1
|
Benmeddour T, Messaoudi K, Flamini G. First investigation of the chemical composition, antioxidant, antimicrobial and larvicidal activities of the essential oil of the subspecies Ononis angustissima Lam. subsp. filifolia Murb. Nat Prod Res 2025; 39:2663-2678. [PMID: 38247329 DOI: 10.1080/14786419.2024.2305211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
This study is the first to explore the essential oil of Ononis angustissima Lam. subsp. filifolia Murb., a subspecies growing in the Algerian northeastern Sahara. The chemical composition was evaluated by GC/GC-EIMS. Antioxidant activity was evaluated using two methods. Thirty-four (91.6%) individual components were identified. The main constituents were linalool (12.6%), hexahydrofarnesylacetone (8.4%), β-eudesmol (6.6%), α-cadinol (6.4%) and T-cadinol (6.1%). The findings provide a chemical basis for understanding relationships between North African subspecies, supporting botanical and genetic classification. The oil exhibited moderate scavenging activity against DPPH radicals (IC50 = 102.30 µg/ml) and high activity in the β-carotene bleaching assay (91.346%). Antimicrobial tests revealed effectiveness against Gram-positive bacteria (Staphylococcus aureus ATCC 25923 and ATCC 43300), limited impact on Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922), and good inhibition against Aspergillus niger and Scedosporium apiospermum. A notable larvicidal activity was observed against Date Moth, particularly on L2 larvae.
Collapse
Affiliation(s)
- Tarek Benmeddour
- Department of Nature and Life Sciences, University of Biskra, Biskra, Algeria
- Laboratory of Genetics, Biotechnology and Valorization of Bioresources, University of Biskra, Algeria
| | - Khadidja Messaoudi
- Department of Nature and Life Sciences, University of Biskra, Biskra, Algeria
- Laboratory of Genetics, Biotechnology and Valorization of Bioresources, University of Biskra, Algeria
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
| |
Collapse
|
2
|
Georgieva P, Rusanov K, Rusanova M, Kitanova M, Atanassov I. Construction of Simple Sequence Repeat-Based Genetic Linkage Map and Identification of QTLs for Accumulation of Floral Volatiles in Lavender ( Lavandula angustifolia Mill.). Int J Mol Sci 2025; 26:3705. [PMID: 40332356 PMCID: PMC12028027 DOI: 10.3390/ijms26083705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
In spite of the increasing industrial cultivation of lavender (Lavandula angustifolia Mill.), no genetic linkage map and mapping of QTLs (quantitative trait locus) has been reported for Lavandula species. We present the development of a set of SSR (simple sequence repeat) markers and the first genetic linkage map of lavender following the genotyping of a segregating population obtained by the self-pollination of the industrial lavender variety Hemus. The resulting genetic map comprises 25 linkage groups (LGs) corresponding to the chromosome number of the lavender reference genome. The map includes 375 loci covering a total of 2631.57 centimorgan (cM). The average marker distance in the established map is 7.01 cM. The comparison of the map and reference genome sequence shows that LG maps cover an average of 82.6% of the chromosome sequences. The PCR amplification tests suggest that the developed SSR marker set possesses high intra-species (>93%) and inter-species (>78%) transferability. The QTL analysis employing the constructed map and gas chromatography/mass spectrometry (GC/MS) dataset of flower extracted volatiles resulted in the mapping of a total of 43 QTLs for the accumulation of 25 different floral volatiles. The comparison of the genome location of the QTLs and known biosynthetic genes suggests candidate genes for some QTLs.
Collapse
Affiliation(s)
- Pavlina Georgieva
- Department of Agrobiotechnology, AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (P.G.); (K.R.); (M.R.)
| | - Krasimir Rusanov
- Department of Agrobiotechnology, AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (P.G.); (K.R.); (M.R.)
| | - Mila Rusanova
- Department of Agrobiotechnology, AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (P.G.); (K.R.); (M.R.)
| | - Meglena Kitanova
- Faculty of Biology, Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (BIORESOURCES BG), 1000 Sofia, Bulgaria
| | - Ivan Atanassov
- Department of Agrobiotechnology, AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (P.G.); (K.R.); (M.R.)
| |
Collapse
|
3
|
Liu D, Deng H, Song H. Insights into the functional mechanisms of the sesquiterpene synthase GEAS and GERDS in lavender. Int J Biol Macromol 2025; 299:140195. [PMID: 39848388 DOI: 10.1016/j.ijbiomac.2025.140195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Lavenders are economically significant plants cultivated worldwide for their essential oils (EOs) containing sesquiterpenes. These EOs contribute to the cosmetic, personal hygiene, and pharmaceutical industries. The biosynthesis of lavender sesquiterpenes involves enzymes like sesquiterpene synthases GEAS and GERDS. The structure and functional mechanism of these sesquiterpene synthases (GEAS or GERDS) are not fully understood. Here, we achieved the successful expression and purification of monomeric proteins at high purity. The results of the molecular docking revealed that negatively charged residues interact electrostatically with magnesium ions (Mg2+), thereby stabilizing and neutralizing negatively charged phosphate groups on the substrate. Notably, deletion of the N-terminus (∆N-terminus) significantly increased the enzymatic activity compared to the wild-type protein. These findings offer insights into the regulatory mechanisms underlying sesquiterpene biosynthesis in lavender, and suggest potential avenues for improving essential oils through genetic engineering and developing cosmetic and personal care products and alternative medicines.
Collapse
Affiliation(s)
- Dafeng Liu
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining 835000, Xinjiang, China; School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| | - Huashui Deng
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hongying Song
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
4
|
Wajid MA, Sharma P, Majeed A, Bhat S, Angmo T, Fayaz M, Pal K, Andotra S, Bhat WW, Misra P. Transcriptome-wide investigation and functional characterization reveal a terpene synthase involved in γ-terpinene biosynthesis in Monarda citriodora. Funct Integr Genomics 2024; 24:222. [PMID: 39589550 DOI: 10.1007/s10142-024-01491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024]
Abstract
Monarda citriodora Cerv. ex Lag. is a rich source of industrially important compounds like γ-terpinene, carvacrol, thymol and thymoquinone. Understanding the regulation of γ-terpinene biosynthesis, a precursor for other monoterpenes, could facilitate upscaling of these metabolites in M. citriodora. Therefore, the present study aimed to unravel and characterize the terpene synthase (TPS) involved in γ-terpinene biosynthesis. Homology searches revealed 33 TPS members in the transcriptome assembly of M. citriodora. Based on the correlation of expression patterns and phytochemical profile, McTPS22 emerged as the putative TPS for γ-terpinene biosynthesis. Molecular docking suggested geranyl diphosphate (GPP) as a potential substrate for McTPS22. Heterologous expression in Escherichia coli and Nicotiana benthamiana confirmed the role of McTPS22 in γ-terpinene biosynthesis. Both in-silico prediction and confocal microscopy indicated plastidial localization of the McTPS22. Gene co-expression network analysis revealed 507 genes interacting with McTPS22, including 80 transcription factors (TFs). Of these, 46 TFs had binding sites in the McTPS22 promoter, and 36 showed significant correlations with γ-terpinene accumulation, suggesting they may be potential regulators. Promoter analysis indicated regulation by phytohormones and abiotic factors, confirmed by phytohormone elicitation and QRT-PCR. The histochemical GUS staining suggested that McTPS22 is primarily active in the glandular trichomes of M. citriodora. The present work provides insights into the molecular regulation of biosynthesis of γ-terpinene in M. citriodora.
Collapse
Affiliation(s)
- Mir Abdul Wajid
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Sharma
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aasim Majeed
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
| | - Sheetal Bhat
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tsering Angmo
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Fayaz
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koushik Pal
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonali Andotra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Wajid Waheed Bhat
- Division of Basic Sciences and Humanities, SKUAST-Kashmir, Shalimar, 190025, Srinagar, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Zhou L, Wang Q, Shen J, Li Y, Zhang H, Zhang X, Yang S, Jiang Z, Wang M, Li J, Wang Y, Liu H, Zhou Z. Metabolic engineering of glycolysis in Escherichia coli for efficient production of patchoulol and τ-cadinol. BIORESOURCE TECHNOLOGY 2024; 391:130004. [PMID: 37952591 DOI: 10.1016/j.biortech.2023.130004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Glucose metabolism suppresses the microbial synthesis of sesquiterpenes with a syndrome of "too much of a good thing can be bad". Here, patchoulol production in Escherichia coli was increased 2.02 times by engineering patchoulol synthase to obtain an initial strain. Knocking out the synthetic pathway for cyclic adenosine monophosphate relieved glucose repression and improved patchoulol titer and yield by 27.7 % and 43.1 %, respectively. A glycolysis regulation device mediated by pyruvate sensing was constructed which effectively alleviated overflow metabolism in a high-glucose environment with 10.2 % greater patchoulol titer in strain 070QA. Without fine-tuning the glucose-feeding rate, patchoulol titer further increased to 1675.1 mg/L in a 5-L bioreactor experiment, which was the highest level reported in E. coli. Using strain 070QA as a chassis, the τ-cadinol titer reached 15.2 g/L, representing the first report for microbial production of τ-cadinol. These findings will aid in the industrial production of sesquiterpene.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Qin Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Jiawen Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Yunyan Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Hui Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Xinrui Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Shiyi Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Ziyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Mengxuan Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Jun Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Yuxi Wang
- Food Micro-manufacturing Engineering and Safety Research Laboratory, Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Haili Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.
| |
Collapse
|
6
|
Yu C, Gao S, Rong M, Xiao M, Xu Y, Wei J. Identification and characterization of novel sesquiterpene synthases TPS9 and TPS12 from Aquilaria sinensis. PeerJ 2023; 11:e15818. [PMID: 37663295 PMCID: PMC10474832 DOI: 10.7717/peerj.15818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/10/2023] [Indexed: 09/05/2023] Open
Abstract
Sesquiterpenes are characteristic components and important quality criterions for agarwood. Although sesquiterpenes are well-known to be biosynthesized by sesquiterpene synthases (TPSs), to date, only a few TPS genes involved in agarwood formation have been reported. Here, two new TPS genes, namely, TPS9 and TPS12, were isolated from Aquilaria sinensis (Lour.) Gilg, and their functions were examined in Escherichia coli BL21(DE3), with farnesyl pyrophosphate (FPP) and geranyl pyrophosphate (GPP) as the substrate of the corresponding enzyme activities. They were both identified as a multiproduct enzymes. After incubation with FPP, TPS9 liberated β-farnesene and cis-sesquisabinene hydrate as main products, with cedrol and another unidentified sesquiterpene as minor products. TPS12 catalyzes the formation of β-farnesene, nerolidol, γ-eudesmol, and hinesol. After incubation with GPP, TPS9 generated citronellol and geraniol as main products, with seven minor products. TPS12 converted GPP into four monoterpenes, with citral as the main product, and three minor products. Both TPS9 and TPS12 showed much higher expression in the two major tissues emitting floral volatiles: flowers and agarwood. Further, RT-PCR analysis showed TPS9 and TPS12 are typical genes mainly expressed during later stages of stress response, which is better known than that of chromone derivatives. This study will advance our understanding of agarwood formation and provide a solid theoretical foundation for clarifying its mechanism in A. sinensis.
Collapse
Affiliation(s)
- Cuicui Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Shixi Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Mei Rong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Mengjun Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Yanhong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Jianhe Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plan, Hainan, China
| |
Collapse
|
7
|
Henríquez JC, Duarte LV, Sierra LJ, Fernández-Alonso JL, Martínez JR, Stashenko EE. Chemical Composition and In Vitro Antioxidant Activity of Salvia aratocensis (Lamiaceae) Essential Oils and Extracts. Molecules 2023; 28:4062. [PMID: 37241803 PMCID: PMC10223537 DOI: 10.3390/molecules28104062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Salvia aratocensis (Lamiaceae) is an endemic shrub from the Chicamocha River Canyon in Santander (Colombia). Its essential oil (EO) was distilled from the aerial parts of the plant via steam distillation and microwave-assisted hydrodistillation and analyzed using GC/MS and GC/FID. Hydroethanolic extracts were isolated from dry plants before distillation and from the residual plant material after distillation. The extracts were characterized via UHPLC-ESI(+/-)-Orbitrap-HRMS. The S. aratocensis essential oil was rich in oxygenated sesquiterpenes (60-69%) and presented τ-cadinol (44-48%) and 1,10-di-epi-cubenol (21-24%) as its major components. The in vitro antioxidant activity of the EOs, measured via an ABTS+• assay, was 32-49 μmol Trolox® g-1 and that measured using the ORAC assay was 1520-1610 μmol Trolox® g-1. Ursolic acid (28.9-39.8 mg g-1) and luteolin-7-O-glucuronide (1.16-25.3 mg g-1) were the major S. aratocensis extract constituents. The antioxidant activity of the S. aratocensis extract, obtained from undistilled plant material, was higher (82 ± 4 μmol Trolox® g-1, ABTS+•; 1300 ± 14 μmol Trolox® g-1, ORAC) than that of the extracts obtained from the residual plant material (51-73 μmol Trolox® g-1, ABTS+•; 752-1205 μmol Trolox® g-1, ORAC). S. aratocensis EO and extract had higher ORAC antioxidant capacity than the reference substances butyl hydroxy toluene (98 μmol Trolox® g-1) and α-tocopherol (450 μmol Trolox® g-1). S. aratocensis EOs and extracts have the potential to be used as natural antioxidants for cosmetics and pharmaceutical products.
Collapse
Affiliation(s)
- Juan C. Henríquez
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Grupo de Investigación en Biomoléculas CIBIMOL, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Laura V. Duarte
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Grupo de Investigación en Biomoléculas CIBIMOL, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Lady J. Sierra
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Grupo de Investigación en Biomoléculas CIBIMOL, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | | | - Jairo R. Martínez
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Grupo de Investigación en Biomoléculas CIBIMOL, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Elena E. Stashenko
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Grupo de Investigación en Biomoléculas CIBIMOL, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| |
Collapse
|
8
|
Adal AM, Najafianashrafi E, Sarker LS, Mahmoud SS. Cloning, functional characterization and evaluating potential in metabolic engineering for lavender ( +)-bornyl diphosphate synthase. PLANT MOLECULAR BIOLOGY 2023; 111:117-130. [PMID: 36271988 DOI: 10.1007/s11103-022-01315-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
We isolated and functionally characterized a new ( +)-bornyl diphosphate synthase (( +)-LiBPPS) from Lavandula x intermedia. The in planta functions of ( +)-LiBPPS were evaluated in sense and antisense transgenic plants. The monoterpene ( +)-borneol contributes scent and medicinal properties to some plants. It also is the immediate precursor to camphor, another important determinant of aroma and medicinal properties in many plants. ( +)-Borneol is generated through the dephosphorylation of bornyl diphosphate (BPP), which is itself derived from geranyl diphosphate (GPP) by the enzyme ( +)-bornyl diphosphate synthase (( +)-BPPS). In this study we isolated and functionally characterized a novel ( +)-BPPS cDNA from Lavandula x intermedia. The cDNA excluding its transit peptide was expressed in E. coli, and the corresponding recombinant protein was purified with Ni-NTA agarose affinity chromatography. The recombinant ( +)-LiBPPS catalyzed the conversion of GPP to BPP as a major product, and a few minor products. We also investigated the in planta role of ( +)-LiBPPS in terpenoid metabolism through its overexpression in sense and antisense orientations in stably transformed Lavandula latifolia plants. The overexpression of ( +)-LiBPPS in antisense resulted in reduced production of ( +)-borneol and camphor without compromising plant growth and development. As anticipated, the overexpression of the gene led to enhanced production of borneol and camphor, although growth and development were severely impaired in most transgenic lines strongly and ectopically expressing the ( +)-LiBPPS transgene in sense. Our results demonstrate that LiBPPS would be useful in studies aimed at the production of recombinant borneol and camphor in vitro, and in metabolic engineering efforts aimed at lowering borneol and camphor production in plants. However, overexpression in sense may require a targeted expression of the gene in glandular trichomes using a trichome-specific promoter.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
- Innovate Phytoceuticals Inc, 3485 Velocity Ave, Kelowna, BC, V1V 3C2, Canada
| | - Elaheh Najafianashrafi
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
- Department of Micro, Immuno and Cancer Biology, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, VA, 22908, USA
| | - Lukman S Sarker
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
- Innovate Phytoceuticals Inc, 3485 Velocity Ave, Kelowna, BC, V1V 3C2, Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
9
|
Dong Y, Li J, Zhang W, Bai H, Li H, Shi L. Exogenous application of methyl jasmonate affects the emissions of volatile compounds in lavender (Lavandula angustifolia). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:25-34. [PMID: 35649290 DOI: 10.1016/j.plaphy.2022.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The plant hormone, methyl jasmonate (MeJA), is an orthodox elicitor of secondary metabolites, including terpenoids. Lavandula angustifolia is an important aromatic plant generating, yet few studies have been performed to evaluate the function of MeJA on the biosynthesis of terpenoids in lavender. Five treatments (with concentrations of 0, 0.4, 4, 8, and 16 mM) were set, and the physiological indicators of each group were determined after 0, 6, 12, 24, 48, and 72 h. The results illustrate that (1) MeJA could affect the diurnal rhythm of the emission of volatiles and MeJA acted in a dose-dependent and time-dependent manner; (2) 8 mM MeJA treatment increased the total content of the volatiles, and the contents of monoterpenoids and sesquiterpenoids were up-regulated 0.46- and 0.74- fold than the control at 24 h and 12 h, respectively; (3) after MeJA treatment, all the genes expression analyzed changed to varying degrees, of which 3-carene synthase (La3CARS) gene changed most significantly (7.66- to 38.02- fold than the control); (4) MeJA application was associated with a rise in glandular trichome density. The positive effects of MeJA indicate that the exogenous application of MeJA could be a beneficial mean for studies on the biosynthesis of terpenoids in lavender.
Collapse
Affiliation(s)
- Yanmei Dong
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingrui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wenying Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
10
|
Sun Y, Wu S, Fu X, Lai C, Guo D. De novo biosynthesis of τ-cadinol in engineered Escherichia coli. BIORESOUR BIOPROCESS 2022; 9:29. [PMID: 38647768 PMCID: PMC10991332 DOI: 10.1186/s40643-022-00521-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
τ-Cadinol is a sesquiterpene that is widely used in perfume, fine chemicals and medicines industry. In this study, we established a biosynthetic pathway for the first time in engineered Escherichia coli for production of τ-cadinol from simple carbon sources. Subsequently, we further improved the τ-cadinol production to 35.9 ± 4.3 mg/L by optimizing biosynthetic pathway and overproduction of rate-limiting enzyme IdI. Finally, the titer was increased to 133.5 ± 11.2 mg/L with a two-phase organic overlay-culture medium system. This study shows an efficient method for the biosynthesis of τ-cadinol in E. coli with the heterologous hybrid MVA pathway.
Collapse
Affiliation(s)
- Yue Sun
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, China
| | - Shaoting Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, China
| | - Xiao Fu
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, China
| | - Chongde Lai
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Daoyi Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, China.
| |
Collapse
|
11
|
Quick and efficient approach to develop genomic resources in orphan species: Application in Lavandula angustifolia. PLoS One 2020; 15:e0243853. [PMID: 33306734 PMCID: PMC7732122 DOI: 10.1371/journal.pone.0243853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Next-Generation Sequencing (NGS) technologies, by reducing the cost and increasing the throughput of sequencing, have opened doors to generate genomic data in a range of previously poorly studied species. In this study, we propose a method for the rapid development of a large-scale molecular resources for orphan species. We studied as an example the true lavender (Lavandula angustifolia Mill.), a perennial sub-shrub plant native from the Mediterranean region and whose essential oil have numerous applications in cosmetics, pharmaceuticals, and alternative medicines. The heterozygous clone “Maillette” was used as a reference for DNA and RNA sequencing. We first built a reference Unigene, compound of coding sequences, thanks to de novo RNA-seq assembly. Then, we reconstructed the complete genes sequences (with introns and exons) using an Unigene-guided DNA-seq assembly approach. This aimed to maximize the possibilities of finding polymorphism between genetically close individuals despite the lack of a reference genome. Finally, we used these resources for SNP mining within a collection of 16 commercial lavender clones and tested the SNP within the scope of a genetic distance analysis. We obtained a cleaned reference of 8, 030 functionally in silico annotated genes. We found 359K polymorphic sites and observed a high SNP frequency (mean of 1 SNP per 90 bp) and a high level of heterozygosity (more than 60% of heterozygous SNP per genotype). On overall, we found similar genetic distances between pairs of clones, which is probably related to the out-crossing nature of the species and the restricted area of cultivation. The proposed method is transferable to other orphan species, requires little bioinformatics resources and can be realized within a year. This is also the first reported large-scale SNP development on Lavandula angustifolia. All the genomics resources developed herein are publicly available and provide a rich pool of molecular resources to explore and exploit lavender genetic diversity in breeding programs.
Collapse
|
12
|
Transcriptome profiling of spike provides expression features of genes related to terpene biosynthesis in lavender. Sci Rep 2020; 10:6933. [PMID: 32332830 PMCID: PMC7181790 DOI: 10.1038/s41598-020-63950-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/07/2020] [Indexed: 11/25/2022] Open
Abstract
Lavender (Lavandula angustifolia) is an important economic plant because of the value of its essential oil (EO). The Yili Valley in Xinjiang has become the largest lavender planting base in China. However, there is a lack of research on the gene expression regulation of EO biosynthesis and metabolism in local varieties. Here, de novo transcriptome analysis of inflorescence of three development stages from initial flower bud to flowering stage 50% from two lavender cultivars with contrasting EO production revealed the dynamics of 100,177 differentially expressed transcripts (DETs) in various stages of spike development within and across the cultivars. The lavender transcriptome contained 77 DETs with annotations related to terpenoid biosynthesis. The expression profiles of the 27 genes involved in the methylerythritol phosphate (MEP) pathway, 22 genes in the mevalonate (MVA) pathway, 28 genes related to monoterpene and sesquiterpene biosynthesis during inflorescence development were comprehensively characterized, and possible links between the expression changes of genes and contents of EO constituents were explored. The upregulated genes were mainly concentrated in the MEP pathway, while most genes in the MVA pathway were downregulated during flower development, and cultivars with a higher EO content presented higher expression of genes in the MEP pathway, indicating that EOs were chiefly produced through the MEP pathway. Additionally, MYB transcription factors constituted the largest number of transcripts in all samples, suggesting their potential roles in regulating EO biosynthesis. The sequences and transcriptional patterns of the transcripts will be helpful for understanding the molecular basis of lavender terpene biosynthesis.
Collapse
|
13
|
Zagorcheva T, Stanev S, Rusanov K, Atanassov I. SRAP markers for genetic diversity assessment of lavender (Lavandula angustifolia mill.) varieties and breeding lines. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1742788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Stanko Stanev
- Institute of Rose and Aromatic Plants, Agricultural Academy, Kazanlak, Bulgaria
| | - Krasimir Rusanov
- Molecular Genetics Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Ivan Atanassov
- Molecular Genetics Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| |
Collapse
|
14
|
Adal AM, Mahmoud SS. Short-chain isoprenyl diphosphate synthases of lavender (Lavandula). PLANT MOLECULAR BIOLOGY 2020; 102:517-535. [PMID: 31927660 DOI: 10.1007/s11103-020-00962-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/03/2020] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE We reported the functional characterization of cDNAs encoding short-chain isoprenyl diphosphate synthases that control the partitioning of precursors for lavender terpenoids. Lavender essential oil is composed of regular and irregular monoterpenes, which are derived from linear precursors geranyl diphosphate (GPP) and lavandulyl diphosphate (LPP), respectively. Although this plant strongly expresses genes responsible for the biosynthesis of both monoterpene classes, it is unclear why regular monoterpenes dominate the oil. Here, we cloned and characterized Lavandula x intermedia cDNAs encoding geranyl diphosphate synthase (LiGPPS), geranylgeranyl diphosphate synthase (LiGGPPS) and farnesyl diphosphate synthase (LiFPPS). LiGPPS was heteromeric protein, consisting of a large subunit (LiGPPS.LSU) and a small subunit for which two different cDNAs (LiGPPS.SSU1 and LiGPPS.SSU2) were detected. Neither recombinant LiGPPS subunits was active by itself. However, when co-expressed in E. coli LiGPPS.LSU and LiGPPS.SSU1 formed an active heteromeric GPPS, while LiGPPS.LSU and LiGPPS.SSU2 did not form an active protein. Recombinant LiGGPPS, LiFPPS and LPP synthase (LPPS) proteins were active individually. Further, LiGPPS.SSU1 modified the activity of LiGGPPS (to produce GPP) in bacterial cells co-expressing both proteins. Given this, and previous evidence indicating that GPPS.SSU can modify the activity of GGPPS to GPPS in vitro and in plants, we hypothesized that LiGPPS.SSU1 modifies the activity of L. x intermedia LPP synthase (LiLPPS), thus accounting for the relatively low abundance of LPP-derived irregular monoterpenes in this plant. However, LiGPPS.SSU1 did not affect the activity of LiLPPS. These results, coupled to the observation that LiLPPS transcripts are more abundant than those of GPPS subunits in L. x intermedia flowers, suggest that regulatory mechanisms other than transcriptional control of LPPS regulate precursor partitioning in lavender flowers.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
15
|
Wells RS, Adal AM, Bauer L, Najafianashrafi E, Mahmoud SS. Cloning and functional characterization of a floral repressor gene from Lavandula angustifolia. PLANTA 2020; 251:41. [PMID: 31907678 DOI: 10.1007/s00425-019-03333-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/21/2019] [Indexed: 05/22/2023]
Abstract
Using RNA-Seq, we identified genes involved in floral development in lavenders and functionally characterized the floral repressor LaSVP. The molecular aspects of flower initiation and development have not been adequately investigated in lavender (Lavandula). In order to identify genes that control these processes, we employed RNA-Seq to obtain sequence information for transcripts originating from the vegetative shoot apical meristem (SAM) and developing inflorescence tissues of Lavandula angustifolia and Lavandula × intermedia plants, and assemble a comprehensive transcriptome of 105,294 contigs. Homology-based annotation provided gene ontology terms for the majority of transcripts, including over 100 genes homologous to those that control flower initiation and organ identity in Arabidopsis thaliana. Expression analysis revealed that most of these genes are differentially expressed during flower development. For example, LaSVP, a homolog of the floral repressor SHORT VEGETATIVE PHASE (SVP), was strongly expressed in vegetative SAM compared to developing flowers, implicating its potential involvement in flowering repression in lavender. To investigate LaSVP further, we constitutively expressed the gene in transformed A. thaliana plants, evaluating its effects on flower initiation and morphology. Expression of the LaSVP in A. thaliana delayed flowering and affected flower organ identity in a dosage-dependent manner. Two of the highest expressing lines produced sepals instead of petals and were sterile as they failed to develop proper seed pods. This study provides the foundation for future investigations aimed at elucidating flower initiation and development in lavender.
Collapse
Affiliation(s)
- Rebecca S Wells
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Ayelign M Adal
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Lina Bauer
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Elaheh Najafianashrafi
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
16
|
Adal AM, Sarker LS, Malli RPN, Liang P, Mahmoud SS. RNA-Seq in the discovery of a sparsely expressed scent-determining monoterpene synthase in lavender (Lavandula). PLANTA 2019; 249:271-290. [PMID: 29948128 DOI: 10.1007/s00425-018-2935-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/01/2018] [Indexed: 05/07/2023]
Abstract
Using RNA-Seq, we cloned and characterized a unique monoterpene synthase responsible for the formation of a scent-determining S-linalool constituent of lavender oils from Lavandula × intermedia. Several species of Lavandula produce essential oils (EOs) consisting mainly of monoterpenes including linalool, one of the most abundant and scent-determining oil constituents. Although R-linalool dominates the EOs of lavenders, varying amounts (depending on the species) of the S-linalool enantiomer can also be found in these plants. Despite its relatively low abundance, S-linalool contributes a sweet, pleasant scent and is an important constituent of lavender EOs. While several terpene synthase genes including R-linalool synthase have been cloned from lavenders many important terpene synthases including S-linalool synthase have not been described from these plants. In this study, we employed RNA-Seq and other complementary sequencing data to clone and functionally characterize the sparsely expressed S-linalool synthase cDNA (LiS-LINS) from Lavandula × intermedia. Recombinant LiS-LINS catalyzed the conversion of the universal monoterpene precursor geranyl diphosphate to S-linalool as the sole product. Intriguingly, LiS-LINS exhibited very low (~ 30%) sequence similarity to other Lavandula terpene synthases, including R-linalool synthase. However, the predicted 3D structure of this protein, including the composition and arrangement of amino acids at the active site, is highly homologous to known terpene synthase proteins. LiS-LINS transcripts were detected in flowers, but were much less abundant than those corresponding to LiR-LINS, paralleling enantiomeric composition of linalool in L. × intermedia oils. These data indicate that production of S-linalool is at least partially controlled at the level of transcription from LiS-LINS. The cloned LiS-LINS cDNA may be used to enhance oil composition in lavenders and other plants through metabolic engineering.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Radesh P N Malli
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
17
|
Blerot B, Martinelli L, Prunier C, Saint-Marcoux D, Legrand S, Bony A, Sarrabère L, Gros F, Boyer N, Caissard JC, Baudino S, Jullien F. Functional Analysis of Four Terpene Synthases in Rose-Scented Pelargonium Cultivars ( Pelargonium × hybridum) and Evolution of Scent in the Pelargonium Genus. FRONTIERS IN PLANT SCIENCE 2018; 9:1435. [PMID: 30483274 PMCID: PMC6240891 DOI: 10.3389/fpls.2018.01435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/10/2018] [Indexed: 05/26/2023]
Abstract
Pelargonium genus contains about 280 species among which at least 30 species are odorant. Aromas produced by scented species are remarkably diverse such as rose, mint, lemon, nutmeg, ginger and many others scents. Amongst odorant species, rose-scented pelargoniums, also named pelargonium rosat, are the most famous hybrids for their production of essential oil (EO), widely used by perfume and cosmetic industries. Although EO composition has been extensively studied, the underlying biosynthetic pathways and their regulation, most notably of terpenes, are largely unknown. To gain a better understanding of the terpene metabolic pathways in pelargonium rosat, we generated a transcriptome dataset of pelargonium leaf and used a candidate gene approach to functionally characterise four terpene synthases (TPSs), including a geraniol synthase, a key enzyme responsible for the biosynthesis of the main rose-scented terpenes. We also report for the first time the characterisation of a novel sesquiterpene synthase catalysing the biosynthesis of 10-epi-γ-eudesmol. We found a strong correlation between expression of the four genes encoding the respective TPSs and accumulation of the corresponding products in several pelargonium cultivars and species. Finally, using publically available RNA-Seq data and de novo transcriptome assemblies, we inferred a maximum likelihood phylogeny from 270 pelargonium TPSs, including the four newly discovered enzymes, providing clues about TPS evolution in the Pelargonium genus. Notably, we show that, by contrast to other TPSs, geraniol synthases from the TPS-g subfamily conserved their molecular function throughout evolution.
Collapse
Affiliation(s)
- Bernard Blerot
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
- IFF-LMR Naturals, Grasse, France
| | - Laure Martinelli
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Cécile Prunier
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Denis Saint-Marcoux
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | | | - Aurélie Bony
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Loïc Sarrabère
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Florence Gros
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Nicolas Boyer
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Jean-Claude Caissard
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Sylvie Baudino
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Frédéric Jullien
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| |
Collapse
|
18
|
Shi JL, Tang SY, Liu CB, Ye L, Yang PS, Zhang FM, He P, Liu ZH, Miao MM, Guo YD, Shen QP. Three new benzolactones from Lavandula angustifolia and their bioactivities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:766-773. [PMID: 27967214 DOI: 10.1080/10286020.2016.1264394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Three new benzolactones (1-3), together with four known ones (4-7), were isolated from the whole herb of Lavandula angustifolia. Their structures were established on the basis of detailed spectroscopic analysis (1D- and 2D-NMR, HRESIMS, UV, and IR) and comparison with data reported in the literature. New compounds were evaluated for their anti-tobacco mosaic virus (TMV) activities and cytotoxic activities. The results revealed that compounds 1-3 showed obvious anti-TMV activities with inhibition rates of 26.9, 30.2, and 28.4%, which were at the same grade as positive control. Compounds 1-3 also showed weak inhibitory activities against some tested human tumor cell lines with IC50 values in the range of 32.1-7.6 μM.
Collapse
Affiliation(s)
- Jian-Lian Shi
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
- b School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Nature Products , Kunming Medical University , Kunming 650500 , China
| | - Shi-Yun Tang
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Chun-Bo Liu
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Ling Ye
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Pei-Song Yang
- c School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Feng-Mei Zhang
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Pei He
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Zhi-Hua Liu
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Ming-Ming Miao
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Ya-Dong Guo
- b School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Nature Products , Kunming Medical University , Kunming 650500 , China
| | - Qin-Peng Shen
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| |
Collapse
|
19
|
Despinasse Y, Fiorucci S, Antonczak S, Moja S, Bony A, Nicolè F, Baudino S, Magnard JL, Jullien F. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality. PHYTOCHEMISTRY 2017; 137:24-33. [PMID: 28190677 DOI: 10.1016/j.phytochem.2017.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 05/06/2023]
Abstract
Lavender essential oils (EOs) of higher quality are produced by a few Lavandula angustifolia cultivars and mainly used in the perfume industry. Undesirable compounds such as camphor and borneol are also synthesized by lavender leading to a depreciated EO. Here, we report the cloning of bornyl diphosphate synthase of lavender (LaBPPS), an enzyme that catalyzes the production of bornyl diphosphate (BPP) and then by-products such as borneol or camphor, from an EST library. Compared to the BPPS of Salvia officinalis, the functional characterization of LaBPPS showed several differences in amino acid sequence, and the distribution of catalyzed products. Molecular modeling of the enzyme's active site suggests that the carbocation intermediates are more stable in LaBPPS than in SoBPPS leading probably to a lower efficiency of LaBPPS to convert GPP into BPP. Quantitative RT-PCR performed from leaves and flowers at different development stages of L. angustifolia samples show a clear correlation between transcript level of LaBPPS and accumulation of borneol/camphor, suggesting that LaBPPS is mainly responsible of in vivo biosynthesis of borneol/camphor in fine lavender. A phylogenetic analysis of terpene synthases (TPS) pointed out the basal position of LaBPPS in the TPSb clade, suggesting that LaBPPS could be an ancestor of others lavender TPSb. Finally, borneol could be one of the first monoterpenes to be synthesized in the Lavandula subgenus. Knowledge gained from these experiments will facilitate future studies to improve the lavender oils through metabolic engineering or plant breeding. Accession numbers: LaBPPS: KM015221.
Collapse
Affiliation(s)
- Yolande Despinasse
- Université de Lyon, F-42023, Saint-Etienne, France; Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France; Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, EA 3061, 23 Rue du Dr Michelon, F-42000, Saint-Etienne, France
| | - Sébastien Fiorucci
- Institut de Chimie de Nice, UMR-CNRS 7272, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Serge Antonczak
- Institut de Chimie de Nice, UMR-CNRS 7272, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Sandrine Moja
- Université de Lyon, F-42023, Saint-Etienne, France; Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France; Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, EA 3061, 23 Rue du Dr Michelon, F-42000, Saint-Etienne, France
| | - Aurélie Bony
- Université de Lyon, F-42023, Saint-Etienne, France; Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France; Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, EA 3061, 23 Rue du Dr Michelon, F-42000, Saint-Etienne, France
| | - Florence Nicolè
- Université de Lyon, F-42023, Saint-Etienne, France; Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France; Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, EA 3061, 23 Rue du Dr Michelon, F-42000, Saint-Etienne, France
| | - Sylvie Baudino
- Université de Lyon, F-42023, Saint-Etienne, France; Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France; Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, EA 3061, 23 Rue du Dr Michelon, F-42000, Saint-Etienne, France
| | - Jean-Louis Magnard
- Université de Lyon, F-42023, Saint-Etienne, France; Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France; Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, EA 3061, 23 Rue du Dr Michelon, F-42000, Saint-Etienne, France
| | - Frédéric Jullien
- Université de Lyon, F-42023, Saint-Etienne, France; Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France; Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, EA 3061, 23 Rue du Dr Michelon, F-42000, Saint-Etienne, France.
| |
Collapse
|
20
|
Adal AM, Sarker LS, Lemke AD, Mahmoud SS. Isolation and functional characterization of a methyl jasmonate-responsive 3-carene synthase from Lavandula x intermedia. PLANT MOLECULAR BIOLOGY 2017; 93:641-657. [PMID: 28258552 DOI: 10.1007/s11103-017-0588-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
A methyl jasmonate responsive 3-carene synthase (Li3CARS) gene was isolated from Lavandula x intermedia and functionally characterized in vitro. Lavenders produce essential oils consisting mainly of monoterpenes, including the potent antimicrobial and insecticidal monoterpene 3-carene. In this study we isolated and functionally characterized a leaf-specific, methyl jasmonate (MeJA)-responsive monoterpene synthase (Li3CARS) from Lavandula x intermedia. The ORF excluding transit peptides encoded a 64.9 kDa protein that was expressed in E. coli, and purified with Ni-NTA agarose affinity chromatography. The recombinant Li3CARS converted GPP into 3-carene as the major product, with K m and k cat of 3.69 ± 1.17 µM and 2.01 s-1 respectively. Li3CARS also accepted NPP as a substrate to produce multiple products including a small amount of 3-carene. The catalytic efficiency of Li3CARS to produce 3-carene was over ten fold higher for GPP (k cat /K m = 0.56 µM-1s-1) than NPP (k cat /K m = 0.044 µM-1s-1). Production of distinct end product profiles from different substrates (GPP versus NPP) by Li3CARS indicates that monoterpene metabolism may be controlled in part through substrate availability. Li3CARS transcripts were found to be highly abundant in leaves (16-fold) as compared to flower tissues. The transcriptional activity of Li3CARS correlated with 3-carene production, and was up-regulated (1.18- to 3.8-fold) with MeJA 8-72 h post-treatment. The results suggest that Li3CARS may have a defensive role in Lavandula.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada
| | - Ashley D Lemke
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada.
| |
Collapse
|
21
|
Ker DS, Pang SL, Othman NF, Kumaran S, Tan EF, Krishnan T, Chan KG, Othman R, Hassan M, Ng CL. Purification and biochemical characterization of recombinant Persicaria minor β-sesquiphellandrene synthase. PeerJ 2017; 5:e2961. [PMID: 28265494 PMCID: PMC5333544 DOI: 10.7717/peerj.2961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/05/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Sesquiterpenes are 15-carbon terpenes synthesized by sesquiterpene synthases using farnesyl diphosphate (FPP) as a substrate. Recently, a sesquiterpene synthase gene that encodes a 65 kDa protein was isolated from the aromatic plant Persicaria minor. Here, we report the expression, purification and characterization of recombinant P. minor sesquiterpene synthase protein (PmSTS). Insights into the catalytic active site were further provided by structural analysis guided by multiple sequence alignment. METHODS The enzyme was purified in two steps using affinity and size exclusion chromatography. Enzyme assays were performed using the malachite green assay and enzymatic product was identified using gas chromatography-mass spectrometry (GC-MS) analysis. Sequence analysis of PmSTS was performed using multiple sequence alignment (MSA) against plant sesquiterpene synthase sequences. The homology model of PmSTS was generated using I-TASSER server. RESULTS Our findings suggest that the recombinant PmSTS is mainly expressed as inclusion bodies and soluble aggregate in the E. coli protein expression system. However, the addition of 15% (v/v) glycerol to the protein purification buffer and the removal of N-terminal 24 amino acids of PmSTS helped to produce homogenous recombinant protein. Enzyme assay showed that recombinant PmSTS is active and specific to the C15 substrate FPP. The optimal temperature and pH for the recombinant PmSTS are 30 °C and pH 8.0, respectively. The GC-MS analysis further showed that PmSTS produces β-sesquiphellandrene as a major product and β-farnesene as a minor product. MSA analysis revealed that PmSTS adopts a modified conserved metal binding motif (NSE/DTE motif). Structural analysis suggests that PmSTS may binds to its substrate similarly to other plant sesquiterpene synthases. DISCUSSION The study has revealed that homogenous PmSTS protein can be obtained with the addition of glycerol in the protein buffer. The N-terminal truncation dramatically improved the homogeneity of PmSTS during protein purification, suggesting that the disordered N-terminal region may have caused the formation of soluble aggregate. We further show that the removal of the N-terminus disordered region of PmSTS does not affect the product specificity. The optimal temperature, optimal pH, Km and kcat values of PmSTS suggests that PmSTS shares similar enzyme characteristics with other plant sesquiterpene synthases. The discovery of an altered conserved metal binding motif in PmSTS through MSA analysis shows that the NSE/DTE motif commonly found in terpene synthases is able to accommodate certain level of plasticity to accept variant amino acids. Finally, the homology structure of PmSTS that allows good fitting of substrate analog into the catalytic active site suggests that PmSTS may adopt a sesquiterpene biosynthesis mechanism similar to other plant sesquiterpene synthases.
Collapse
Affiliation(s)
- De-Sheng Ker
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , Bangi , Selangor , Malaysia
| | - Sze Lei Pang
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , Bangi , Selangor , Malaysia
| | - Noor Farhan Othman
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , Bangi , Selangor , Malaysia
| | - Sekar Kumaran
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , Bangi , Selangor , Malaysia
| | - Ee Fun Tan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , Bangi , Selangor , Malaysia
| | - Thiba Krishnan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Roohaida Othman
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia; School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , Bangi , Selangor , Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , Bangi , Selangor , Malaysia
| |
Collapse
|
22
|
Ren F, Mao H, Liang J, Liu J, Shu K, Wang Q. Functional characterization of ZmTPS7 reveals a maize τ-cadinol synthase involved in stress response. PLANTA 2016; 244:1065-1074. [PMID: 27421723 DOI: 10.1007/s00425-016-2570-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/11/2016] [Indexed: 05/14/2023]
Abstract
Maize ( Zea mays ) terpene synthase 7 (ZmTPS7) was characterized as a τ-cadinol synthase, which exhibited constitutive and inducible gene expression patterns, suggesting involvement in stress response. Maize produces a variety of terpenoids involved in defense response. Despite some terpene synthases (TPSs) responsible for these terpenoids have been characterized, biosynthesis of many terpenes, particularly sesquiterpenes, which were produced in response to biotic or abiotic stress, remains largely unknown. Here, we characterized ZmTPS7 biochemically through recombinant expression in Escherichia coli and detected that it catalyzed formation of a blend of sesquiterpenes and sesquiterpenoid alcohols as the sesquiterpene synthase through GC-MS analysis. Subsequently, the major product was purified and identified as τ-cadinol through nuclear magnetic resonance spectroscopy (NMR) analysis, which was also detected in maize tissues infected by pathogen fungus for the first time. ZmTPS7 constitutively expressed in aerial tissues while with trace amount of transcript in roots. Fungus spore inoculation and methyl jasmonate (MeJA) treatment induced gene expression of ZmTPS7 in leaves, while exogenous ABA induced ZmTPS7 dramatically in roots, suggesting that ZmTPS7 might be involved in stress response. τ-cadinol was quantified in infected maize tissues with the concentration of ~200 ng/g fresh weight, however, which was much lower than the inhibitory one on two tested necrotrophic fungi. Such evidences indicate that anti-fungal activity of τ-cadinol is not physiologically relevant, and further investigation is needed to clarify its biological functions in maize. Taken together, ZmTPS7 was characterized as the τ-cadinol synthase and suggested to be involved in stress response, which also increased the diversity of maize terpenoid profile.
Collapse
Affiliation(s)
- Fei Ren
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongjie Mao
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Liang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiang Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Shu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
23
|
Tang S, Shi J, Liu C, Jiang R, Zhao W, Liu X, Xiang N, Chen Y, Shen Q, Miao M, Liu Z, Yang G. Three new phenylpropanoids from Lavandula angustifolia and their bioactivities. Nat Prod Res 2016; 31:1351-1357. [PMID: 27766898 DOI: 10.1080/14786419.2016.1247081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three new phenylpropanoids, 3-(3,4-dimethoxy-5-methylphenyl)-3-oxopropyl acetate (1), 3-hydroxy-1-(3,4-dimethoxy-5-methylphenyl)propan-1-one (2), and 3-hydroxy-1-(4-methylbenzo[d][1,3]dioxol-6-yl) propan-1-one (3), together with three known phenylpropanoids (4-6) were isolated from the whole plant of Lavandula angustifolia. Their structures were determined by means of HRESIMS and extensive 1D and 2D NMR spectroscopic studies. Compounds 1-6 were tested for their anti-tobacoo mosaic virus (TMV) activities and cytotoxicity activities. The results revealed that compounds 1-3 showed high anti-TMV activity with inhibition rate of 35.2, 38.4 and 33.9%. These rates are higher than that of positive control. The other compounds also showed potential anti-TMV activities with inhibition rates in the range of 26.8-28.9%, respectively. Compounds 1-6 also showed weak inhibitory activities against some tested human tumour cell lines with IC50 values in the range of 3.8-8.8 μM.
Collapse
Affiliation(s)
- Shiyun Tang
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming , P.R. China
| | - Jianlian Shi
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming , P.R. China.,b Yunnan Key Laboratory of Pharmacology for Nature Products , School of Pharmaceutical Science , Kunming , P.R. China
| | - Chunbo Liu
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming , P.R. China
| | - Rui Jiang
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming , P.R. China.,c College of Chemical Engineering , Kunming University of Science and Technology , Kunming , P.R. China
| | - Wei Zhao
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming , P.R. China
| | - Xin Liu
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming , P.R. China
| | - Nengjun Xiang
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming , P.R. China
| | - Yongkuan Chen
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming , P.R. China
| | - Qinpeng Shen
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming , P.R. China
| | - Mingming Miao
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming , P.R. China
| | - Zhihua Liu
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming , P.R. China
| | - Guangyu Yang
- a Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming , P.R. China
| |
Collapse
|
24
|
Gou JB, Li ZQ, Li CF, Chen FF, Lv SY, Zhang YS. Molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:288-294. [PMID: 27231873 DOI: 10.1016/j.plaphy.2016.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Junenol based-eudesmanolides have been detected in many compositae plant species and were reported to exhibit various pharmacological activities. So far, the gene encoding junenol synthase has never been isolated. Here we report the molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis (designated IhsTPS1). IhsTPS1 converts the substrate farnesyl diphosphate into multiple sesquiterpenes with the product 10-epi-junenol being predominant. The transcript levels of IhsTPS1 correlate well with the accumulation pattern of 10-epi-junenol in I. hupehensis organs, supporting its biochemical roles in vivo.
Collapse
Affiliation(s)
- Jun-Bo Gou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430071, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Qiu Li
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Chang-Fu Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fang-Fang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shi-You Lv
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yan-Sheng Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
25
|
Zhou H, Yang YL, Zeng J, Zhang L, Ding ZH, Zeng Y. Identification and Characterization of a δ-Cadinol Synthase Potentially Involved in the Formation of Boreovibrins in Boreostereum vibrans of Basidiomycota. NATURAL PRODUCTS AND BIOPROSPECTING 2016; 6:167-71. [PMID: 27038475 PMCID: PMC5385660 DOI: 10.1007/s13659-016-0096-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Sesquiterpenoids are very common among natural products. A large number of sesquiterpene synthase genes have been cloned and functionally characterized. However, until now there is no report about the δ-cadinol synthase predominantly forming δ-cadinol (syn. torreyol) from farnesyl diphosphate. Sesquiterpenoids boreovibrins structurally similar to δ-cadinol were previously isolated from culture broths of the basidiomycete fungus Boreostereum vibrans. This led us to expect a corresponding gene coding for a δ-cadinol synthase that may be involved in the biosynthesis of boreovibrins in B. vibrans. Here we report the cloning and heterologous expression of a new sesquiterpene synthase gene from B. vibrans. The crude and purified recombinant enzymes, when incubating with farnesyl diphosphate as substrate, gave δ-cadinol as its principal product and thereby identified as a δ-cadinol synthase. A new sesquiterpene synthase gene was cloned from the basidiomycete fungus Boreostereum vibrans and heterologously expressed in E. coli. The purified recombinant enzyme gave δ-cadinol as its principal product from farnesyl diphosphate and thereby identified as a δ-cadinol synthase (BvCS).
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Long Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Zhi-Hui Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.
| |
Collapse
|
26
|
Jayaramaiah RH, Anand A, Beedkar SD, Dholakia BB, Punekar SA, Kalunke RM, Gade WN, Thulasiram HV, Giri AP. Functional characterization and transient expression manipulation of a new sesquiterpene synthase involved in β-caryophyllene accumulation in Ocimum. Biochem Biophys Res Commun 2016; 473:265-271. [PMID: 27005818 DOI: 10.1016/j.bbrc.2016.03.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 01/12/2023]
Abstract
The genus Ocimum has a unique blend of diverse secondary metabolites, with major proportion of terpenoids including mono- and sesquiterpenes. Although, β-Caryophyllene, bicyclic sesquiterpene, is one of the major terpene found in Ocimum species and known to possess several biological activities, not much is known about its biosynthesis in Ocimum. Here, we describe isolation and characterization of β-caryophyllene synthase gene from Ocimum kilimandscharicum Gürke (OkBCS- GenBank accession no. KP226502). The open reading frame of 1629 bp encoded a protein of 542 amino acids with molecular mass of 63.6 kDa and pI value of 5.66. The deduced amino acid sequence revealed 50-70% similarity with known sesquiterpene synthases from angiosperms. Recombinant OkBCS converted farnesyl diphosphate to β-caryophyllene as a major product (94%) and 6% α-humulene. Expression variation of OkBCS well corroborated with β-caryophyllene levels in different tissues from five Ocimum species. OkBCS transcript revealed higher expression in leaves and flowers. Further, agro-infiltration based transient expression manipulation with OkBCS over-expression and silencing confirmed its role in β-caryophyllene biosynthesis. These findings may potentially be further utilized to improve plant defense against insect pests.
Collapse
Affiliation(s)
- Ramesha H Jayaramaiah
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Atul Anand
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Supriya D Beedkar
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Bhushan B Dholakia
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Sachin A Punekar
- Biospheres, Eshwari, 52/403, Lakshminagar, Parvati, Pune 411 009, Maharashtra, India
| | - Raviraj M Kalunke
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Wasudeo N Gade
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Hirekodathakallu V Thulasiram
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; CSIR- Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110007, India.
| | - Ashok P Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.
| |
Collapse
|
27
|
Shinde SS, Navale GR, Said MS, Thulasiram HV. Stereoselective quenching of cedryl carbocation in epicedrol biosynthesis. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|