure in WT plants. Consistently, AtCuAOδ over-expressing transgenic plants display a constitutively increased stomatal closure and increased H2O2 production compared to WT plants. Our data suggest that AtCuAOδ is involved in the H2O2 production related to ABA-induced stomatal closure.
Collapse
|
24
|
Wang Y, Ye X, Yang K, Shi Z, Wang N, Yang L, Chen J. Characterization, expression, and functional analysis of polyamine oxidases and their role in selenium-induced hydrogen peroxide production in Brassica rapa. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4082-4093. [PMID: 30761554 DOI: 10.1002/jsfa.9638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/03/2019] [Accepted: 02/10/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Selenium (Se)-induced phytotoxicity has been linked to oxidative injury triggered by the accumulation of reactive oxygen species (ROS) due to the disturbance of anti-oxidative systems. However, the way Se stress induces hydrogen peroxide (H2 O2 ) production in plants is a long-standing question. Here we identified the role of polyamine oxidase (PAO) in H2 O2 production in the root of Brassica rapa upon Se stress. RESULTS Studying Se-induced growth inhibition, H2 O2 accumulation, and oxidative injury in the root of Brassica rapa, we found that excessive Se exposure resulted in a remarkable increase in PAO activity. Inhibition of PAO activity led to decreased H2 O2 content and alleviated oxidative injury in the Se-treated root. These results indicated that Se stress induced PAO-dependent H2 O2 production. A total of six BrPAO family members were discovered in the genome of B. rapa by in silico analysis. Se stress pronouncedly upregulated the expression of most BrPAOs and further transient expression analysis proved that it could lead to H2 O2 production. CONCLUSION These results suggest that Se stress upregulates the expression of a set of BrPAOs which further enhances PAO activity, contributing to H2 O2 generation in roots. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongzhu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiefeng Ye
- Tobacco Science College/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou, China
| | - Kang Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhiqi Shi
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ning Wang
- Central Laboratory, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lifei Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jian Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
25
|
Wang W, Paschalidis K, Feng JC, Song J, Liu JH. Polyamine Catabolism in Plants: A Universal Process With Diverse Functions. FRONTIERS IN PLANT SCIENCE 2019; 10:561. [PMID: 31134113 PMCID: PMC6513885 DOI: 10.3389/fpls.2019.00561] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/12/2019] [Indexed: 05/18/2023]
Abstract
Polyamine (PA) catabolic processes are performed by copper-containing amine oxidases (CuAOs) and flavin-containing PA oxidases (PAOs). So far, several CuAOs and PAOs have been identified in many plant species. These enzymes exhibit different subcellular localization, substrate specificity, and functional diversity. Since PAs are involved in numerous physiological processes, considerable efforts have been made to explore the functions of plant CuAOs and PAOs during the recent decades. The stress signal transduction pathways usually lead to increase of the intracellular PA levels, which are apoplastically secreted and oxidized by CuAOs and PAOs, with parallel production of hydrogen peroxide (H2O2). Depending on the levels of the generated H2O2, high or low, respectively, either programmed cell death (PCD) occurs or H2O2 is efficiently scavenged by enzymatic/nonenzymatic antioxidant factors that help plants coping with abiotic stress, recruiting different defense mechanisms, as compared to biotic stress. Amine and PA oxidases act further as PA back-converters in peroxisomes, also generating H2O2, possibly by activating Ca2+ permeable channels. Here, the new research data are discussed on the interconnection of PA catabolism with the derived H2O2, together with their signaling roles in developmental processes, such as fruit ripening, senescence, and biotic/abiotic stress reactions, in an effort to elucidate the mechanisms involved in crop adaptation/survival to adverse environmental conditions and to pathogenic infections.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Konstantinos Paschalidis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Heraklion, Greece
| | - Jian-Can Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jie Song
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
26
|
Kámán‐Tóth E, Dankó T, Gullner G, Bozsó Z, Palkovics L, Pogány M. Contribution of cell wall peroxidase- and NADPH oxidase-derived reactive oxygen species to Alternaria brassicicola-induced oxidative burst in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2019; 20:485-499. [PMID: 30426643 PMCID: PMC6637864 DOI: 10.1111/mpp.12769] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell wall peroxidases and plasma membrane-localized NADPH oxidases are considered to be the main sources of the apoplastic oxidative burst in plants attacked by microbial pathogens. In spite of this established doctrine, approaches attempting a comparative, side-by-side analysis of the functions of extracellular reactive oxygen species (ROS) generated by the two enzymatic sources are scarce. Previously, we have reported the role of Arabidopsis NADPH oxidase RBOHD (respiratory burst oxidase homologue D) in plants challenged with the necrotrophic fungus Alternaria brassicicola. Here, we present results on the activity of apoplastic class III peroxidases PRX33 (At3g49110) and PRX34 (At3g49120) investigated in the same Arabidopsis-Alternaria pathosystem. ROS generated by Arabidopsis peroxidases PRX33 and PRX34 increase the necrotic symptoms and colonization success of A. brassicicola. In addition, the knockdown of PRX33 and PRX34 transcript levels leads to a reduced number of host cells showing an extracellular burst of ROS after inoculation with A. brassicicola. Our results also reveal an age-dependent transcript distribution of ROS-producing peroxidase and NADPH oxidase enzymes, and some potential new components of the RBOHD, PRX33 and PRX34 signalling networks.
Collapse
Affiliation(s)
- Evelin Kámán‐Tóth
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - Tamás Dankó
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - Zoltán Bozsó
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - László Palkovics
- Szent István UniversityFaculty of Horticultural ScienceH‐1118Budapest, Villányi út 29‐43, Hungary
| | - Miklós Pogány
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| |
Collapse
|
27
|
Seifi HS, Shelp BJ. Spermine Differentially Refines Plant Defense Responses Against Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:117. [PMID: 30800140 PMCID: PMC6376314 DOI: 10.3389/fpls.2019.00117] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/23/2019] [Indexed: 05/05/2023]
Abstract
Roles of the major polyamines (mPA), putrescine, spermidine, and spermine (Spm), in various developmental and physiological processes in plants have been well documented. Recently, there has been increasing focus on the link between mPA metabolism and defense response during plant-stress interactions. Empirical evidence is available for a unique role of Spm, distinct from the other mPA, in eliciting an effective defense response to (a)biotic stresses. Our understanding of the precise molecular mechanism(s) by which Spm modulates these defense mechanisms is limited. Further analysis of recent studies indicates that plant Spm functions differently during biotic and abiotic interactions in the regulation of oxidative homeostasis and phytohormone signaling. Here, we summarize and integrate current knowledge about Spm-mediated modulation of plant defense responses to (a)biotic stresses, highlighting the importance of Spm as a potent plant defense activator with broad-spectrum protective effects. A model is proposed to explain how Spm refines defense mechanisms to tailor an optimal resistance response.
Collapse
Affiliation(s)
| | - Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
28
|
Liu C, Atanasov KE, Tiburcio AF, Alcázar R. The Polyamine Putrescine Contributes to H 2O 2 and RbohD/F-Dependent Positive Feedback Loop in Arabidopsis PAMP-Triggered Immunity. FRONTIERS IN PLANT SCIENCE 2019; 10:894. [PMID: 31379894 PMCID: PMC6646693 DOI: 10.3389/fpls.2019.00894] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/24/2019] [Indexed: 05/10/2023]
Abstract
Polyamines are involved in defense against pathogenic microorganisms in plants. However, the role of the polyamine putrescine (Put) during plant defense has remained elusive. In this work, we studied the implication of polyamines during pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) in the model species Arabidopsis thaliana. Our data indicate that polyamines, particularly Put, accumulate in response to non-pathogenic Pseudomonas syringae pv. tomato DC3000 hrcC and in response to the purified PAMP flagellin22. Exogenously supplied Put to Arabidopsis seedlings induces defense responses compatible with PTI activation, such as callose deposition and transcriptional up-regulation of several PTI marker genes. Consistent with this, we show that Put primes for resistance against pathogenic bacteria. Through chemical and genetic approaches, we find that PTI-related transcriptional responses induced by Put are hydrogen peroxide and NADPH oxidase (RBOHD and RBOHF) dependent, thus suggesting that apoplastic ROS mediates Put signaling. Overall, our data indicate that Put amplifies PTI responses through ROS production, leading to enhanced disease resistance against bacterial pathogens.
Collapse
|
29
|
Sayas E, Pérez-Benavente B, Manzano C, Farràs R, Alejandro S, Del Pozo JC, Ferrando A, Serrano R. Polyamines interfere with protein ubiquitylation and cause depletion of intracellular amino acids: a possible mechanism for cell growth inhibition. FEBS Lett 2018; 593:209-218. [PMID: 30447065 DOI: 10.1002/1873-3468.13299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/25/2018] [Accepted: 11/13/2018] [Indexed: 11/06/2022]
Abstract
Spermidine is a polyamine present in eukaryotes with essential functions in protein synthesis. At high concentrations spermidine and norspermidine inhibit growth by unknown mechanisms. Transcriptomic analysis of the effect of norspermidine on the plant Arabidopsis thaliana indicates upregulation of the response to heat stress and denatured proteins. Accordingly, these polyamines inhibit protein ubiquitylation, both in vivo (in yeast, Arabidopsis, and human Hela cells) and in vitro (with recombinant ubiquitin ligase). This interferes with protein degradation by the proteasome, a situation known to deplete cells of amino acids. Norspermidine treatment of yeast cells induces amino acid depletion, and supplementation of media with amino acids counteracts growth inhibition and cellular amino acid depletion but not inhibition of protein polyubiquitylation.
Collapse
Affiliation(s)
- Enric Sayas
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C., Spain
| | | | - Concepción Manzano
- Centro de Biotecnología y Genómica de Plantas, U.P.M.-I.N.I.A., Madrid, Spain
| | - Rosa Farràs
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Santiago Alejandro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C., Spain
| | | | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C., Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C., Spain
| |
Collapse
|
30
|
Abstract
Bacterial pathogens cause plant diseases that threaten the global food supply. To control diseases, it is important to understand how pathogenic bacteria evade plant defense and promote infection. We identify from the phytopathogen Pseudomonas syringae a small-molecule virulence factor—phevamine A. Both the chemical structure and mode of action of phevamine A are different from known bacterial phytotoxins. Phevamine A promotes bacterial growth by suppressing plant immune responses, including both early (the generation of reactive oxygen species) and late (the deposition of cell wall reinforcing callose in leaves and leaf cell death) markers. This work uncovers a widely distributed, small-molecule virulence factor and shows the power of a multidisciplinary approach to identify small molecules important for plant infection. Bacterial plant pathogens cause significant crop damage worldwide. They invade plant cells by producing a variety of virulence factors, including small-molecule toxins and phytohormone mimics. Virulence of the model pathogen Pseudomonas syringae pv. tomato DC3000 (Pto) is regulated in part by the sigma factor HrpL. Our study of the HrpL regulon identified an uncharacterized, three-gene operon in Pto that is controlled by HrpL and related to the Erwinia hrp-associated systemic virulence (hsv) operon. Here, we demonstrate that the hsv operon contributes to the virulence of Pto on Arabidopsis thaliana and suppresses bacteria-induced immune responses. We show that the hsv-encoded enzymes in Pto synthesize a small molecule, phevamine A. This molecule consists of l-phenylalanine, l-valine, and a modified spermidine, and is different from known small molecules produced by phytopathogens. We show that phevamine A suppresses a potentiation effect of spermidine and l-arginine on the reactive oxygen species burst generated upon recognition of bacterial flagellin. The hsv operon is found in the genomes of divergent bacterial genera, including ∼37% of P. syringae genomes, suggesting that phevamine A is a widely distributed virulence factor in phytopathogens. Our work identifies a small-molecule virulence factor and reveals a mechanism by which bacterial pathogens overcome plant defense. This work highlights the power of omics approaches in identifying important small molecules in bacteria–host interactions.
Collapse
|
31
|
Hao Y, Huang B, Jia D, Mann T, Jiang X, Qiu Y, Niitsu M, Berberich T, Kusano T, Liu T. Identification of seven polyamine oxidase genes in tomato (Solanum lycopersicum L.) and their expression profiles under physiological and various stress conditions. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:1-11. [PMID: 29793152 DOI: 10.1016/j.jplph.2018.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 05/24/2023]
Abstract
Polyamines (PAs) are implicated in developmental processes and stress responses of plants. Polyamine oxidases (PAOs), flavin adenine dinucleotide-dependent enzymes that function in PA catabolism, play a critical role. Even though PAO gene families of Arabidopsis and rice have been intensely characterized and their expression in response to developmental and environmental changes has been investigated, little is known about PAOs in tomato (Solanum lycopersicum). We found seven PAO genes in S. lycopersicum and named them SlPAO1∼7. Plant PAOs form four clades in phylogenetic analysis, of which SlPAO1 belongs to clade-I, SlPAO6 and SlPAO7 to clade-III, and the residual four (SlPAO2∼5) to clade-IV, while none belongs to clade-II. All the clade-IV members in tomato also retain the putative peroxisomal-targeting signals in their carboxy termini, suggesting their peroxisome localization. SlPAO1 to SlPAO5 genes consist of 10 exons and 9 introns, while SlPAO6 and SlPAO7 are intronless genes. To address the individual roles of SlPAOs, we analyzed their expression in various tissues and during flowering and fruit development. The expression of SlPAO2∼4 was constitutively high, while that of the other SlPAO members was relatively lower. We further analyzed the expressional changes of SlPAOs upon abiotic stresses, oxidative stresses, phytohormone application, and PA application. Based on the data obtained, we discuss the distinctive roles of SlPAOs.
Collapse
Affiliation(s)
- Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Binbin Huang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Dongyu Jia
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460-8042, USA
| | - Taylor Mann
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460-8042, USA
| | - Xinyi Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yuxing Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Masaru Niitsu
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, 370-0290, Japan
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Georg-Voigt-Str. 14-16, Frankfurt am Main, D-60325, Germany
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577, Japan
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
32
|
Hatmi S, Villaume S, Trotel-Aziz P, Barka EA, Clément C, Aziz A. Osmotic Stress and ABA Affect Immune Response and Susceptibility of Grapevine Berries to Gray Mold by Priming Polyamine Accumulation. FRONTIERS IN PLANT SCIENCE 2018; 9:1010. [PMID: 30050554 PMCID: PMC6050403 DOI: 10.3389/fpls.2018.01010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/21/2018] [Indexed: 05/20/2023]
Abstract
Abiotic factors inducing osmotic stress can affect plant immunity and resistance against pathogen attack. Although a number of studies have characterized grapevine responses to various forms of biotic and abiotic stresses, the relationships between osmotic stress response and susceptibility of mature berries to Botrytis cinerea still remain unknown. In this study, we investigated the effects of osmotic stress and abscisic acid (ABA) on defense responses of mature grapevine berries before and after B. cinerea infection. We focused on the possible involvement of polyamines in the interaction between osmotic stress response and susceptibility to B. cinerea. We showed that osmotic stress induced by PEG or sucrose, and exogenous ABA induce transient but low defense responses, including weak expression of PR genes and phytoalexin synthesis in mature berries. This was accompanied by an upregulation of NCED2 involved in ABA biosynthesis and a large production of free polyamines. However, osmotic stress followed by B. cinerea infection primed berries for enhanced accumulation of polyamines, but slowed down the defense responses and increased susceptibility to the pathogen. A weak increase of diamine- and polyamine-oxidase activities was also recorded in stressed berries, but declined after pathogen infection. The pretreatment of stressed berries with appropriate inhibitors of diamine- and polyamine-oxidases further increased polyamine level and greatly lowered defense responses, leading to higher susceptibility to B. cinerea. These results suggest that increased polyamine titer through low activation of their oxidative degradation in grape berries may contribute at least in part to the weakening of defense responses and subsequent disease susceptibility.
Collapse
Affiliation(s)
| | | | | | | | | | - Aziz Aziz
- Induced Resistance and Plant Bioprotection – RIBP EA 4707, SFR Condorcet FR-CNRS 3417, UFR Sciences, University of Reims, Reims, France
| |
Collapse
|
33
|
Künstler A, Bacsó R, Albert R, Barna B, Király Z, Hafez YM, Fodor J, Schwarczinger I, Király L. Superoxide (O 2.-) accumulation contributes to symptomless (type I) nonhost resistance of plants to biotrophic pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:115-125. [PMID: 29775863 DOI: 10.1016/j.plaphy.2018.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Nonhost resistance is the most common form of disease resistance exhibited by plants against most pathogenic microorganisms. Type I nonhost resistance is symptomless (i.e. no macroscopically visible cell/tissue death), implying an early halt of pathogen growth. The timing/speed of defences is much more rapid during type I nonhost resistance than during type II nonhost and host ("gene-for-gene") resistance associated with a hypersensitive response (localized necrosis, HR). However, the mechanism(s) underlying symptomless (type I) nonhost resistance is not entirely understood. Here we assessed accumulation dynamics of the reactive oxygen species superoxide (O2.-) during interactions of plants with a range of biotrophic and hemibiotrophic pathogens resulting in susceptibility, symptomless nonhost resistance or host resistance with HR. Our results show that the timing of macroscopically detectable superoxide accumulation (1-4 days after inoculation, DAI) is always associated with the speed of the defense response (symptomless nonhost resistance vs. host resistance with HR) in inoculated leaves. The relatively early (1 DAI) superoxide accumulation during symptomless nonhost resistance of barley to wheat powdery mildew (Blumeria graminis f. sp. tritici) is localized to mesophyll chloroplasts of inoculated leaves and coupled to enhanced NADPH oxidase (EC 1.6.3.1) activity and transient increases in expression of genes regulating superoxide levels and cell death (superoxide dismutase, HvSOD1 and BAX inhibitor-1, HvBI-1). Importantly, the partial suppression of symptomless nonhost resistance of barley to wheat powdery mildew by heat shock (49 °C, 45 s) and antioxidant (SOD and catalase) treatments points to a functional role of superoxide in symptomless (type I) nonhost resistance.
Collapse
Affiliation(s)
- András Künstler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Renáta Bacsó
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Réka Albert
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Balázs Barna
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Zoltán Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Yaser Mohamed Hafez
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - József Fodor
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Ildikó Schwarczinger
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary.
| |
Collapse
|
34
|
Transcriptome reprogramming of resistant and susceptible peach genotypes during Xanthomonas arboricola pv. pruni early leaf infection. PLoS One 2018; 13:e0196590. [PMID: 29698473 PMCID: PMC5919700 DOI: 10.1371/journal.pone.0196590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Bacterial spot caused by Xanthomonas arboricola pv. pruni (Xap) is a major threat to Prunus species worldwide. The molecular mechanisms of peach resistance to Xap during early leaf infection were investigated by RNA-Seq analysis of two Prunus persica cultivars, ‘Redkist’ (resistant), and ‘JH Hale’ (susceptible) at 30 minutes, 1 and 3 hours-post-infection (hpi). Both cultivars exhibited extensive modulation of gene expression at 30 mpi, which reduced significantly at 1 hpi, increasing again at 3 hpi. Overall, 714 differentially expressed genes (DEGs) were detected in ‘Redkist’ (12% at 30 mpi and 1 hpi and 88% at 3 hpi). In ‘JH Hale’, 821 DEGs were identified (47% at 30 mpi and 1 hpi and 53% at 3 hpi). Highly up-regulated genes (fold change > 100) at 3 hpi exhibited higher fold change values in ‘Redkist’ than in ‘JH Hale’. RNA-Seq bioinformatics analyses were validated by RT-qPCR. In both cultivars, DEGs included genes with putative roles in perception, signal transduction, secondary metabolism, and transcription regulation, and there were defense responses in both cultivars, with enrichment for the gene ontology terms, ‘immune system process’, ‘defense response’, and ‘cell death’. There were particular differences between the cultivars in the intensity and kinetics of modulation of expression of genes with putative roles in transcriptional activity, secondary metabolism, photosynthesis, and receptor and signaling processes. Analysis of differential exon usage (DEU) revealed that both cultivars initiated remodeling their transcriptomes at 30 mpi; however, ‘Redkist’ exhibited alternative exon usage for a greater number of genes at every time point compared with ‘JH Hale’. Candidate resistance genes (WRKY-like, CRK-like, Copper amine oxidase-like, and TIR-NBS-LRR-like) are of interest for further functional characterization with the aim of elucidating their role in Prunus spp. resistance to Xap.
Collapse
|
35
|
Takahashi Y, Ono K, Akamine Y, Asano T, Ezaki M, Mouri I. Highly-expressed polyamine oxidases catalyze polyamine back conversion in Brachypodium distachyon. JOURNAL OF PLANT RESEARCH 2018; 131:341-348. [PMID: 29063977 DOI: 10.1007/s10265-017-0989-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/04/2017] [Indexed: 05/25/2023]
Abstract
To understand the polyamine (PA) catabolic pathways in Brachypodium distachyon, we focused on the flavin-containing polyamine oxidase enzymes (PAO), and characterized them at the molecular and biochemical levels. Five PAO isoforms were identified from database searches, and we named them BdPAO1 to BdPAO5. By gene expression analysis using above-ground tissues such as leaf, stem and inflorescence, it was revealed that BdPAO2 is the most abundant PAO gene in normal growth conditions, followed by BdPAO3 and BdPAO4. BdPAO1 and BdPAO5 were expressed at very low levels. All Arabidopsis thaliana and rice orthologs belonging to the same clade as BdPAO2, BdPAO3 and BdPAO4 have conserved peroxisome-targeting signal sequences at their C-termini. Amino acid sequences of BdPAO2 and BdPAO4 also showed such a sequence, but BdPAO3 did not. We selected the gene with the highest expression level (BdPAO2) and the peroxisome-targeting signal lacking PAO (BdPAO3) for biochemical analysis of substrate specificity and catabolic pathways. BdPAO2 catalyzed conversion of spermine (Spm) or thermospermine to spermidine (Spd), and Spd to putrescine, but its most-favored substrate was Spd. In contrast, BdPAO3 favored Spm as substrate and catalyzed conversion of tetraamines to Spd. These results indicated that the major PAOs in B. distachyon have back-conversion activity.
Collapse
Affiliation(s)
- Yoshihiro Takahashi
- Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai Higashi-ku, Fukuoka, 813-8503, Japan.
| | - Kaede Ono
- Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai Higashi-ku, Fukuoka, 813-8503, Japan
| | - Yuuta Akamine
- Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai Higashi-ku, Fukuoka, 813-8503, Japan
| | - Takuya Asano
- Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai Higashi-ku, Fukuoka, 813-8503, Japan
| | - Masatoshi Ezaki
- Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai Higashi-ku, Fukuoka, 813-8503, Japan
| | - Itsupei Mouri
- Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai Higashi-ku, Fukuoka, 813-8503, Japan
| |
Collapse
|
36
|
Kmieć K, Sempruch C, Chrzanowski G, Czerniewicz P. The effect of Tetraneura ulmi L. galling process on the activity of amino acid decarboxylases and the content of biogenic amines in Siberian elm tissues. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:69-76. [PMID: 28514972 DOI: 10.1017/s0007485317000505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tetraneura ulmi (L.), a member of Eriosomatinae subfamily, is one of the gall-forming aphids occurring on elms. Sap-sucking behaviour of founding mothers results in the formation of new plant organs. This study documents the changes in the content of plant biogenic amines (putrescine, cadaverine, spermidine, tryptamine, spermine and histamine) and key enzymes of their biosynthesis: lysine decarboxylase (LDC), tyrosine decarboxylase and ornithine decarboxylase (ODC) in galls and other parts of Siberian elm (Ulmus pumila L.) leaves during the galling process. The direction and intensity of these changes for particular amines and enzymes were dependent on the stage of gall development and part of the galling leaf. Generally, the amine content tended to increase in gall tissues during the 1st and 2nd period of the galling process and decreased in later phases. LDC and ODC activities were markedly enhanced, especially in gall tissues at the initial stage of the galling process.
Collapse
Affiliation(s)
- K Kmieć
- Department of Entomology,University of Life Sciences in Lublin,Leszczyńskiego 7,20-069 Lublin,Poland
| | - C Sempruch
- Department of Biochemistry and Molecular Biology,Siedlce University of Natural Sciences and Humanities,Prusa 12,08-110 Siedlce,Poland
| | - G Chrzanowski
- Department of Biochemistry and Molecular Biology,Siedlce University of Natural Sciences and Humanities,Prusa 12,08-110 Siedlce,Poland
| | - P Czerniewicz
- Department of Biochemistry and Molecular Biology,Siedlce University of Natural Sciences and Humanities,Prusa 12,08-110 Siedlce,Poland
| |
Collapse
|
37
|
Romero FM, Maiale SJ, Rossi FR, Marina M, Ruíz OA, Gárriz A. Polyamine Metabolism Responses to Biotic and Abiotic Stress. Methods Mol Biol 2018; 1694:37-49. [PMID: 29080153 DOI: 10.1007/978-1-4939-7398-9_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants have developed different strategies to cope with the environmental stresses they face during their life cycle. The responses triggered under these conditions are usually characterized by significant modifications in the metabolism of polyamines such as putrescine, spermidine, and spermine. Several works have demonstrated that a fine-tuned regulation of the enzymes involved in the biosynthesis and catabolism of polyamines leads to the increment in the concentration of these compounds. Polyamines exert different effects that could help plants to deal with stressful conditions. For instance, they interact with negatively charged macromolecules and regulate their functions, they may act as compatible osmolytes, or present antimicrobial activity against plant pathogens. In addition, they have also been proven to act as regulators of gene expression during the elicitation of stress responses. In this chapter, we reviewed the information available till date in relation to the roles played by polyamines in the responses of plants during biotic and abiotic stress.
Collapse
Affiliation(s)
- Fernando M Romero
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina.
| | - Santiago J Maiale
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Franco R Rossi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Maria Marina
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Oscar A Ruíz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Andrés Gárriz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| |
Collapse
|
38
|
Patel J, Ariyaratne M, Ahmed S, Ge L, Phuntumart V, Kalinoski A, Morris PF. Dual functioning of plant arginases provides a third route for putrescine synthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:62-73. [PMID: 28716421 DOI: 10.1016/j.plantsci.2017.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/04/2017] [Accepted: 05/25/2017] [Indexed: 05/19/2023]
Abstract
Two biosynthetic routes are known for putrescine, an essential plant metabolite. Ornithine decarboxylase (ODC) converts ornithine directly to putrescine, while a second route for putrescine biosynthesis utilizes arginine decarboxylase (ADC) to convert arginine to agmatine, and two additional enzymes, agmatine iminohydrolase (AIH) and N-carbamoyl putrescine aminohydrolase (NLP1) to complete this pathway. Here we show that plants can use ADC and arginase/agmatinase (ARGAH) as a third route for putrescine synthesis. Transformation of Arabidopsis thaliana ADC2, and any of the arginases from A. thaliana (ARGAH1, or ARGHA2) or the soybean gene Glyma.03g028000 (GmARGAH) into a yeast strain deficient in ODC, fully complemented the mutant phenotype. In vitro assays using purified recombinant enzymes of AtADC1 and AtARGAH2 were used to show that these enzymes can function in concert to convert arginine to agmatine and putrescine. Transient expression analysis of the soybean genes (Glyma.06g007500, ADC; Glyma.03g028000 GmARGAH) and the A. thaliana ADC2 and ARGAH genes in leaves of Nicotiana benthamiana, showed that these proteins are localized to the chloroplast. Experimental support for this pathway also comes from the fact that expression of AtARGAH, but not AtAIH or AtNLP1, is co-regulated with AtADC2 in response to drought, oxidative stress, wounding, and methyl jasmonate treatments. Based on the high affinity of ARGAH2 for agmatine, its co-localization with ADC2, and typically low arginine levels in many plant tissues, we propose that these two enzymes can be major contributors to putrescine synthesis in many A. thaliana stress responses.
Collapse
Affiliation(s)
- Jigar Patel
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Menaka Ariyaratne
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Sheaza Ahmed
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Lingxiao Ge
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Vipaporn Phuntumart
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Andrea Kalinoski
- Department of Surgery, University of Toledo, 3000 Arlington Ave, Toledo, OH 43614, United States
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States.
| |
Collapse
|
39
|
Chen H, Cao Y, Li Y, Xia Z, Xie J, Carr JP, Wu B, Fan Z, Zhou T. Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection. THE NEW PHYTOLOGIST 2017; 215:1156-1172. [PMID: 28627019 DOI: 10.1111/nph.14645] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/30/2017] [Indexed: 05/25/2023]
Abstract
Sugarcane mosaic virus (SCMV) is the most important cause of maize dwarf mosaic disease. To identify maize genes responsive to SCMV infection and that may be involved in pathogenesis, a comparative proteomic analysis was performed using the first and second systemically infected leaves (termed 1 SL and 2 SL, respectively). Seventy-one differentially expressed proteins were identified in 1 SL and 2 SL upon SCMV infection. Among them, eight proteins showed the same changing patterns in both 1 SL and 2 SL. Functional annotations of regulated proteins and measurement of photosynthetic activity revealed that photosynthesis was more inhibited and defensive gene expression more pronounced in 1 SL than in 2 SL. Knockdown of regulated proteins in both 1 SL and 2 SL by a brome mosaic virus-based gene silencing vector in maize indicated that protein disulfide isomerase-like and phosphoglycerate kinase were required for optimal SCMV replication. By contrast, knockdown of polyamine oxidase (ZmPAO) significantly increased SCMV accumulation, implying that ZmPAO activity might contribute to resistance or tolerance. The results suggest that combining comparative proteomic analyses of different tissues and virus-induced gene silencing is an efficient way to identify host proteins supporting virus replication or enhancing resistance to virus infection.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yanyong Cao
- Cereal Crops Institute, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yiqing Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zihao Xia
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jipeng Xie
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Boming Wu
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
40
|
de Oliveira LF, Elbl P, Navarro BV, Macedo AF, Dos Santos ALW, Floh EIS, Cooke J. Elucidation of the polyamine biosynthesis pathway during Brazilian pine (Araucaria angustifolia) seed development. TREE PHYSIOLOGY 2017; 37:116-130. [PMID: 28175909 DOI: 10.1093/treephys/tpw107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/28/2016] [Accepted: 10/21/2016] [Indexed: 05/25/2023]
Abstract
Polyamines (PAs), such as spermidine and spermine, as well as amino acids that are substrates for their biosynthesis, are known to be essential for plant development. However, little is known about the gene expression and metabolic switches associated with the ornithine/arginine and PA biosynthetic pathway during seed development in conifers. To understand these metabolic switches, the enzyme activity of arginine decarboxylase and ornithine decarboxylase, as well as the contents of PAs and amino acids were evaluated in three Araucaria angustifolia (Bertol. Kuntze) seed developmental stages in combination with expression profile analyses of genes associated with the ornithine/arginine and PA biosynthetic pathway. Twelve genes were selected for further analysis and it was shown that the expression profiles of AaADC and AaSAMDC were up-regulated during zygotic embryo development. Polyamines and amino acids were found to accumulate differently in embryos and megagametophytes, and the transition from the globular to the cotyledonary stage was marked by an increase in free and conjugated spermidine and spermine contents. Putrescine is made from arginine, which was present at low content at the late embryogenesis stage, when high content of citrulline was observed. Differences in amino acids, PAs and gene expression profiles of biosynthetic genes at specific seed stages and at each seed transition stage were investigated, providing insights into molecular and physiological aspects of conifer embryogenesis for use in future both basic and applied studies.
Collapse
Affiliation(s)
- Leandro F de Oliveira
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - Paula Elbl
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - Bruno V Navarro
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - Amanda F Macedo
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - André L W Dos Santos
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | - Eny I S Floh
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | | |
Collapse
|
41
|
Cheng WH, Zhu HG, Tian WG, Zhu SH, Xiong XP, Sun YQ, Zhu QH, Sun J. De novo transcriptome analysis reveals insights into dynamic homeostasis regulation of somatic embryogenesis in upland cotton (G. hirsutum L.). PLANT MOLECULAR BIOLOGY 2016; 92:279-92. [PMID: 27511192 PMCID: PMC5040755 DOI: 10.1007/s11103-016-0511-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/07/2016] [Indexed: 05/22/2023]
Abstract
Plant regeneration via somatic embryogenesis (SE) is the key step for genetic improvement of cotton (Gossypium hirsutum L.) through genetic engineering mediated by Agrobacteria, but the molecular mechanisms underlying SE in cotton is still unclear. Here, RNA-Sequencing was used to analyze the genes expressed during SE and their expression dynamics using RNAs isolated from non-embryogenic callus (NEC), embryogenic callus (EC) and somatic embryos (SEs). A total of 101, 670 unigenes were de novo assembled. The genes differentially expressed (DEGs) amongst NEC, EC and SEs were identified, annotated and classified. More DEGs were found between SEs and EC than between EC and NEC. A significant number of DEGs were related to hormone homeostasis, stress and ROS responses, and metabolism of polyamines. To confirm the expression dynamics of selected DEGs involved in various pathways, experiments were set up to investigate the effects of hormones (Indole-3-butytric acid, IBA; Kinetin, KT), polyamines, H2O2 and stresses on SE. Our results showed that exogenous application of IBA and KT positively regulated the development of EC and SEs, and that polyamines and H2O2 promoted the conversion of EC into SEs. Furthermore, we found that low and moderate stress is beneficial for proliferation of EC and SEs formation. Together, our global analysis of transcriptomic dynamics reveals that hormone homeostasis, polyamines, and stress response synergistically regulating SE in cotton.
Collapse
Affiliation(s)
- Wen-Han Cheng
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Hua-Guo Zhu
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Wen-Gang Tian
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Shou-Hong Zhu
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Xian-Peng Xiong
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Yu-Qiang Sun
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Qian-Hao Zhu
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, 2601 Australia
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| |
Collapse
|
42
|
Liao W, Wang G, Li Y, Wang B, Zhang P, Peng M. Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava. Sci Rep 2016; 6:21542. [PMID: 26899473 PMCID: PMC4761936 DOI: 10.1038/srep21542] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/26/2016] [Indexed: 12/26/2022] Open
Abstract
Cassava (Manihot esculenta Crantz) plant resists water-deficit stress by shedding leaves leading to adaptive water-deficit condition. Transcriptomic, physiological, cellular, molecular, metabolic, and transgenic methods were used to study the mechanism of cassava abscission zone (AZ) cell separation under water-deficit stress. Microscopic observation indicated that AZ cell separation initiated at the later stages during water-deficit stress. Transcriptome profiling of AZ suggested that differential expression genes of AZ under stress mainly participate in reactive oxygen species (ROS) pathway. The key genes involved in hydrogen peroxide biosynthesis and metabolism showed significantly higher expression levels in AZ than non-separating tissues adjacent to the AZ under stress. Significantly higher levels of hydrogen peroxide correlated with hydrogen peroxide biosynthesis related genes and AZ cell separation was detected by microscopic observation, colorimetric detection and GC-MS analyses under stress. Co-overexpression of the ROS-scavenging proteins SOD and CAT1 in cassava decreased the levels of hydrogen peroxide in AZ under water-deficit stress. The cell separation of the pulvinus AZ also delayed in co-overexpression of the ROS-scavenging proteins SOD and CAT1 plants both in vitro and at the plant level. Together, the results indicated that ROS play an important regulatory role in the process of cassava leaf abscission under water-deficit stress.
Collapse
Affiliation(s)
- Wenbin Liao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Gan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yayun Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bin Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200032, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
43
|
Affiliation(s)
- Yoshihiro TAKAHASHI
- Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University
| |
Collapse
|
44
|
Mo H, Wang X, Zhang Y, Zhang G, Zhang J, Ma Z. Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:962-75. [PMID: 26221980 DOI: 10.1111/tpj.12941] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/20/2015] [Accepted: 07/10/2015] [Indexed: 05/05/2023]
Abstract
Verticillium dahliae is a destructive, soil-borne fungal pathogen that causes vascular wilt disease in many economically important crops worldwide. A polyamine oxidase (PAO) gene was identified and cloned by screening suppression subtractive hybridisation and cDNA libraries of cotton genotypes tolerant to Verticillium wilt and was induced early and strongly by inoculation with V. dahliae and application of plant hormone. Recombinant cotton polyamine oxidase (GhPAO) was found to catalyse the conversion of spermine (Spm) to spermidine (Spd) in vitro. Constitutive expression of GhPAO in Arabidopsis thaliana produced improved resistance to V. dahliae and maintained putrescine, Spd and Spm at high levels. Hydrogen peroxide (H2 O2 ), salicylic acid and camalexin (a phytoalexin) levels were distinctly increased in GhPAO-overexpressing Arabidopsis plants during V. dahliae infection when compared with wild-type plants, and Spm and camalexin efficiently inhibited growth of V. dahliae in vitro. Spermine promoted the accumulation of camalexin by inducing the expression of mitogen-activated protein kinases and cytochrome P450 proteins in Arabidopsis and cotton plants. The three polyamines all showed higher accumulation in tolerant cotton cultivars than in susceptible cotton cultivars after inoculation with V. dahliae. GhPAO silencing in cotton significantly reduced the Spd level and increased the Spm level, leading to enhanced susceptibility to infection by V. dahliae, and the levels of H2 O2 and camalexin were distinctly lower in GhPAO-silenced cotton plants after V. dahliae infection. Together, these results suggest that GhPAO contributes to resistance of the plant against V. dahliae through the mediation of Spm and camalexin signalling.
Collapse
Affiliation(s)
- Huijuan Mo
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Xingfen Wang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Guiyin Zhang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Box 30003, Las Cruces, NM, 88003, USA
| | - Zhiying Ma
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| |
Collapse
|
45
|
Ghuge SA, Tisi A, Carucci A, Rodrigues-Pousada RA, Franchi S, Tavladoraki P, Angelini R, Cona A. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions. PLANTS 2015; 4:489-504. [PMID: 27135338 PMCID: PMC4844406 DOI: 10.3390/plants4030489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/12/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022]
Abstract
Polyamines (PAs) are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). The biologically-active hydrogen peroxide (H2O2) is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.
Collapse
Affiliation(s)
- Sandip A Ghuge
- Institute of Crystallography, Consiglio Nazionale delle Ricerche (CNR), Monterotondo 00015, Italy.
| | - Alessandra Tisi
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
| | - Andrea Carucci
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
| | | | - Stefano Franchi
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
| | - Paraskevi Tavladoraki
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome 00136, Italy.
| | - Riccardo Angelini
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome 00136, Italy.
| | - Alessandra Cona
- Department of Sciences, Università Roma Tre, Roma 00146, Italy.
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome 00136, Italy.
| |
Collapse
|
46
|
Sathyabhama M, Viswanathan R, Nandakumar M, Malathi P, Ramesh Sundar A. Understanding sugarcane defence responses during the initial phase of Colletotrichum falcatum pathogenesis by suppression subtractive hybridization (SSH). PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2015; 91:131-140. [DOI: 10.1016/j.pmpp.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
47
|
Lehmann S, Serrano M, L'Haridon F, Tjamos SE, Metraux JP. Reactive oxygen species and plant resistance to fungal pathogens. PHYTOCHEMISTRY 2015; 112:54-62. [PMID: 25264341 DOI: 10.1016/j.phytochem.2014.08.027] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) have been studied for their role in plant development as well as in plant immunity. ROS were consistently observed to accumulate in the plant after the perception of pathogens and microbes and over the years, ROS were postulated to be an integral part of the defence response of the plant. In this article we will focus on recent findings about ROS involved in the interaction of plants with pathogenic fungi. We will describe the ways to detect ROS, their modes of action and their importance in relation to resistance to fungal pathogens. In addition we include some results from works focussing on the fungal interactor and from studies investigating roots during pathogen attack.
Collapse
Affiliation(s)
- Silke Lehmann
- Department of Biology, University of Fribourg, 10 chemin du Musée, CH-1700 Fribourg, Switzerland.
| | - Mario Serrano
- Department of Biology, University of Fribourg, 10 chemin du Musée, CH-1700 Fribourg, Switzerland.
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, 10 chemin du Musée, CH-1700 Fribourg, Switzerland.
| | - Sotirios E Tjamos
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece.
| | - Jean-Pierre Metraux
- Department of Biology, University of Fribourg, 10 chemin du Musée, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
48
|
Hatmi S, Gruau C, Trotel-Aziz P, Villaume S, Rabenoelina F, Baillieul F, Eullaffroy P, Clément C, Ferchichi A, Aziz A. Drought stress tolerance in grapevine involves activation of polyamine oxidation contributing to improved immune response and low susceptibility to Botrytis cinerea. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:775-87. [PMID: 25385768 DOI: 10.1093/jxb/eru436] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmental factors including drought stress may modulate plant immune responses and resistance to pathogens. However, the relationship between mechanisms of drought tolerance and resistance to pathogens remained unknown. In this study, the effects of drought stress on polyamine (PA) homeostasis and immune responses were investigated in two grapevine genotypes differing in their drought tolerance; Chardonnay (CHR), as sensitive and Meski (MSK), as tolerant. Under drought conditions, MSK plants showed the lowest leaf water loss and reduction of photosynthetic efficiency, and expressed a lower level of NCED2, a gene involved in abscisic acid biosynthesis, compared with CHR plants. The improved drought tolerance in MSK was also coincident with the highest change in free PAs and up-regulation of the genes encoding arginine decarboxylase (ADC), copper amine-oxidase (CuAO), and PA-oxidases (PAO) and their corresponding enzyme activities. MSK plants also accumulated the highest level of amino acids, including Arg, Glu, Gln, Pro, and GABA, emphasizing the participation of PA-related amino acid homeostasis in drought tolerance. Importantly, drought-tolerant plants also exhibited enhanced phytoalexin accumulation and up-regulation of PR genes, especially PR-2 and Chit4c, compared with the sensitive plants. This is consistent with a lower susceptibility of MSK than CHR to Botrytis cinerea. Data suggest a possible connection between water stress tolerance and immune response in grapevine. Pharmacological experiments revealed that under drought conditions CuAO and PAO pathways were involved in the regulation of photosynthetic efficiency, and also of immune response and resistance of grapevine to a subsequent pathogen attack. These results open new views to improve our understanding of crosstalk between drought tolerance mechanisms and immune response.
Collapse
Affiliation(s)
- Saloua Hatmi
- URVVC EA 4707, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Charlotte Gruau
- URVVC EA 4707, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Patricia Trotel-Aziz
- URVVC EA 4707, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Sandra Villaume
- URVVC EA 4707, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Fanja Rabenoelina
- URVVC EA 4707, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Fabienne Baillieul
- URVVC EA 4707, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Philippe Eullaffroy
- URVVC EA 4707, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Christophe Clément
- URVVC EA 4707, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Ali Ferchichi
- Institut des Régions Arides, Aridoculture and Oasis Cropping, 4119 Medenine, Tunisia
| | - Aziz Aziz
- URVVC EA 4707, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| |
Collapse
|
49
|
Subramanyam S, Sardesai N, Minocha SC, Zheng C, Shukle RH, Williams CE. Hessian fly larval feeding triggers enhanced polyamine levels in susceptible but not resistant wheat. BMC PLANT BIOLOGY 2015; 15:3. [PMID: 25592131 PMCID: PMC4308891 DOI: 10.1186/s12870-014-0396-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/22/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Hessian fly (Mayetiola destructor), a member of the gall midge family, is one of the most destructive pests of wheat (Triticum aestivum) worldwide. Probing of wheat plants by the larvae results in either an incompatible (avirulent larvae, resistant plant) or a compatible (virulent larvae, susceptible plant) interaction. Virulent larvae induce the formation of a nutritive tissue, resembling the inside surface of a gall, in susceptible wheat. These nutritive cells are a rich source of proteins and sugars that sustain the developing virulent Hessian fly larvae. In addition, on susceptible wheat, larvae trigger a significant increase in levels of amino acids including proline and glutamic acid, which are precursors for the biosynthesis of ornithine and arginine that in turn enter the pathway for polyamine biosynthesis. RESULTS Following Hessian fly larval attack, transcript abundance in susceptible wheat increased for several genes involved in polyamine biosynthesis, leading to higher levels of the free polyamines, putrescine, spermidine and spermine. A concurrent increase in polyamine levels occurred in the virulent larvae despite a decrease in abundance of Mdes-odc (ornithine decarboxylase) transcript encoding a key enzyme in insect putrescine biosynthesis. In contrast, resistant wheat and avirulent Hessian fly larvae did not exhibit significant changes in transcript abundance of genes involved in polyamine biosynthesis or in free polyamine levels. CONCLUSIONS The major findings from this study are: (i) although polyamines contribute to defense in some plant-pathogen interactions, their production is induced in susceptible wheat during interactions with Hessian fly larvae without contributing to defense, and (ii) due to low abundance of transcripts encoding the rate-limiting ornithine decarboxylase enzyme in the larval polyamine pathway the source of polyamines found in virulent larvae is plausibly wheat-derived. The activation of the host polyamine biosynthesis pathway during compatible wheat-Hessian fly interactions is consistent with a model wherein the virulent larvae usurp the polyamine biosynthesis machinery of the susceptible plant to acquire nutrients required for their own growth and development.
Collapse
Affiliation(s)
| | - Nagesh Sardesai
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
- Present address: Dow AgroSciences LLC, Indianapolis, IN, 46268, USA.
| | - Subhash C Minocha
- Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA.
| | - Cheng Zheng
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA.
- Present address: Novartis Pharmaceuticals Corporation, East Hanover, NJ, 07936, USA.
| | - Richard H Shukle
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA.
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA.
| | - Christie E Williams
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA.
| |
Collapse
|
50
|
Cona A, Tisi A, Ghuge SA, Franchi S, De Lorenzo G, Angelini R. Wound healing response and xylem differentiation in tobacco plants over-expressing a fungal endopolygalacturonase is mediated by copper amine oxidase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:54-65. [PMID: 24907525 DOI: 10.1016/j.plaphy.2014.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
In this work, we have investigated the involvement of copper amine oxidase (CuAO; EC 1.4.3.21) in wound healing and xylem differentiation of Nicotiana tabacum plants over-expressing a fungal endopolygalacturonase (PG plants), which show constitutively activated defence responses. In petioles and stems of PG plants, we found higher CuAO activity and lower polyamine (PA) levels, particularly putrescine (Put), with respect to wild-type (WT) plants. Upon wounding, a more intense autofluorescence of cell wall phenolics was observed in correspondence of wound surface, extending to epidermis and cortical parenchima only in PG plants. This response was mostly dependent on CuAO activity, as suggested by the reversion of autofluorescence upon supply of 2-bromoethylamine (2-BrEt), a CuAO specific inhibitor. Moreover, in unwounded plants, histochemical analysis revealed a tissue-specific expression of the enzyme in the vascular cambium and neighboring derivative cells of both petioles and stems of PG plants, whereas the corresponding WT tissues appeared unstained or faintly stained. A higher histochemical CuAO activity was also observed in xylem cells of PG plants as compared to WT xylem tissues suggesting a peculiar role of CuAO activity in xylem differentiation in PG plants. Indeed, roots of PG plants exhibited early xylem differentiation, a phenotype consistent with both the higher CuAO and the lower Put levels observed and supported by the 2-BrEt-mediated reversion of early root xylem differentiation and H2O2 accumulation. These results strongly support the relevance of PA-catabolism derived H2O2 in defence responses, such as those signaled by a compromised status of cell wall pectin integrity.
Collapse
Affiliation(s)
- Alessandra Cona
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Alessandra Tisi
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Sandip Annasaheb Ghuge
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Stefano Franchi
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, 00185 Roma, Italy
| | - Riccardo Angelini
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy.
| |
Collapse
|