1
|
Kumar P, Pandey S, Pati PK. Interaction between pathogenesis-related (PR) proteins and phytohormone signaling pathways in conferring disease tolerance in plants. PHYSIOLOGIA PLANTARUM 2025; 177:e70174. [PMID: 40134362 DOI: 10.1111/ppl.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025]
Abstract
Pathogenesis-related (PR) proteins are critical defense signaling molecules induced by phytopathogens. They play a vital role in plant's defense signaling pathways and innate immunity, particularly in systemic acquired resistance (SAR) and serve as key molecular markers of plant defense. Overexpressing PR genes, such as chitinase, thaumatin, glucanase, thionin and defensin, either individually or in combination, have significantly boosted plants' defense responses against various pathogens. However, signaling pathways regulating the expression of these versatile proteins remain only partially understood. Plant hormones like salicylic acid (SA) and jasmonic acid (JA) are known for their well-established roles in regulating PR gene responses to pathogens and other stress conditions. PR genes interact with various components of hormonal signaling pathways, including receptors (e.g., NPR1 in SA signaling), transcription factors (e.g., MYC2 in JA signaling), and cis-regulating elements (e.g., W-box), to modulate plant defense responses. Recent studies have highlighted the contributions of different plant hormones to plant immunity and their interactions with PR proteins in a process known as hormonal crosstalk, which helps coordinate immunity activation. This review provides a comprehensive overview of the PR proteins, their complexity, and hormonal crosstalk in immunity, aiming to understand these interactions for improved pathogen resistance.
Collapse
Affiliation(s)
- Paramdeep Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Saurabh Pandey
- Department of Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
- Department of Agriculture, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
2
|
Ruszczyńska M, Sytykiewicz H. New Insights into Involvement of Low Molecular Weight Proteins in Complex Defense Mechanisms in Higher Plants. Int J Mol Sci 2024; 25:8531. [PMID: 39126099 PMCID: PMC11313046 DOI: 10.3390/ijms25158531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Dynamic climate changes pose a significant challenge for plants to cope with numerous abiotic and biotic stressors of increasing intensity. Plants have evolved a variety of biochemical and molecular defense mechanisms involved in overcoming stressful conditions. Under environmental stress, plants generate elevated amounts of reactive oxygen species (ROS) and, subsequently, modulate the activity of the antioxidative enzymes. In addition, an increase in the biosynthesis of important plant compounds such as anthocyanins, lignin, isoflavonoids, as well as a wide range of low molecular weight stress-related proteins (e.g., dehydrins, cyclotides, heat shock proteins and pathogenesis-related proteins), was evidenced. The induced expression of these proteins improves the survival rate of plants under unfavorable environmental stimuli and enhances their adaptation to sequentially interacting stressors. Importantly, the plant defense proteins may also have potential for use in medical applications and agriculture (e.g., biopesticides). Therefore, it is important to gain a more thorough understanding of the complex biological functions of the plant defense proteins. It will help to devise new cultivation strategies, including the development of genotypes characterized by better adaptations to adverse environmental conditions. The review presents the latest research findings on selected plant defense proteins.
Collapse
Affiliation(s)
| | - Hubert Sytykiewicz
- Faculty of Natural Sciences, Institute of Biological Sciences, University of Siedlce, 14 Prusa St., 08-110 Siedlce, Poland;
| |
Collapse
|
3
|
Dos Santos C, Franco OL. Pathogenesis-Related Proteins (PRs) with Enzyme Activity Activating Plant Defense Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112226. [PMID: 37299204 DOI: 10.3390/plants12112226] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
Throughout evolution, plants have developed a highly complex defense system against different threats, including phytopathogens. Plant defense depends on constitutive and induced factors combined as defense mechanisms. These mechanisms involve a complex signaling network linking structural and biochemical defense. Antimicrobial and pathogenesis-related (PR) proteins are examples of this mechanism, which can accumulate extra- and intracellular space after infection. However, despite their name, some PR proteins are present at low levels even in healthy plant tissues. When they face a pathogen, these PRs can increase in abundance, acting as the first line of plant defense. Thus, PRs play a key role in early defense events, which can reduce the damage and mortality caused by pathogens. In this context, the present review will discuss defense response proteins, which have been identified as PRs, with enzymatic action, including constitutive enzymes, β-1,3 glucanase, chitinase, peroxidase and ribonucleases. From the technological perspective, we discuss the advances of the last decade applied to the study of these enzymes, which are important in the early events of higher plant defense against phytopathogens.
Collapse
Affiliation(s)
- Cristiane Dos Santos
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-700, Brazil
| |
Collapse
|
4
|
Visser EA, Kampmann TP, Wegrzyn JL, Naidoo S. Multispecies comparison of host responses to Fusarium circinatum challenge in tropical pines show consistency in resistance mechanisms. PLANT, CELL & ENVIRONMENT 2023; 46:1705-1725. [PMID: 36541367 DOI: 10.1111/pce.14522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Fusarium circinatum poses a threat to both commercial and natural pine forests. Large variation in host resistance exists between species, with many economically important species being susceptible. Development of resistant genotypes could be expedited and optimised by investigating the molecular mechanisms underlying host resistance and susceptibility as well as increasing the available genetic resources. RNA-seq data, from F. circinatum inoculated and mock-inoculated ca. 6-month-old shoot tissue at 3- and 7-days postinoculation, was generated for three commercially important tropical pines, Pinus oocarpa, Pinus maximinoi and Pinus greggii. De novo transcriptomes were assembled and used to investigate the NLR and PR gene content within available pine references. Host responses to F. circinatum challenge were investigated in P. oocarpa (resistant) and P. greggii (susceptible), in comparison to previously generated expression profiles from Pinus tecunumanii (resistant) and Pinus patula (susceptible). Expression results indicated crosstalk between induced salicylate, jasmonate and ethylene signalling is involved in host resistance and compromised in susceptible hosts. Additionally, higher constitutive expression of sulfur metabolism and flavonoid biosynthesis in resistant hosts suggest involvement of these metabolites in resistance.
Collapse
Affiliation(s)
- Erik A Visser
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tamanique P Kampmann
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Joshi V, Joshi N, Vyas A, Jadhav S. Pathogenesis-related proteins: Role in plant defense. BIOCONTROL AGENTS AND SECONDARY METABOLITES 2021:573-590. [PMID: 0 DOI: 10.1016/b978-0-12-822919-4.00025-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
6
|
Kaur A, Pati PK, Pati AM, Nagpal AK. Physico-chemical characterization and topological analysis of pathogenesis-related proteins from Arabidopsis thaliana and Oryza sativa using in-silico approaches. PLoS One 2020; 15:e0239836. [PMID: 32986761 PMCID: PMC7521741 DOI: 10.1371/journal.pone.0239836] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
Plants are constantly under the threat of various biotic and abiotic stress conditions and to overcome these stresses, they have evolved multiple mechanisms including systematic accumulation of different phytohormones, phytoalexins and pathogenesis related (PR) proteins. PR proteins are cluster of proteins with low molecular weight which get incited in plants under different stresses. In this paper, in-silico approaches are used to compare the physico-chemical properties of 6 PR proteins (PR1, PR2, PR5, PR9, PR10, PR12) of Arabidopsis thaliana and Oryza sativa. Topological analysis revealed the presence of transmembrane localization of PR2 and absence of transmembrane domain in PR10 of both model plants studied. Amino acid composition shows the dominance of small aliphatic amino acids i.e. alanine, glycine and serine in both plants studied. These results highlights the similarities and differences between PRs of both model plants, which provides clue towards their diversified roles in plants.
Collapse
Affiliation(s)
- Amritpreet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
- * E-mail: (AKN); (PKP); (AMP)
| | - Aparna Maitra Pati
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- * E-mail: (AKN); (PKP); (AMP)
| | - Avinash Kaur Nagpal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
- * E-mail: (AKN); (PKP); (AMP)
| |
Collapse
|
7
|
Pepori AL, Michelozzi M, Santini A, Cencetti G, Bonello P, Gonthier P, Sebastiani F, Luchi N. Comparative transcriptional and metabolic responses of Pinus pinea to a native and a non-native Heterobasidion species. TREE PHYSIOLOGY 2019; 39:31-44. [PMID: 30137615 DOI: 10.1093/treephys/tpy086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/31/2018] [Indexed: 05/28/2023]
Abstract
Heterobasidion irregulare is a causal agent of root and butt-rot disease in conifers, and is native to North America. In 1944 it was introduced in central Italy in a Pinus pinea stand, where it shares the same niche with the native species Heterobasidion annosum. The introduction of a non-native pathogen may have significant negative effects on a naïve host tree and the ecosystem in which it resides, requiring a better understanding of the system. We compared the spatio-temporal phenotypic, transcriptional and metabolic host responses to inoculation with the two Heterobasidion species in a large experiment with P. pinea seedlings. Differences in length of lesions at the inoculation site (IS), expression of host genes involved in lignin pathway and in cell rescue and defence, and analysis of terpenes at both IS and 12 cm above the IS (distal site, DS), were assessed at 3, 14 and 35 days post inoculation (dpi). Results clearly showed that both species elicit similar physiological and biochemical responses in P. pinea seedlings. The analysis of host transcripts and total terpenes showed differences between inoculation sites and between pathogen and mock inoculated plants. Both pathogen and mock inoculations induced antimicrobial peptide and phenylalanine ammonia-lyase overexpression at IS beginning at 3 dpi; while at DS all the analysed genes, except for peroxidase, were overexpressed at 14 dpi. A significantly higher accumulation of terpenoids was observed at 14 dpi at IS, and at 35 dpi at DS. The terpene blend at IS showed significant variation among treatments and sampling times, while no significant differences were ever observed in DS tissues. Based on our results, H. irregulare does not seem to have competitive advantages over the native species H. annosum in terms of pathogenicity towards P. pinea trees; this may explain why the non-native species has not widely spread over the 73 years since its putative year of introduction into central Italy.
Collapse
Affiliation(s)
- Alessia Lucia Pepori
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council (IBBR-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Alberto Santini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Gabriele Cencetti
- Institute of Biosciences and Bioresources, National Research Council (IBBR-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, 201 Kottman Hall, 2021 Coffey Rd, Columbus, OH, USA
| | - Paolo Gonthier
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, Grugliasco, TO, Italy
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Nicola Luchi
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| |
Collapse
|
8
|
Visser EA, Wegrzyn JL, Myburg AA, Naidoo S. Defence transcriptome assembly and pathogenesis related gene family analysis in Pinus tecunumanii (low elevation). BMC Genomics 2018; 19:632. [PMID: 30139335 PMCID: PMC6108113 DOI: 10.1186/s12864-018-5015-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fusarium circinatum is a pressing threat to the cultivation of many economically important pine tree species. Efforts to develop effective disease management strategies can be aided by investigating the molecular mechanisms involved in the host-pathogen interaction between F. circinatum and pine species. Pinus tecunumanii and Pinus patula are two closely related tropical pine species that differ widely in their resistance to F. circinatum challenge, being resistant and susceptible respectively, providing the potential for a useful pathosystem to investigate the molecular responses underlying resistance to F. circinatum. However, no genomic resources are available for P. tecunumanii. Pathogenesis-related proteins are classes of proteins that play important roles in plant-microbe interactions, e.g. chitinases; proteins that break down the major structural component of fungal cell walls. Generating a reference sequence for P. tecunumanii and characterizing pathogenesis related gene families in these two pine species is an important step towards unravelling the pine-F. circinatum interaction. RESULTS Eight reference based and 12 de novo assembled transcriptomes were produced, for juvenile shoot tissue from both species. EvidentialGene pipeline redundancy reduction, expression filtering, protein clustering and taxonomic filtering produced a 50 Mb shoot transcriptome consisting of 28,621 contigs for P. tecunumanii and a 72 Mb shoot transcriptome consisting of 52,735 contigs for P. patula. Predicted protein sequences encoded by the assembled transcriptomes were clustered with reference proteomes from 92 other species to identify pathogenesis related gene families in P. patula, P. tecunumanii and other pine species. CONCLUSIONS The P. tecunumanii transcriptome is the first gene catalogue for the species, representing an important resource for studying resistance to the pitch canker pathogen, F. circinatum. This study also constitutes, to our knowledge, the largest index of gymnosperm PR-genes to date.
Collapse
Affiliation(s)
- Erik A. Visser
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria, 0028 South Africa
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269 USA
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria, 0028 South Africa
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria, 0028 South Africa
| |
Collapse
|
9
|
Mesarich CH, Ӧkmen B, Rovenich H, Griffiths SA, Wang C, Karimi Jashni M, Mihajlovski A, Collemare J, Hunziker L, Deng CH, van der Burgt A, Beenen HG, Templeton MD, Bradshaw RE, de Wit PJGM. Specific Hypersensitive Response-Associated Recognition of New Apoplastic Effectors from Cladosporium fulvum in Wild Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:145-162. [PMID: 29144204 DOI: 10.1094/mpmi-05-17-0114-fi] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tomato leaf mold disease is caused by the biotrophic fungus Cladosporium fulvum. During infection, C. fulvum produces extracellular small secreted protein (SSP) effectors that function to promote colonization of the leaf apoplast. Resistance to the disease is governed by Cf immune receptor genes that encode receptor-like proteins (RLPs). These RLPs recognize specific SSP effectors to initiate a hypersensitive response (HR) that renders the pathogen avirulent. C. fulvum strains capable of overcoming one or more of all cloned Cf genes have now emerged. To combat these strains, new Cf genes are required. An effectoromics approach was employed to identify wild tomato accessions carrying new Cf genes. Proteomics and transcriptome sequencing were first used to identify 70 apoplastic in planta-induced C. fulvum SSPs. Based on sequence homology, 61 of these SSPs were novel or lacked known functional domains. Seven, however, had predicted structural homology to antimicrobial proteins, suggesting a possible role in mediating antagonistic microbe-microbe interactions in planta. Wild tomato accessions were then screened for HR-associated recognition of 41 SSPs, using the Potato virus X-based transient expression system. Nine SSPs were recognized by one or more accessions, suggesting that these plants carry new Cf genes available for incorporation into cultivated tomato.
Collapse
Affiliation(s)
- Carl H Mesarich
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 2 Laboratory of Molecular Plant Pathology, Institute of Agriculture & Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- 3 Bio-Protection Research Centre, New Zealand
| | - Bilal Ӧkmen
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hanna Rovenich
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Scott A Griffiths
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Changchun Wang
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 4 College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
| | - Mansoor Karimi Jashni
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 5 Department of Plant Pathology, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, P.O. Box 19395‒1454, Tehran, Iran
| | - Aleksandar Mihajlovski
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jérôme Collemare
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lukas Hunziker
- 3 Bio-Protection Research Centre, New Zealand
- 6 Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Cecilia H Deng
- 7 Breeding & Genomics/Bioprotection Portfolio, the New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand; and
| | - Ate van der Burgt
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Henriek G Beenen
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Matthew D Templeton
- 3 Bio-Protection Research Centre, New Zealand
- 7 Breeding & Genomics/Bioprotection Portfolio, the New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand; and
| | - Rosie E Bradshaw
- 3 Bio-Protection Research Centre, New Zealand
- 6 Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Pierre J G M de Wit
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 8 Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
10
|
A Gene Encoding Scots Pine Antimicrobial Protein Sp-AMP2 (PR-19) Confers Increased Tolerance against Botrytis cinerea in Transgenic Tobacco. FORESTS 2017. [DOI: 10.3390/f9010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Souza TP, Dias RO, Silva-Filho MC. Defense-related proteins involved in sugarcane responses to biotic stress. Genet Mol Biol 2017; 40:360-372. [PMID: 28222203 PMCID: PMC5452140 DOI: 10.1590/1678-4685-gmb-2016-0057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022] Open
Abstract
Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives.
Collapse
Affiliation(s)
- Thais P Souza
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Renata O Dias
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
12
|
Jaber E, Xiao C, Asiegbu FO. Comparative pathobiology of Heterobasidion annosum during challenge on Pinus sylvestris and Arabidopsis roots: an analysis of defensin gene expression in two pathosystems. PLANTA 2014; 239:717-733. [PMID: 24366684 DOI: 10.1007/s00425-013-2012-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
Heterobasidion annosum is widely known as a major root and butt rot pathogen of conifer trees, but little information is available on its interaction with the roots of herbaceous angiosperm plants. We investigated the infection biology of H. annosum during challenge with the angiosperm model Arabidopsis and monitored the host response after exposure to different hormone elicitors, chemicals (chitin, glucan and chitosan) and fungal species that represent diverse basidiomycete life strategies [e.g., pathogen (H. annosum), saprotroph (Stereum sanguinolentum) and mutualist (Lactarius rufus)]. The results revealed that the tree pathogen (H. annosum) and the saprotroph (S. sanguinolentum) could infect the Col-8 (Columbia) ecotype of Arabidopsis in laboratory inoculation experiments. Germinated H. annosum spores had appressorium-like penetration structures attached to the surface of the Arabidopsis roots. Subsequent invasive fungal growth led to the disintegration of the vascular region of the root tissues. Progression of root rot symptoms in Arabidopsis was similar to the infection development that was previously documented in Scots pine seedlings. Scots pine PsDef1 and Arabidopsis DEFLs (AT5G44973.1) and PDF1.2 were induced at the initial stage of the infection. However, differences in the expression patterns of the defensin gene homologs from the two plant groups were observed under various conditions, suggesting functional differences in their regulation. The potential use of the H. annosum-Arabidopsis pathosystem as a model for studying forest tree diseases is discussed.
Collapse
Affiliation(s)
- Emad Jaber
- Department of Forest Sciences, University of Helsinki, Box 27, 00014, Helsinki, Finland,
| | | | | |
Collapse
|
13
|
Arnerup J, Nemesio-Gorriz M, Lundén K, Asiegbu FO, Stenlid J, Elfstrand M. The primary module in Norway spruce defence signalling against H. annosum s.l. seems to be jasmonate-mediated signalling without antagonism of salicylate-mediated signalling. PLANTA 2013; 237:1037-45. [PMID: 23223898 DOI: 10.1007/s00425-012-1822-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/26/2012] [Indexed: 05/20/2023]
Abstract
A key tree species for the forest industry in Europe is Norway spruce [Picea abies (L.) Karst.]. One of its major diseases is stem and butt rot caused by Heterobasidion parviporum (Fr.) Niemelä & Korhonen, which causes extensive revenue losses every year. In this study, we investigated the parallel induction of Norway spruce genes presumably associated with salicylic acid- and jasmonic acid/ethylene-mediated signalling pathways previously observed in response to H. parviporum. Relative gene expression levels in bark samples of genes involved in the salicylic acid- and jasmonic acid/ethylene-mediated signalling pathways after wounding and inoculation with either the saprotrophic biocontrol fungus Phlebiopsis gigantea or with H. parviporum were analysed with quantitative PCR at the site of the wound and at two distal locations from the wound/inoculation site to evaluate their roles in the induced defence response to H. parviporum in Norway spruce. Treatment of Norway spruce seedlings with methylsalicylate, methyljasmonate and inhibitors of the jasmonic acid/ethylene signalling pathway, as well as the Phenylalanine ammonia lyase inhibitor 2-aminoindan-2-phosphonic acid were conducted to determine the responsiveness of genes characteristic of the different pathways to different hormonal stimuli. The data suggest that jasmonic acid-mediated signalling plays a central role in the induction of the genes analysed in this study irrespective of their responsiveness to salicylic acid. This may suggest that jasmonic acid-mediated signalling is the prioritized module in the Norway spruce defence signalling network against H. parviporum and that there seems to be no immediate antagonism between the modules in this interaction.
Collapse
Affiliation(s)
- Jenny Arnerup
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Kovalchuk A, Keriö S, Oghenekaro AO, Jaber E, Raffaello T, Asiegbu FO. Antimicrobial defenses and resistance in forest trees: challenges and perspectives in a genomic era. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:221-44. [PMID: 23682916 DOI: 10.1146/annurev-phyto-082712-102307] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Molecular pathology of forest trees for a long time lagged behind parallel studies on agricultural crop pathology. Recent technological advances have significantly contributed to the observed progress in this field. The first powerful impulse was provided by the completion of the black cottonwood genome sequence in 2006. Genomes of several other important tree species will be completed within a short time. Simultaneously, application of transcriptomics and next-generation sequencing (NGS) has resulted in the rapid accumulation of a vast amount of data on molecular interactions between trees and their microbial parasites. This review provides an overview of our current knowledge about these responses of forest trees to their pathogens, highlighting the achievements of the past decade, discussing the current state of the field, and emphasizing the prospects and challenges for the near future.
Collapse
Affiliation(s)
- Andriy Kovalchuk
- Department of Forest Sciences, Forest Pathology Research Laboratory, University of Helsinki, 00014 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
15
|
Liu JJ, Zamany A, Sniezko RA. Anti-microbial peptide (AMP): nucleotide variation, gene expression, and host resistance in the white pine blister rust (WPBR) pathosystem. PLANTA 2013; 237:43-54. [PMID: 22968909 DOI: 10.1007/s00425-012-1747-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 08/21/2012] [Indexed: 05/25/2023]
Abstract
Pinus monticola antimicrobial peptide (PmAMP1) inhibits growth of Cronartium ribicola and other fungal pathogens. C. ribicola causes white pine blister rust and has resulted in a dramatic reduction of native white pines across North America. Quantitative disease resistance (QDR) is a highly desirable trait screened in breeding programs for durable resistance against C. ribicola. Along with phenotyping on a collection of germplasms, we analyzed PmAMP1 transcript and protein expression and re-sequenced the full-length gene including its promoter region. A mixed linear model was used to identify the association of single nucleotide polymorphisms (SNPs) with accumulated protein and stem QDR levels. Among 16 PmAMP1 SNPs identified in the present study, we found an association of protein levels with 6 SNPs (P < 0.05), including 2 in the 5'-untranslated region (UTR), 3 in the open reading frame (ORF) region with 2 nonsynonymous SNPs, and 1 SNP in the 3'-UTR. Another set of six SNPs was associated with stem QDR levels (P < 0.05), with one localized in the promoter region and the other five in the ORF region with four nonsynonymous changes, suggesting that multiple isoforms may have antifungal activity to differing degrees. Of three common PmAMP1 haplotypes, the trees with haplotype 2 showed high QDR levels with moderate protein abundance while those trees with haplotype 3 exhibited low QDR levels in the susceptible range and the lowest level of protein accumulation. Thus, an association of gene variations with protein abundance and resistance-related traits may facilitate elucidation of physiological contribution of PmAMP1 to host resistance.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Natural Resources Canada, Pacific Forestry Centre, Canadian Forest Service, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada.
| | | | | |
Collapse
|