1
|
Salem F, ElGamal A, Zhang Z, Kong W. Integrative multi-transcriptomic analysis uncovers core genes and potential defense mechanisms in rice-Magnoporthe oryzae interaction. PLANT CELL REPORTS 2025; 44:114. [PMID: 40332586 DOI: 10.1007/s00299-025-03490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025]
Abstract
KEY MESSAGE Multiple transcriptomic comprehensive analyses highlight key genes and cast new light on multifaceted pathways that may be important arenas in rice innate immunity against Magnoporthe oryzae blast disease. Magnaporthe oryzae (MOR) poses a significant threat to rice production worldwide. However, defense mechanisms in rice against MOR remain inadequately defined. In this study, a multi-transcriptomic integrative analysis on 441 samples from diverse microarrays and RNA-seq sets was conducted to reveal critical factors in rice defense against MOR infection. A robust pattern of 3534 upregulated genes and 2920 repressed genes was commonly identified across all MOR-infected arrays and RNA-seq profiles. Interestingly, enrichment analysis revealed a consistent triggering of endoplasmic reticulum (ER)-related mechanisms and citric acid cycle (TCA) influx in rice response to MOR infection across all the transcriptome profiles, suggesting their critical role in modulating rice immunity against the pathogen. By contrast, chloroplast and photosynthesis pathways were frequently repressed across all the profiles. Among ER-related mechanisms, the phagosome pathway involved in the activation of NADPH oxidase was highly triggered in early response to MOR infection. Moreover, WGCNA analysis highlighted four key co-expressed gene modules and 80 significant hub genes associated with MOR infection. Among the core genes, Sec61 gene involved in the ER-translocation process was identified along with OsMFP (peroxisomal oxidation gene) and OSAHH gene (involved in cyclic-trans-methylation). Furthermore, MPK6, WRKY24, NUP35, and NPR1 genes were observed as core co-expressed genes, suggesting their significance in regulating rice immunity against MOR. Our findings elucidate key genes and multifaceted mechanisms in rice-MOR interaction, proposing new informative clues that can be exploited to improve rice resistance against blast disease.
Collapse
Affiliation(s)
- Fatma Salem
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
| | - Ahmed ElGamal
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Zujian Zhang
- College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Weiwen Kong
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
2
|
Sheng M, Ma X, Wang J, Xue T, Li Z, Cao Y, Yu X, Zhang X, Wang Y, Xu W, Su Z. KNOX II transcription factor HOS59 functions in regulating rice grain size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:863-880. [PMID: 35167131 DOI: 10.1111/tpj.15709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Plant Knotted1-like homeobox (KNOX) genes encode homeodomain-containing transcription factors. In rice (Oryza sativa L.), little is known about the downstream target genes of KNOX Class II subfamily proteins. Here we generated chromatin immunoprecipitation (ChIP)-sequencing datasets for HOS59, a member of the rice KNOX Class II subfamily, and characterized the genome-wide binding sites of HOS59. We conducted trait ontology (TO) analysis of 9705 identified downstream target genes, and found that multiple TO terms are related to plant structure morphology and stress traits. ChIP-quantitative PCR (qPCR) was conducted to validate some key target genes. Meanwhile, our IP-MS datasets showed that HOS59 was closely associated with BELL family proteins, some grain size regulators (OsSPL13, OsSPL16, OsSPL18, SLG, etc.), and some epigenetic modification factors such as OsAGO4α and OsAGO4β, proteins involved in small interfering RNA-mediated gene silencing. Furthermore, we employed CRISPR/Cas9 editing and transgenic approaches to generate hos59 mutants and overexpression lines, respectively. Compared with wild-type plants, the hos59 mutants have longer grains and increased glume cell length, a loose plant architecture, and drooping leaves, while the overexpression lines showed smaller grain size, erect leaves, and lower plant height. The qRT-PCR results showed that mutation of the HOS59 gene led to upregulation of some grain size-related genes such as OsSPL13, OsSPL18, and PGL2. In summary, our results indicate that HOS59 may be a repressor of the downstream target genes, negatively regulating glume cell length, rice grain size, plant architecture, etc. The identified downstream target genes and possible interaction proteins of HOS59 improve our understanding of the KNOX regulatory networks.
Collapse
Affiliation(s)
- Minghao Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuelian Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiyao Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianxi Xue
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongqiu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaxin Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Xavier LR, Almeida FA, Pinto VB, Passamani LZ, Santa-Catarina C, de Souza Filho GA, Mooney BP, Thelen JJ, Silveira V. Integrative proteomics and phosphoproteomics reveals phosphorylation networks involved in the maintenance and expression of embryogenic competence in sugarcane callus. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153587. [PMID: 34906795 DOI: 10.1016/j.jplph.2021.153587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Plant embryogenic cell culture allows mass propagation and genetic manipulation, but the mechanisms that determine the fate of these totipotent cells in somatic embryos have not yet been elucidated. Here, we performed label-free quantitative proteomics and phosphoproteomics analyses to determine signaling events related to sugarcane somatic embryo differentiation, especially those related to protein phosphorylation. Embryogenic calli were compared at multiplication (EC0, dedifferentiated cells) and after 14 days of maturation (EC14, onset of embryo differentiation). Metabolic pathway analysis showed enriched lysine degradation and starch/sucrose metabolism proteins during multiplication, whereas the differentiation of somatic embryos was found to involve the enrichment of energy metabolism, including the TCA cycle and oxidative phosphorylation. Multiplication-related phosphoproteins were associated with transcriptional regulation, including SNF1 kinase homolog 10 (KIN10), SEUSS (SEU), and LEUNIG_HOMOLOG (LUH). The regulation of multiple light harvesting complex photosystem II proteins and phytochrome interacting factor 3-LIKE 5 were predicted to promote bioenergetic metabolism and carbon fixation during the maturation stage. A motif analysis revealed 15 phosphorylation motifs. The [D-pS/T-x-D] motif was overrepresented during somatic embryo differentiation. A protein-protein network analysis predicted interactions among SNF1-related protein kinase 2 (SnRK2), abscisic acid-responsive element-binding factor 2 (ABF2), and KIN10, which indicated the role of these proteins in embryogenic competence. The predicted interactions between TOPLESS (TPL) and histone deacetylase 19 (HD19) may be involved in posttranslational protein regulation during somatic embryo differentiation. These results reveal the protein regulation dynamics of somatic embryogenesis and new players in somatic embryo differentiation, including their predicted phosphorylation motifs and phosphosites.
Collapse
Affiliation(s)
- Lucas R Xavier
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Felipe A Almeida
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Vitor B Pinto
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | - Lucas Z Passamani
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | | | - Gonçalo A de Souza Filho
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Brian P Mooney
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, 65211, Columbia, MO, USA
| | - Jay J Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, 65211, Columbia, MO, USA
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| |
Collapse
|
4
|
GSNOR Contributes to Demethylation and Expression of Transposable Elements and Stress-Responsive Genes. Antioxidants (Basel) 2021; 10:antiox10071128. [PMID: 34356361 PMCID: PMC8301139 DOI: 10.3390/antiox10071128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022] Open
Abstract
In the past, reactive nitrogen species (RNS) were supposed to be stress-induced by-products of disturbed metabolism that cause oxidative damage to biomolecules. However, emerging evidence demonstrates a substantial role of RNS as endogenous signals in eukaryotes. In plants, S-nitrosoglutathione (GSNO) is the dominant RNS and serves as the •NO donor for S-nitrosation of diverse effector proteins. Remarkably, the endogenous GSNO level is tightly controlled by S-nitrosoglutathione reductase (GSNOR) that irreversibly inactivates the glutathione-bound NO to ammonium. Exogenous feeding of diverse RNS, including GSNO, affected chromatin accessibility and transcription of stress-related genes, but the triggering function of RNS on these regulatory processes remained elusive. Here, we show that GSNO reductase-deficient plants (gsnor1-3) accumulate S-adenosylmethionine (SAM), the principal methyl donor for methylation of DNA and histones. This SAM accumulation triggered a substantial increase in the methylation index (MI = [SAM]/[S-adenosylhomocysteine]), indicating the transmethylation activity and histone methylation status in higher eukaryotes. Indeed, a mass spectrometry-based global histone profiling approach demonstrated a significant global increase in H3K9me2, which was independently verified by immunological detection using a selective antibody. Since H3K9me2-modified regions tightly correlate with methylated DNA regions, we also determined the DNA methylation status of gsnor1-3 plants by whole-genome bisulfite sequencing. DNA methylation in the CG, CHG, and CHH contexts in gsnor1-3 was significantly enhanced compared to the wild type. We propose that GSNOR1 activity affects chromatin accessibility by controlling the transmethylation activity (MI) required for maintaining DNA methylation and the level of the repressive chromatin mark H3K9me2.
Collapse
|
5
|
Samo N, Ebert A, Kopka J, Mozgová I. Plant chromatin, metabolism and development - an intricate crosstalk. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102002. [PMID: 33497897 DOI: 10.1016/j.pbi.2021.102002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Chromatin structure influences DNA accessibility and underlying gene expression. Disturbances of chromatin structure often result in pleiotropic developmental phenotypes. Interactions between chromatin modifications and development have been the main focus of epigenetic studies. Recent years brought major advance in uncovering and understanding connections between chromatin organisation in the nucleus and metabolic processes that take place in the cytoplasm or other cellular compartments. Products of primary metabolism and cell redox states influence chromatin-modifying complexes, and chromatin modifiers in turn affect expression of metabolic genes. Current evidence indicates that complex interaction loops between these biological system layers exist. Applying interdisciplinary and holistic approaches will decipher causality and molecular mechanisms of the dynamic crosstalk between chromatin structure, metabolism and plant growth and development.
Collapse
Affiliation(s)
- Naseem Samo
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Alina Ebert
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Iva Mozgová
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.
| |
Collapse
|
6
|
Vizán P, Di Croce L, Aranda S. Functional and Pathological Roles of AHCY. Front Cell Dev Biol 2021; 9:654344. [PMID: 33869213 PMCID: PMC8044520 DOI: 10.3389/fcell.2021.654344] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
Adenosylhomocysteinase (AHCY) is a unique enzyme and one of the most conserved proteins in living organisms. AHCY catalyzes the reversible break of S-adenosylhomocysteine (SAH), the by-product and a potent inhibitor of methyltransferases activity. In mammals, AHCY is the only enzyme capable of performing this reaction. Controlled subcellular localization of AHCY is believed to facilitate local transmethylation reactions, by removing excess of SAH. Accordingly, AHCY is recruited to chromatin during replication and active transcription, correlating with increasing demands for DNA, RNA, and histone methylation. AHCY deletion is embryonic lethal in many organisms (from plants to mammals). In humans, AHCY deficiency is associated with an incurable rare recessive disorder in methionine metabolism. In this review, we focus on the AHCY protein from an evolutionary, biochemical, and functional point of view, and we discuss the most recent, relevant, and controversial contributions to the study of this enzyme.
Collapse
Affiliation(s)
- Pedro Vizán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
7
|
Kim JH, Khan IU, Lee CW, Kim DY, Jang CS, Lim SD, Park YC, Kim JH, Seo YW. Identification and analysis of a differentially expressed wheat RING-type E3 ligase in spike primordia development during post-vernalization. PLANT CELL REPORTS 2021; 40:543-558. [PMID: 33423075 DOI: 10.1007/s00299-020-02651-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
We identified a RING-type E3 ligase (TaBAH1) protein in winter wheat that targets TaSAHH1 for degradation and might be involved in primordia development by regulating targeted protein degradation. Grain yield per spike in wheat (Triticum aestivum), is mainly determined prior to flowering during mature primordia development; however, the genes involved in primordia development have yet to be characterized. In this study, we demonstrated that, after vernalization for 50 days at 4 °C, there was a rapid acceleration in primordia development to the mature stages in the winter wheat cultivars Keumgang and Yeongkwang compared with the Chinese Spring cultivar. Although Yeongkwang flowers later than Keumgang under normal condition, it has the same heading time and reaches the WS9 stage of floral development after vernalization for 50 days. Using RNA sequencing, we identified candidate genes associated with primordia development in cvs. Keumgang and Yeongkwang, that are differentially expressed during wheat reproductive stages. Among these, the RING-type E3 ligase TaBAH1 (TraesCS5B01G373000) was transcriptionally upregulated between the double-ridge (WS2.5) stage and later stages of floret primordia development (WS10) after vernalization. Transient expression analysis indicated that TaBAH1 was localized to the plasma membrane and nucleus and was characterized by self-ubiquitination activity. Furthermore, we found that TaBAH1 interacts with TaSAHH1 to mediate its polyubiquitination and degradation through a 26S proteasomal pathway. Collectively, the findings of this study indicate that TaBAH1 might play a prominent role in post-vernalization floret primordia development.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Irfan Ullah Khan
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Cheol Won Lee
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Dae Yeon Kim
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 200-713, Republic of Korea
| | - Sung Don Lim
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 200-713, Republic of Korea
| | - Yong Chan Park
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 200-713, Republic of Korea
| | - Ju Hee Kim
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 200-713, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Guo J, Hu Y, Zhou Y, Zhu Z, Sun Y, Li J, Wu R, Miao Y, Sun X. Profiling of the Receptor for Activated C Kinase 1a (RACK1a) interaction network in Arabidopsis thaliana. Biochem Biophys Res Commun 2019; 520:366-372. [PMID: 31606202 DOI: 10.1016/j.bbrc.2019.09.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
As a scaffold protein, Receptor for Activated C Kinase 1a (RACK1) interacts with many proteins and is involved in multiple biological processes in Arabidopsis. However, the global RACK1 protein interaction network in higher plants remains poorly understood. Here, we generated a yeast two-hybrid library using mixed samples from different developmental stages of Arabidopsis thaliana. Using RACK1a as bait, we performed a comprehensive screening of the resulting library to identify RACK1a interactors at the whole-transcriptome level. We selected 1065 independent positive clones that led to the identification of 215 RACK1a interactors. We classified these interactors into six groups according to their potential functions. Several interactors were selected for bimolecular fluorescence complementation (BiFC) analysis and their interaction with RACK1a was confirmed in vivo. Our results provide further insight into the molecular mechanisms through which RACK1a regulates various growth and development processes in higher plants.
Collapse
Affiliation(s)
- Jinggong Guo
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yunhe Hu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Zhinan Zhu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yijing Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Jiaoai Li
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Rui Wu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China.
| |
Collapse
|
9
|
Wierzbicki MP, Christie N, Pinard D, Mansfield SD, Mizrachi E, Myburg AA. A systems genetics analysis in Eucalyptus reveals coordination of metabolic pathways associated with xylan modification in wood-forming tissues. THE NEW PHYTOLOGIST 2019; 223:1952-1972. [PMID: 31144333 DOI: 10.1111/nph.15972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Acetyl- and methylglucuronic acid decorations of xylan, the dominant hemicellulose in secondary cell walls (SCWs) of woody dicots, affect its interaction with cellulose and lignin to determine SCW structure and extractability. Genes and pathways involved in these modifications may be targets for genetic engineering; however, little is known about the regulation of xylan modifications in woody plants. To address this, we assessed genetic and gene expression variation associated with xylan modification in developing xylem of Eucalyptus grandis × Eucalyptus urophylla interspecific hybrids. Expression quantitative trait locus (eQTL) mapping identified potential regulatory polymorphisms affecting gene expression modules associated with xylan modification. We identified 14 putative xylan modification genes that are members of five expression modules sharing seven trans-eQTL hotspots. The xylan modification genes are prevalent in two expression modules. The first comprises nucleotide sugar interconversion pathways supplying the essential precursors for cellulose and xylan biosynthesis. The second contains genes responsible for phenylalanine biosynthesis and S-adenosylmethionine biosynthesis required for glucuronic acid and monolignol methylation. Co-expression and co-regulation analyses also identified four metabolic sources of acetyl coenxyme A that appear to be transcriptionally coordinated with xylan modification. Our systems genetics analysis may provide new avenues for metabolic engineering to alter wood SCW biology for enhanced biomass processability.
Collapse
Affiliation(s)
- Martin P Wierzbicki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Nanette Christie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Desré Pinard
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
10
|
Huang XY, Li M, Luo R, Zhao FJ, Salt DE. Epigenetic regulation of sulfur homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4171-4182. [PMID: 31087073 DOI: 10.1093/jxb/erz218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
Plants have evolved sophisticated mechanisms for adaptation to fluctuating availability of nutrients in soil. Such mechanisms are of importance for plants to maintain homeostasis of nutrient elements for their development and growth. The molecular mechanisms controlling the homeostasis of nutrient elements at the genetic level have been gradually revealed, including the identification of regulatory factors and transporters responding to nutrient stresses. Recent studies have suggested that such responses are controlled not only by genetic regulation but also by epigenetic regulation. In this review, we present recent studies on the involvement of DNA methylation, histone modifications, and non-coding RNA-mediated gene silencing in the regulation of sulfur homeostasis and the response to sulfur deficiency. We also discuss the potential effect of sulfur-containing metabolites such as S-adenosylmethionine on the maintenance of DNA and histone methylation.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengzhen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rongjian Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - David E Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
11
|
Zeng W, Peng Y, Zhao X, Wu B, Chen F, Ren B, Zhuang Z, Gao Q, Ding Y. Comparative Proteomics Analysis of the Seedling Root Response of Drought-sensitive and Drought-tolerant Maize Varieties to Drought Stress. Int J Mol Sci 2019; 20:ijms20112793. [PMID: 31181633 PMCID: PMC6600177 DOI: 10.3390/ijms20112793] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
The growth and development of maize roots are closely related to drought tolerance. In order to clarify the molecular mechanisms of drought tolerance between different maize (Zea mays L.) varieties at the protein level, the isobaric tags for relative and absolute quantitation (iTRAQ) quantitative proteomics were used for the comparative analysis of protein expression in the seedling roots of the drought-tolerant Chang 7-2 and drought-sensitive TS141 maize varieties under 20% polyethylene glycol 6000 (PEG 6000)-simulated drought stress. We identified a total of 7723 differentially expressed proteins (DEPs), 1243 were significantly differentially expressed in Chang 7-2 following drought stress, 572 of which were up-regulated and 671 were down-regulated; 419 DEPs were identified in TS141, 172 of which were up-regulated and 247 were down-regulated. In Chang 7-2, the DEPs were associated with ribosome pathway, glycolysis/gluconeogenesis pathway, and amino sugar and nucleotide sugar metabolism. In TS141, the DEPs were associated with metabolic pathway, phenylpropanoid biosynthesis pathway, and starch and sucrose metabolism. Compared with TS141, the higher drought tolerance of Chang 7-2 root system was attributed to a stronger water retention capacity; the synergistic effect of antioxidant enzymes; the strengthen cell wall; the osmotic stabilization of plasma membrane proteins; the effectiveness of recycling amino acid; and an improvement in the degree of lignification. The common mechanisms of the drought stress response between the two varieties included: The promotion of enzymes in the glycolysis/gluconeogenesis pathway; cross-protection against the toxicity of aldehydes and ammonia; maintenance of the cell membrane stability. Based on the proteome sequencing information, the coding region sequences of eight DEP-related genes were analyzed at the mRNA level by quantitative real-time PCR (qRT-PCR). The findings of this study can inform the future breeding of drought-tolerant maize varieties.
Collapse
Affiliation(s)
- Wenjing Zeng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China.
| | - Xiaoqiang Zhao
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China.
| | - Boyang Wu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Fenqi Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Bin Ren
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zelong Zhuang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Qiaohong Gao
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongfu Ding
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
12
|
Wang G, Kong J, Cui D, Zhao H, Niu Y, Xu M, Jiang G, Zhao Y, Wang W. Resistance against Ralstonia solanacearum in tomato depends on the methionine cycle and the γ-aminobutyric acid metabolic pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1032-1047. [PMID: 30480846 DOI: 10.1111/tpj.14175] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 05/28/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a complex and destructive disease that affects over 200 plant species. To investigate the interaction of R. solanacearum and its tomato (Solanum lycopersicum) plant host, a comparative proteomic analysis was conducted in tomato stems inoculated with highly and mildly aggressive R. solanacearum isolates (RsH and RsM, respectively). The results indicated a significant alteration of the methionine cycle (MTC) and downregulation of γ-aminobutyric acid (GABA) biosynthesis. Furthermore, transcriptome profiling of two key tissues (stem and root) at three stages (0, 3 and 5 days post-inoculation) with RsH in resistant and susceptible tomato plants is presented. Transcript profiles of MTC and GABA pathways were analyzed. Subsequently, the MTC-associated genes SAMS2, SAHH1 and MS1 and the GABA biosynthesis-related genes GAD2 and SSADH1 were knocked-down by virus-induced gene silencing and the plants' defense responses upon infection with R. solanacearum RsM and RsH were analyzed. These results showed that silencing of SAHH1, MS1 and GAD2 in tomato leads to decreased resistance against R. solanacearum. In summary, the infection assays, proteomic and transcriptomic data described in this study indicate that both MTC and GABA biosynthesis play an important role in pathogenic interaction between R. solanacearum and tomato plants.
Collapse
Affiliation(s)
- Guoping Wang
- College of Horticulture, South China Agricultural University, Guangdong, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Vegetable Genomics and Molecular Breeding, College of Horticulture, South China Agricultural University, Guangdong, Guangzhou, 510642, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangdong, Guangzhou, 510642, China
| | - Jie Kong
- Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangdong, Guangzhou, 510642, China
| | - Dandan Cui
- College of Horticulture, South China Agricultural University, Guangdong, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Vegetable Genomics and Molecular Breeding, College of Horticulture, South China Agricultural University, Guangdong, Guangzhou, 510642, China
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangdong, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of Vegetable Genomics and Molecular Breeding, College of Horticulture, South China Agricultural University, Guangdong, Guangzhou, 510642, China
| | - Yu Niu
- Tropical Crops Genetic Resources Research Institute, CATAS, Hainan, Danzhou, 571700, China
| | - Mengyun Xu
- Guangdong Provincial Key Lab of Vegetable Genomics and Molecular Breeding, College of Horticulture, South China Agricultural University, Guangdong, Guangzhou, 510642, China
| | - Gaofei Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, 210000, China
| | - Yahua Zhao
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangdong, Guangzhou, 510642, China
| | - Wenyi Wang
- College of Horticulture, South China Agricultural University, Guangdong, Guangzhou, 510642, China
- Department of Plant Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
13
|
Rahikainen M, Alegre S, Trotta A, Pascual J, Kangasjärvi S. Trans-methylation reactions in plants: focus on the activated methyl cycle. PHYSIOLOGIA PLANTARUM 2018; 162:162-176. [PMID: 28815615 DOI: 10.1111/ppl.12619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/02/2017] [Accepted: 08/10/2017] [Indexed: 05/11/2023]
Abstract
Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants.
Collapse
Affiliation(s)
- Moona Rahikainen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Sara Alegre
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Andrea Trotta
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Jesús Pascual
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Saijaliisa Kangasjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Dou L, Jia X, Wei H, Fan S, Wang H, Guo Y, Duan S, Pang C, Yu S. Global analysis of DNA methylation in young (J1) and senescent (J2) Gossypium hirsutum L. cotyledons by MeDIP-Seq. PLoS One 2017; 12:e0179141. [PMID: 28715427 PMCID: PMC5513416 DOI: 10.1371/journal.pone.0179141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 05/24/2017] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is an important epigenetic modification regulating gene expression, genomic imprinting, transposon silencing and chromatin structure in plants and plays an important role in leaf senescence. However, the DNA methylation pattern during Gossypium hirsutum L. cotyledon senescence is poorly understood. In this study, global DNA methylation patterns were compared between two cotyledon development stages, young (J1) and senescence (J2), using methylated DNA immunoprecipitation (MeDIP-Seq). Methylated cytosine occurred mostly in repeat elements, especially LTR/Gypsy in both J1 and J2. When comparing J1 against J2, there were 1222 down-methylated genes and 623 up-methylated genes. Methylated genes were significantly enriched in carbohydrate metabolism, biosynthesis of other secondary metabolites and amino acid metabolism pathways. The global DNA methylation level decreased from J1 to J2, especially in gene promoters, transcriptional termination regions and regions around CpG islands. We further investigated the expression patterns of 9 DNA methyltransferase-associated genes and 2 DNA demethyltransferase-associated genes from young to senescent cotyledons, which were down-regulated during cotyledon development. In this paper, we first reported that senescent cotton cotyledons exhibited lower DNA methylation levels, primarily due to decreased DNA methyltransferase activity and which also play important role in regulating secondary metabolite process.
Collapse
Affiliation(s)
- Lingling Dou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
- Weinan Institute of Agricultural Sciences, Weinan, Shaanxi, P. R. China
| | - Xiaoyun Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
| | - Yaning Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
| | - Shan Duan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
- * E-mail: (CP); (SY)
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
- * E-mail: (CP); (SY)
| |
Collapse
|
15
|
Rahikainen M, Trotta A, Alegre S, Pascual J, Vuorinen K, Overmyer K, Moffatt B, Ravanel S, Glawischnig E, Kangasjärvi S. PP2A-B'γ modulates foliar trans-methylation capacity and the formation of 4-methoxy-indol-3-yl-methyl glucosinolate in Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:112-127. [PMID: 27598402 DOI: 10.1111/tpj.13326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 05/27/2023]
Abstract
Glucosinolates (GSL) of cruciferous plants comprise a major group of structurally diverse secondary compounds which act as deterrents against aphids and microbial pathogens and have large commercial and ecological impacts. While the transcriptional regulation governing the biosynthesis and modification of GSL is now relatively well understood, post-translational regulatory components that specifically determine the structural variation of indole glucosinolates have not been reported. We show that the cytoplasmic protein phosphatase 2A regulatory subunit B'γ (PP2A-B'γ) physically interacts with indole glucosinolate methyltransferases and controls the methoxylation of indole glucosinolates and the formation of 4-methoxy-indol-3-yl-methyl glucosinolate in Arabidopsis leaves. By taking advantage of proteomic approaches and metabolic analysis we further demonstrate that PP2A-B'γ is required to control the abundance of oligomeric protein complexes functionally linked with the activated methyl cycle and the trans-methylation capacity of leaf cells. These findings highlight the key regulatory role of PP2A-B'γ in methionine metabolism and provide a previously unrecognized perspective for metabolic engineering of glucosinolate metabolism in cruciferous plants.
Collapse
Affiliation(s)
- Moona Rahikainen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Andrea Trotta
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Sara Alegre
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Jesús Pascual
- Plant Physiology Lab, Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Katariina Vuorinen
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kirk Overmyer
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Barbara Moffatt
- Department of Biology, University of Waterloo, 200 University Avenue, Ontario, N2L 3G1, Canada
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS UMR5168, INRA UMR1417, CEA, Université Grenoble Alpes, 38054, Grenoble, France
| | - Erich Glawischnig
- Department of Plant Sciences, Technische Universität München, Emil-Ramann-Str.4, 85354, Freising, Germany
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
16
|
Yang L, Hu G, Li N, Habib S, Huang W, Li Z. Functional Characterization of SlSAHH2 in Tomato Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2017; 8:1312. [PMID: 28798762 PMCID: PMC5526918 DOI: 10.3389/fpls.2017.01312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/12/2017] [Indexed: 05/05/2023]
Abstract
S-adenosylhomocysteine hydrolase (SAHH) functions as an enzyme catalyzing the reversible hydrolysis of S-adenosylhomocysteine to homocysteine and adenosine. In the present work we have investigated its role in the ripening process of tomato fruit. Among the three SlSAHH genes we demonstrated that SlSAHH2 was highly accumulated during fruit ripening and strongly responded to ethylene treatment. Over-expression of SlSAHH2 enhanced SAHH enzymatic activity in tomato fruit development and ripening stages and resulted in a major phenotypic change of reduced ripening time from anthesis to breaker. Consistent with this, the content of lycopene was higher in SlSAHH2 over-expression lines than in wild-type at the same developmental stage. The expression of two ethylene inducible genes (E4 and E8) and three ethylene biosynthesis genes (SlACO1, SlACO3 and SlACS2) increased to a higher level in SlSAHH2 over-expression lines at breaker stage, and one transgenic line even produced much more ethylene than wild-type. Although inconsistency in gene expression and ethylene production existed between the two transgenic lines, the transcriptional changes of several important ripening regulators such as RIN, AP2a, TAGL1, CNR and NOR showed a consistent pattern. It was speculated that the influence of SlSAHH2 on ethylene production was downstream of the regulation of SlSAHH2 on these ripening regulator genes. The over-expressing lines displayed higher sensitivity to ethylene in both fruit and non-fruit tissues. Ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) treatment accelerated ripening faster in SlSAHH2 over-expressing fruit than in wild-type. Additionally, seedlings of transgenic lines displayed shorter hypocotyls and roots in ethylene triple response assay. In conclusion, SlSAHH2 played an important role in tomato fruit ripening.
Collapse
|
17
|
Shen Y, Issakidis-Bourguet E, Zhou DX. Perspectives on the interactions between metabolism, redox, and epigenetics in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5291-5300. [PMID: 27531885 DOI: 10.1093/jxb/erw310] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Epigenetic modifications of chromatin usually involve consumption of key metabolites and redox-active molecules. Primary metabolic flux and cellular redox states control the activity of enzymes involved in chromatin modifications, such as DNA methylation, histone acetylation, and histone methylation, which in turn regulate gene expression and/or enzymatic activity of specific metabolic and redox pathways. Thus, coordination of metabolism and epigenetic regulation of gene expression is critical to control growth and development in response to the cellular environment. Much has been learned from animal and yeast cells with regard to the interplay between metabolism and epigenetic regulation, and now the metabolic control of epigenetic pathways in plants is an increasing area of study. Epigenetic mechanisms are largely similar between plant and mammalian cells, but plants display very important differences in both metabolism and metabolic/redox signaling pathways. In this review, we summarize recent developments in the field and discuss perspectives of studying interactions between plant epigenetic and metabolism/redox systems, which are essential for plant adaptation to environmental conditions.
Collapse
Affiliation(s)
- Yuan Shen
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Université Paris-sud 11, 91400 Orsay, France
| | | | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Université Paris-sud 11, 91400 Orsay, France
| |
Collapse
|
18
|
Wang C, Lu W, He X, Wang F, Zhou Y, Guo X, Guo X. The Cotton Mitogen-Activated Protein Kinase Kinase 3 Functions in Drought Tolerance by Regulating Stomatal Responses and Root Growth. PLANT & CELL PHYSIOLOGY 2016; 57:1629-42. [PMID: 27335349 DOI: 10.1093/pcp/pcw090] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 04/28/2016] [Indexed: 05/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play critical roles in signal transduction processes in eukaryotes. The MAPK kinases (MAPKKs) that link MAPKK kinases (MAPKKKs) and MAPKs are key components of MAPK cascades. However, the intricate regulatory mechanisms that control MAPKKs under drought stress conditions are not fully understood, especially in cotton (Gossypium hirsutum) Here, we isolated and characterized the cotton group B MAPKK gene GhMKK3 Overexpressing GhMKK3 in Nicotiana benthamiana enhanced tolerance to drought, and the results of RNA sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR) assays suggest that GhMKK3 plays an important role in responses to abiotic stresses by regulating stomatal responses and root hair growth. Further evidence demonstrated that overexpressing GhMKK3 promoted root growth and ABA-induced stomatal closure. In contrast, silencing GhMKK3 in cotton using virus-induced gene silencing (VIGS) resulted in the opposite phenotypes. More importantly, we identified an ABA- and drought-induced MAPK cascade that is composed of GhMKK3, GhMPK7 and GhPIP1 that compensates for deficiency in the MAPK cascade pathway in cotton under drought stress conditions. Together, these findings significantly improve our understanding of the mechanism by which GhMKK3 positively regulates drought stress responses.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Wenjing Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Xiaowen He
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Fang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Yuli Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Xulei Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| |
Collapse
|
19
|
Ding Y, Zhou X, Zuo L, Wang H, Yu D. Identification and functional characterization of the sulfate transporter gene GmSULTR1;2b in soybean. BMC Genomics 2016; 17:373. [PMID: 27206527 PMCID: PMC4874011 DOI: 10.1186/s12864-016-2705-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soybean is a major source of oil and protein in the human diet and in animal feed. However, as soybean is deficient in sulfur-containing amino acids, its nutritional value is limited. Increasing sulfate assimilation and utilization efficiency is a valuable approach to augment the concentration of sulfur-containing amino acids in soybean seeds, and sulfate transporters play important roles in both sulfate uptake and translocation within plants. RESULTS In this study, we isolated and characterized a soybean sulfate transporter gene: GmSULTR1;2b. The gene was found to be specifically expressed in root tissues and induced by low-sulfur stress. In addition, GmSULTR1;2b expression in yeast could complement deficiency in the sulfate transporter genes SUL1 and SUL2. Under +S conditions, GmSULTR1;2b-overexpressing tobacco plants accumulated higher levels of organic matter and exhibited enhanced biomass and seed weight compared to control plants. Under -S conditions, acclimation of GmSULTR1;2b-overexpressing plants was much better than control plants. GmSULTR1;2b-overexpressing tobacco seedlings showed better tolerance to drought stress than the control plants, but no significant difference was observed under salt stress. Transcriptome analysis revealed 515 genes with at least a 2-fold change in expression in the leaves of tobacco plants overexpressing GmSULTR1;2b. Of these, 227 gene annotations were classified into 12 functional categories associated with 123 relevant pathways, including biosynthesis and metabolism-related proteins, stress-related proteins, and transporters. CONCLUSIONS The findings reported here indicate that the increased biomass and seed yield observed in transgenic tobacco plants could have resulted from greater nutrient uptake and transport capability as well as enhanced development and accumulation of organic matter. Taken together, our results indicate that GmSULTR1;2b plays an important role in sulfur uptake and could alter the sulfur status of plants. Our study suggests that overexpressing GmSULTR1;2b may enhance plant yield under +S conditions, reduce plant production loss under -S conditions, and improve plant tolerance to sulfur deficiency stress.
Collapse
Affiliation(s)
- Yiqiong Ding
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, China
| | - Xiaoqiong Zhou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, China
| | - Li Zuo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, China
| | - Hui Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, China.
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, China.
| |
Collapse
|
20
|
Li X, Huang L, Hong Y, Zhang Y, Liu S, Li D, Zhang H, Song F. Co-silencing of tomato S-adenosylhomocysteine hydrolase genes confers increased immunity against Pseudomonas syringae pv. tomato DC3000 and enhanced tolerance to drought stress. FRONTIERS IN PLANT SCIENCE 2015; 6:717. [PMID: 26442031 PMCID: PMC4561804 DOI: 10.3389/fpls.2015.00717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/27/2015] [Indexed: 05/08/2023]
Abstract
S-adenosylhomocysteine hydrolase (SAHH), catalyzing the reversible hydrolysis of S-adenosylhomocysteine (SAH) to adenosine and homocysteine, is a key enzyme that maintain the cellular methylation potential in all organisms. We report here the biological functions of tomato SlSAHHs in stress response. The tomato genome contains three SlSAHH genes that encode SlSAHH proteins with high level of sequence identity. qRT-PCR analysis revealed that SlSAHHs responded with distinct expression induction patterns to Pseudomonas syringae pv. tomato (Pst) DC3000 and Botrytis cinerea as well as to defense signaling hormones such as salicylic acid, jasmonic acid and a precursor of ethylene. Virus-induced gene silencing-based knockdown of individual SlSAHH gene did not affect the growth performance and the response to Pst DC3000. However, co-silencing of three SlSAHH genes using a conserved sequence led to significant inhibition of vegetable growth. The SlSAHH-co-silenced plants displayed increased resistance to Pst DC3000 but did not alter the resistance to B. cinerea. Co-silencing of SlSAHHs resulted in constitutively activated defense responses including elevated SA level, upregulated expression of defense-related and PAMP-triggered immunity marker genes and increased callose deposition and H2O2 accumulation. Furthermore, the SlSAHH-co-silenced plants also exhibited enhanced drought stress tolerance although they had relatively small roots. These data demonstrate that, in addition to the functions in growth and development, SAHHs also play important roles in regulating biotic and abiotic stress responses in plants.
Collapse
Affiliation(s)
- Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Yafen Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| |
Collapse
|
21
|
Min L, Li Y, Hu Q, Zhu L, Gao W, Wu Y, Ding Y, Liu S, Yang X, Zhang X. Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. PLANT PHYSIOLOGY 2014; 164:1293-308. [PMID: 24481135 PMCID: PMC3938621 DOI: 10.1104/pp.113.232314] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/30/2014] [Indexed: 05/18/2023]
Abstract
Male reproduction in flowering plants is highly sensitive to high temperature (HT). To investigate molecular mechanisms of the response of cotton (Gossypium hirsutum) anthers to HT, a relatively complete comparative transcriptome analysis was performed during anther development of cotton lines 84021 and H05 under normal temperature and HT conditions. In total, 4,599 differentially expressed genes were screened; the differentially expressed genes were mainly related to epigenetic modifications, carbohydrate metabolism, and plant hormone signaling. Detailed studies showed that the deficiency in S-adenosyl-L-homocysteine hydrolase1 and the inhibition of methyltransferases contributed to genome-wide hypomethylation in H05, and the increased expression of histone constitution genes contributed to DNA stability in 84021. Furthermore, HT induced the expression of casein kinasei (GhCKI) in H05, coupled with the suppression of starch synthase activity, decreases in glucose level during anther development, and increases in indole-3-acetic acid (IAA) level in late-stage anthers. The same changes also were observed in Arabidopsis (Arabidopsis thaliana) GhCKI overexpression lines. These results suggest that GhCKI, sugar, and auxin may be key regulators of the anther response to HT stress. Moreover, phytochrome-interacting factor genes (PIFs), which are involved in linking sugar and auxin and are regulated by sugar, might positively regulate IAA biosynthesis in the cotton anther response to HT. Additionally, exogenous IAA application revealed that high background IAA may be a disadvantage for late-stage cotton anthers during HT stress. Overall, the linking of HT, sugar, PIFs, and IAA, together with our previously reported data on GhCKI, may provide dynamic coordination of plant anther responses to HT stress.
Collapse
|