1
|
Azeem S, Munir F, Gul A, Amir R. An A-6 subgroup member of DREB gene family positively regulates cold stress tolerance by modulating an antioxidant defense system in transgenic potato. Sci Rep 2025; 15:15421. [PMID: 40316657 PMCID: PMC12048627 DOI: 10.1038/s41598-025-98886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
Cold stress adversely influences the growth, development, geographic distribution, and yield of plants. The dehydration-responsive element binding (DREB) transcription factors are central to improving plant's ability to endure cold stress. In this work, the expression pattern of the StDREB30 (A-6) gene was analyzed in response to cold stress in transgenic potato. We provide evidence emphasizing the significance of the StDREB30 under low-temperature stress (4°C) and investigate the potential physiological, molecular and biochemical processes involved. StDREB30 expression levels were quickly elevated upon the cold exposure. Additionally, transgenic potato plants exhibited upregulation of randomly selected downstream genes (StNAC, StDREB1, StDREB2, StSAP, StGT3, and StDHN), improved photosynthetic parameters including coefficient of photochemical quenching (qL), and maximum yield of PSII (Fv'/Fm'), better stomatal performance, increased proline accumulation, decreased malondialdehyde content, electrolyte leakage, and reduced accumulation of hydrogen peroxide, and superoxide when exposed to cold stress. Moreover, StDREB30 improved reactive oxygen scavenging capabilities by stimulating the production of antioxidants such as superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase. Our results propose that StDREB30 serves as a positive regulator in promoting cold tolerance. To our knowledge, no report has been published previously on the study of the StDREB30 (A-6) gene under cold stress in transgenic potatoes.
Collapse
Affiliation(s)
- Saba Azeem
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Alvina Gul
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rabia Amir
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
2
|
Akbarzadeh Lelekami M, Pahlevani MH, Zaynali Nezhad K, Mahdavi Mashaki K. Transcriptome and network analysis pinpoint ABA and plastid ribosomal proteins as main contributors to salinity tolerance in the rice variety, CSR28. PLoS One 2025; 20:e0321181. [PMID: 40244966 PMCID: PMC12005493 DOI: 10.1371/journal.pone.0321181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/02/2025] [Indexed: 04/19/2025] Open
Abstract
Salinity stress is a major challenge for rice production, especially at seedling stage. To gain comprehensive insight into the molecular mechanisms and potential candidate genes involved in rice salinity stress response, we integrated physiological, transcriptome and network analysis to investigate salinity tolerance in two contrasting rice genotypes. The root and shoot samples were collected at two timepoints (6 hours and 54 hours) of high salt treatment. Element assay showed that the tolerant genotype CSR28 had lower Na+/K+ ratio in both organs than in those of the sensitive genotype IR28 under salinity stress. A total of 15,483 differentially expressed genes (DEGs) were identified from the RNA-Seq analysis. The salt-specific genes were mainly involved in metabolic processes, response to stimulus, and transporter activity, and were enriched in key metabolic pathways such as, biosynthesis of secondary metabolites, plant hormone signal transduction, and carotenoid biosynthesis. Furthermore, the results showed that the differential genes involved in abscisic acid (ABA) biosynthesis were specifically up-regulated in the tolerant genotype. Network analysis revealed 50 hub genes for the salt-specific genes in the roots of CSR28 which mainly encodes ribosomal proteins (RPs). Functional validation of the nine hub genes revealed three plastid RPs (PRPs), including OsPRPL17, OsPRPS9 and OsPRPL11, which contributes to protein synthesis, chloroplast development and stress signaling. Our findings suggested that ABA and PRPs play key roles to enhance of salinity tolerance in CSR28. Our study provides valuable information for further investigations of the candidate genes associated with salt tolerance and the development of salt-tolerant rice varieties.
Collapse
Affiliation(s)
- Mojdeh Akbarzadeh Lelekami
- Plant Breeding and Biotechnology Department, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Hadi Pahlevani
- Plant Breeding and Biotechnology Department, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Khalil Zaynali Nezhad
- Plant Breeding and Biotechnology Department, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Keyvan Mahdavi Mashaki
- Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Amol, Iran
| |
Collapse
|
3
|
Esmailpourmoghadam E, Salehi H, Moshtaghi N. Differential Gene Expression Responses to Salt and Drought Stress in Tall Fescue (Festuca arundinacea Schreb.). Mol Biotechnol 2024; 66:2481-2496. [PMID: 37742296 DOI: 10.1007/s12033-023-00888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Understanding gene expression kinetics and the underlying physiological mechanisms in stress combinations is a challenge for the purpose of stress resistance breeding. The novelty of this study is correlating the physiological mechanisms with the expression of key target genes in tall fescue under a combination of various salinity and osmotic stress treatments. Four drought- and salt-responsive genes belonging to different crucial pathways evaluated included one transcription factor FabZIP69, one for the cytosolic polyamine synthetase FaADC1, one for ABA signaling FaCYP707A1, and another one for the specific Na+/H+ plasma membrane antiporter FaSOS1 involve in osmotic homeostasis. FaSOS1, FaCYP707A1, and FabZIP69 were induced early at 6 h after NaCl treatment, while FaSOS1 and FaCYP707A1 were transcribed gradually after exposure to PEG. However, stress interactions showed a significantly increased expression in all genes. Expression of these genes was positively correlated to Pro, SSs, IL, DPPH, and antioxidant enzyme activity and negatively correlated with RWC, total Chl, and MSI. Chemical analyses showed that tall fescue plants exposed to the combination of stresses exhibited increased quantity of reactive oxygen species (H2O2), EL and DPPH, and higher levels of antioxidant enzyme activities (CAT, and SOD), Pro, and SSs content, compared with control seedlings. Under dual-stress conditions, the expression of FabZIP69 was effective in controlling the expression of FaSOS1 and FaADC1 genes differently.
Collapse
Affiliation(s)
| | - Hassan Salehi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Nasrin Moshtaghi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Şimşek Ö, Isak MA, Dönmez D, Dalda Şekerci A, İzgü T, Kaçar YA. Advanced Biotechnological Interventions in Mitigating Drought Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:717. [PMID: 38475564 DOI: 10.3390/plants13050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
This comprehensive article critically analyzes the advanced biotechnological strategies to mitigate plant drought stress. It encompasses an in-depth exploration of the latest developments in plant genomics, proteomics, and metabolomics, shedding light on the complex molecular mechanisms that plants employ to combat drought stress. The study also emphasizes the significant advancements in genetic engineering techniques, particularly CRISPR-Cas9 genome editing, which have revolutionized the creation of drought-resistant crop varieties. Furthermore, the article explores microbial biotechnology's pivotal role, such as plant growth-promoting rhizobacteria (PGPR) and mycorrhizae, in enhancing plant resilience against drought conditions. The integration of these cutting-edge biotechnological interventions with traditional breeding methods is presented as a holistic approach for fortifying crops against drought stress. This integration addresses immediate agricultural needs and contributes significantly to sustainable agriculture, ensuring food security in the face of escalating climate change challenges.
Collapse
Affiliation(s)
- Özhan Şimşek
- Horticulture Department, Agriculture Faculty, Erciyes University, Kayseri 38030, Türkiye
| | - Musab A Isak
- Agricultural Sciences and Technology Department, Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri 38030, Türkiye
| | - Dicle Dönmez
- Biotechnology Research and Application Center, Çukurova University, Adana 01330, Türkiye
| | - Akife Dalda Şekerci
- Horticulture Department, Agriculture Faculty, Erciyes University, Kayseri 38030, Türkiye
| | - Tolga İzgü
- National Research Council of Italy (CNR), Institute of BioEconomy, 50019 Florence, Italy
| | - Yıldız Aka Kaçar
- Horticulture Department, Agriculture Faculty, Çukurova University, Adana 01330, Türkiye
| |
Collapse
|
5
|
Choi JW, Kim HE, Kim S. Two different domain architectures generate structural and functional diversity among bZIP genes in the Solanaceae family. FRONTIERS IN PLANT SCIENCE 2022; 13:967546. [PMID: 36061789 PMCID: PMC9437623 DOI: 10.3389/fpls.2022.967546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 05/27/2023]
Abstract
The bZIP gene family is one of the largest transcription factor families and has important roles in plant growth, development, and stress responses. However, bZIP genes in the Solanaceae family have not been extensively investigated. Here, we conducted genome-wide re-annotation in nine Solanaceae species and Arabidopsis thaliana. We annotated 935 bZIP genes, including 107 (11%) that were newly identified. Structural analyses of bZIP genes in the Solanaceae family revealed that the bZIP domain displayed two types of architectures depending on the presence of an additional domain, suggesting that these architectures generate diversified structures and functions. Motif analyses indicated that the two types of bZIP genes had distinct sequences adjacent to the bZIP domain. Phylogenetic analyses suggested that the two types of bZIP genes distinctly evolved and ultimately adapted in different lineages. Transcriptome analyses in pepper (Capsicum annuum) and tomato (Solanum lycopersicum) revealed putative functional diversity between the two types of bZIP genes in response to various abiotic stresses. This study extensively updated bZIP gene family annotations and provided novel evolutionary and functional evidence for the role of bZIP genes in Solanaceae plants. Our findings provide evolutionary and functional characteristics of bZIP genes for a better understanding of their roles in Solanaceae plants.
Collapse
|
6
|
Wang P, Yan Y, Lu Y, Liu G, Liu J, Shi H. The co-modulation of RAV transcription factors in ROS burst and extensive transcriptional reprogramming underlies disease resistance in cassava. PLANT CELL REPORTS 2022; 41:1261-1272. [PMID: 35275280 DOI: 10.1007/s00299-022-02855-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
MeRAVs positively regulate ROS burst and the expression of downstream disease resistance-related genes, which underlie improved disease resistance to Xam. Cassava (Manihot esculenta Crantz) is an important food crop and energy crop, but its yield is seriously affected by cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam). Related to ABI3/VP1 (RAV) transcription factor family belongs to the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, which plays an important role in plant growth, development and response to biotic and abiotic stresses. In this study, we found that MeRAVs positively co-regulates the resistance to Xam and stimulates the innate immune response by regulating reactive oxygen species (ROS) burst in cassava. Dual-luciferase assay showed that seven MeRAVs exhibited transcriptional activate activity by binding CAACA motif and CACCTG motif. A large number of differentially expressed genes (DEGs) were identified through RNA-seq analysis of MeRAVs-silenced lines, and the DEGs co-regulated by seven MeRAVs accounted for more than 45% of the total DEGs. In addition, seven MeRAVs positively regulate expression of disease resistance-related genes through directly binding to their promoters. In summary, MeRAVs co-regulate ROS burst and the expression of downstream disease resistance-related genes, which underlie improved disease resistance to Xam.
Collapse
Affiliation(s)
- Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yi Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China
| | - Jinping Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China.
| |
Collapse
|
7
|
Chen P, Yang R, Bartels D, Dong T, Duan H. Roles of Abscisic Acid and Gibberellins in Stem/Root Tuber Development. Int J Mol Sci 2022; 23:ijms23094955. [PMID: 35563355 PMCID: PMC9102914 DOI: 10.3390/ijms23094955] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Root and tuber crops are of great importance. They not only contribute to feeding the population but also provide raw material for medicine and small-scale industries. The yield of the root and tuber crops is subject to the development of stem/root tubers, which involves the initiation, expansion, and maturation of storage organs. The formation of the storage organ is a highly intricate process, regulated by multiple phytohormones. Gibberellins (GAs) and abscisic acid (ABA), as antagonists, are essential regulators during stem/root tuber development. This review summarizes the current knowledge of the roles of GA and ABA during stem/root tuber development in various tuber crops.
Collapse
Affiliation(s)
- Peilei Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (P.C.); (R.Y.); (T.D.)
| | - Ruixue Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (P.C.); (R.Y.); (T.D.)
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Faculty of Natural Sciences, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany;
| | - Tianyu Dong
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (P.C.); (R.Y.); (T.D.)
| | - Hongying Duan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (P.C.); (R.Y.); (T.D.)
- Correspondence:
| |
Collapse
|
8
|
Jiménez VM, Carvajal-Campos P. Ingeniería genética contra estrés abiótico en cultivos neotropicales: osmolitos, factores de transcripción y CRISPR/Cas9. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2021. [DOI: 10.15446/rev.colomb.biote.v23n2.88487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El neotrópico es sitio de origen de gran variedad de plantas que actualmente son cultivadas con éxito en diferentes regiones del mundo. Sin embargo, condiciones climáticas adversas, que se pueden ver acrecentadas por efectos del cambio climático antropogénico, pueden afectar su rendimiento y productividad debido a las situaciones de estrés abiótico que se pueden generar. Como alternativa para contrarrestar estos efectos, se ha experimentado con modificaciones genéticas, particularmente en genes relacionados con la producción de osmolitos y factores de transcripción que han llevado a que estas plantas, a nivel experimental, tengan mayor tolerancia a estrés oxidativo, altas y bajas temperaturas y fotoinhibición, sequía y salinidad, mediante la acumulación de osmoprotectores, la regulación en la expresión de genes y cambios en el fenotipo. En este trabajo se presentan y describen las estrategias metodológicas planteadas con estos fines y se complementan con ejemplos de trabajos realizados en cultivos de origen neotropical de importancia económica, como maíz, algodón, papa y tomate. Además, y debido a la novedad y potencial que ofrece la edición génica por medio del sistema CRISPR/Cas9, también se mencionan trabajos realizados en plantas con origen neotropical, enfocados en comprender e implementar mecanismos de tolerancia a sequía. Las metodologías aquí descritas podrían constituirse en opciones prácticas para mejorar la seguridad alimentaria con miras a contrarrestar las consecuencias negativas del cambio climático antropogénico.
Collapse
|
9
|
Puzina TI, Korol VV, Makeeva IY. Changes in the Hormonal Status and Photosynthesis of Potato Plants Transformed by the Bt Gene. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021050137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Liu Y, Zeng Y, Li Y, Liu Z, Lin-Wang K, Espley RV, Allan AC, Zhang J. Genomic survey and gene expression analysis of the MYB-related transcription factor superfamily in potato (Solanum tuberosum L.). Int J Biol Macromol 2020; 164:2450-2464. [DOI: 10.1016/j.ijbiomac.2020.08.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
|
11
|
Balti I, Benny J, Perrone A, Caruso T, Abdallah D, Salhi-Hannachi A, Martinelli F. Identification of conserved genes linked to responses to abiotic stresses in leaves among different plant species. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 48:54-71. [PMID: 32727652 DOI: 10.1071/fp20028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
As a consequence of global climate change, certain stress factors that have a negative impact on crop productivity such as heat, cold, drought and salinity are becoming increasingly prevalent. We conducted a meta-analysis to identify genes conserved across plant species involved in (1) general abiotic stress conditions, and (2) specific and unique abiotic stress factors (drought, salinity, extreme temperature) in leaf tissues. We collected raw data and re-analysed eight RNA-Seq studies using our previously published bioinformatic pipeline. A total of 68 samples were analysed. Gene set enrichment analysis was performed using MapMan and PageMan whereas DAVID (Database for Annotation, Visualisation and Integrated Discovery) was used for metabolic process enrichment analysis. We identified of a total of 5122 differentially expressed genes when considering all abiotic stresses (3895 were upregulated and 1227 were downregulated). Jasmonate-related genes were more commonly upregulated by drought, whereas gibberellin downregulation was a key signal for drought and heat. In contrast, cold stress clearly upregulated genes involved in ABA (abscisic acid), cytokinin and gibberellins. A gene (non-phototrophic hypocotyl) involved in IAA (indoleacetic acid) response was induced by heat. Regarding secondary metabolism, as expected, MVA pathway (mevalonate pathway), terpenoids and alkaloids were generally upregulated by all different stresses. However, flavonoids, lignin and lignans were more repressed by heat (cinnamoyl coA reductase 1 and isopentenyl pyrophosphatase). Cold stress drastically modulated genes involved in terpenoid and alkaloids. Relating to transcription factors, AP2-EREBP, MADS-box, WRKY22, MYB, homoebox genes members were significantly modulated by drought stress whereas cold stress enhanced AP2-EREBPs, bZIP members, MYB7, BELL 1 and one bHLH member. C2C2-CO-LIKE, MADS-box and a homeobox (HOMEOBOX3) were mostly repressed in response to heat. Gene set enrichment analysis showed that ubiquitin-mediated protein degradation was enhanced by heat, which unexpectedly repressed glutaredoxin genes. Cold stress mostly upregulated MAP kinases (mitogen-activated protein kinase). Findings of this work will allow the identification of new molecular markers conserved across crops linked to major genes involved in quantitative agronomic traits affected by different abiotic stress.
Collapse
Affiliation(s)
- Imen Balti
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze ed. 4 Palermo, 90128, Italy; and Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Jubina Benny
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze ed. 4 Palermo, 90128, Italy
| | - Anna Perrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, 90128, Italy
| | - Tiziano Caruso
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze ed. 4 Palermo, 90128, Italy
| | - Donia Abdallah
- Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Amel Salhi-Hannachi
- Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, 50019, Italy; and Corresponding author.
| |
Collapse
|
12
|
Bhatnagar N, Kim R, Han S, Song J, Lee GS, Lee S, Min MK, Kim BG. Ectopic Expression of OsPYL/RCAR7, an ABA Receptor Having Low Signaling Activity, Improves Drought Tolerance without Growth Defects in Rice. Int J Mol Sci 2020; 21:ijms21114163. [PMID: 32545174 PMCID: PMC7312952 DOI: 10.3390/ijms21114163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 01/04/2023] Open
Abstract
Overexpression of abscisic acid (ABA) receptors has been reported to enhance drought tolerance, but also to cause stunted growth and decreased crop yield. Here, we constructed transgenic rice for all monomeric ABA receptors and observed that only transgenic rice over-expressing OsPYL/RCAR7 showed similar phenotype with wild type, without total yield loss when grown under normal growth condition in a paddy field. Even though transgenic rice over-expressing OsPYL/RCAR7 showed neither an ABA-sensitivity nor an osmotic stress tolerance in plate assay, it showed drought tolerance. We investigated the ABA-dependent interaction with OsPP2CAs and ABA signaling induction by OsPYL/RCAR7. In yeast two hybrid assay, OsPYL/RCAR7 required critically higher ABA concentrations to interact with OsPP2CAs than other ABA receptors, and co-immunoprecipitation assay showed strong interaction under ABA treatment. When ABA-responsive signaling activity was monitored using a transient expression system in rice protoplasts, OsPYL/RCAR7 had the lowest ABA-responsive signaling activity as compared with other ABA receptors. OsPYL/RCAR7 also showed weak suppression of phosphatase activity as compared with other ABA receptors in vitro. Transcriptome analysis of transgenic rice over-expressing OsPYL/RCAR7 suggested that only a few genes were induced similar to control under without exogenous ABA, but a large number of genes was induced under ABA treatment compared with control. We conclude that OsPYL/RCAR7 is a novel functional ABA receptor that has low ABA signaling activity and exhibits high ABA dependence. These results lay the foundation for a new strategy to improve drought stress tolerance without compromising crop growth.
Collapse
Affiliation(s)
- Nikita Bhatnagar
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Jeollabuk-do 54874, Korea; (N.B.); (R.K.); (J.S.)
| | - Rigyeong Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Jeollabuk-do 54874, Korea; (N.B.); (R.K.); (J.S.)
| | - Seungsu Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (S.H.); (S.L.)
| | - Jaeeun Song
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Jeollabuk-do 54874, Korea; (N.B.); (R.K.); (J.S.)
| | - Gang Seob Lee
- Biosafety Division, National Institute of Agricultural Sciences, RDA, Jeonju, Jeollabuk-do 54874, Korea;
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (S.H.); (S.L.)
| | - Myung Ki Min
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Jeollabuk-do 54874, Korea; (N.B.); (R.K.); (J.S.)
- Correspondence: (M.K.M.); (B.-G.K.)
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Jeollabuk-do 54874, Korea; (N.B.); (R.K.); (J.S.)
- Correspondence: (M.K.M.); (B.-G.K.)
| |
Collapse
|
13
|
Zhao P, Ye M, Wang R, Wang D, Chen Q. Systematic identification and functional analysis of potato (Solanum tuberosum L.) bZIP transcription factors and overexpression of potato bZIP transcription factor StbZIP-65 enhances salt tolerance. Int J Biol Macromol 2020; 161:155-167. [PMID: 32512099 DOI: 10.1016/j.ijbiomac.2020.06.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/03/2020] [Indexed: 01/23/2023]
Abstract
Basic leucine zipper (bZIP) transcription factors play important roles in numerous growth and developmental processes. Potato (Solanum tuberosum L.) is a worldwide important vegetable crop; nevertheless, no systematic identification or functional analysis of the potato bZIP gene family has been reported. In this research, 65 potato bZIPs distributed on 12 potato chromosomes were identified. According to the topology of Arabidopsis and potato bZIP phylogenetic tree, the bZIPs were classified into thirteen groups, designated as A-K, M, and S, with no potato bZIPs included in groups J and M. The bZIPs from the same group shared a conserved exon-intron structure, intron phase, and motif composition. Eighteen potato bZIPs were involved in segmental duplications, and the duplicated gene pairs were under purifying selection. No tandemly duplicated potato bZIP was found. Each potato bZIP promoter contained at least one kind of stress-responsive or stress-related hormone-responsive element. RNA-seq and qRT-PCR analyses revealed different expression patterns of potato bZIPs under abiotic stresses. The overexpression of StbZIP-65 in Arabidopsis enhanced salt tolerance. The StbZIP-65 protein localized in the nucleus. β-Glucuronidase staining showed that promoter activity of StbZIP-65 was induced by exogenous methyl jasmonate. These results may aid in further functional studies of potato bZIP transcription factors.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Minghui Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruoqiu Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). Int J Biol Macromol 2020; 148:817-832. [PMID: 31962068 DOI: 10.1016/j.ijbiomac.2020.01.167] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/29/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
MYB transcription factors comprise one of the largest families in plant kingdom, which play a variety of functions in plant developmental processes and defence responses, the R2R3-MYB members are the predominant form found in higher plants. In the present study, a total of 111 StR2R3-MYB transcription factors were identified and further phylogenetically classified into 31 subfamilies, as supported by highly conserved gene structures and motifs. Collinearity analysis showed that the segmental duplication events played a crucial role in the expansion of StR2R3-MYB gene family. Synteny analysis indicated that 37 and 13 StR2R3-MYB genes were orthologous to Arabidopsis and wheat (Triticum aestivum), respectively, and these gene pairs have evolved under strong purifying selection. RNA-seq data from different tissues and abiotic stresses revealed tissue-preferential and abiotic stress-responsive StR2R3-MYB genes. We further analyzed StR2R3-MYB genes might be involved in anthocyanin biosynthesis and drought stress by using RNA-seq data of pigmented tetraploid potato cultivars and drought-sensitive and -tolerant tetraploid potato cultivars under drought stress, respectively. Moreover, EAR motifs were found in 21 StR2R3-MYB proteins and 446 pairs of proteins were predicted to interact with 21 EAR motif-containing StR2R3-MYB proteins by constructing the interaction network with medium confidence (0.4). Additionally, Gene Ontology (GO) analysis of the 21 EAR motif-containing StR2R3-MYB proteins was performed to further investigate their functions. This work will facilitate future biologically functional studies of potato StR2R3-MYB transcription factors and enrich the knowledge of MYB superfamily genes in plant species.
Collapse
|
15
|
Gai WX, Ma X, Qiao YM, Shi BH, ul Haq S, Li QH, Wei AM, Liu KK, Gong ZH. Characterization of the bZIP Transcription Factor Family in Pepper ( Capsicum annuum L.): CabZIP25 Positively Modulates the Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:139. [PMID: 32174937 PMCID: PMC7054902 DOI: 10.3389/fpls.2020.00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 05/07/2023]
Abstract
The basic leucine zipper (bZIP) proteins compose a family of transcription factors (TFs), which play a crucial role in plant growth, development, and abiotic and biotic stress responses. However, no comprehensive analysis of bZIP family has been reported in pepper (Capsicum annuum L.). In this study, we identified and characterized 60 bZIP TF-encoding genes from two pepper genomes. These genes were divided into 10 groups based on their phylogenetic relationships with bZIP genes from Arabidopsis. Six introns/exons structural patterns within the basic and hinge regions and the conserved motifs were identified among all the pepper bZIP proteins, on the basis of which, we classify them into different subfamilies. Based on the transcriptomic data of Zunla-1 genome, expression analyses of 59 pepper bZIP genes (not including CabZIP25 of CM334 genome), indicated that the pepper bZIP genes were differentially expressed in the pepper tissues and developmental stages, and many of the pepper bZIP genes might be involved in responses to various abiotic stresses and phytohormones. Further, gene expression analysis, using quantitative real-time PCR (qRT-PCR), showed that the CabZIP25 gene was expressed at relatively higher levels in vegetative tissues, and was strongly induced by abiotic stresses and phytohormones. In comparing with wild type Arabidopsis, germination rate, fresh weight, chlorophyll content, and root lengths increased in the CabZIP25-overexpressing Arabidopsis under salt stress. Additionally, CabZIP25-silenced pepper showed lower chlorophyll content than the control plants under salt stress. These results suggested that CabZIP25 improved salt tolerance in plants. Taken together, our results provide new opportunities for the functional characterization of bZIP TFs in pepper.
Collapse
Affiliation(s)
- Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, Shannxi, China
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling, Shannxi, China
| | - Yi-Ming Qiao
- College of Horticulture, Northwest A&F University, Yangling, Shannxi, China
| | - Bu-Hang Shi
- College of Horticulture, Northwest A&F University, Yangling, Shannxi, China
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling, Shannxi, China
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling, Shannxi, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai, China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Ke-Ke Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shannxi, China
- *Correspondence: Zhen-Hui Gong,
| |
Collapse
|
16
|
Lehretz GG, Sonnewald S, Lugassi N, Granot D, Sonnewald U. Future-Proofing Potato for Drought and Heat Tolerance by Overexpression of Hexokinase and SP6A. FRONTIERS IN PLANT SCIENCE 2020; 11:614534. [PMID: 33510758 PMCID: PMC7835534 DOI: 10.3389/fpls.2020.614534] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 05/18/2023]
Abstract
Crop yield is largely affected by global climate change. Especially periods of heat and drought limit crop productivity worldwide. According to current models of future climate scenarios, heatwaves and periods of drought are likely to increase. Potato, as an important food crop of temperate latitudes, is very sensitive to heat and drought which impact tuber yield and quality. To improve abiotic stress resilience of potato plants, we aimed at co-expressing hexokinase 1 from Arabidopsis thaliana (AtHXK1) in guard cells and SELF-PRUNING 6A (SP6A) using the leaf/stem-specific StLS1 promoter in order to increase water use efficiency as well as tuberization under drought and heat stress. Guard cell-specific expression of AtHXK1 decreased stomatal conductance and improved water use efficiency of transgenic potato plants as has been shown for other crop plants. Additionally, co-expression with the FT-homolog SP6A stimulated tuberization and improved assimilate allocation to developing tubers under control as well as under single and combined drought and heat stress conditions. Thus, co-expression of both proteins provides a novel strategy to improve abiotic stress tolerance of potato plants.
Collapse
Affiliation(s)
- Günter G. Lehretz
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Nitsan Lugassi
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization, Rishon Le-Zion, Israel
| | - David Granot
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization, Rishon Le-Zion, Israel
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- *Correspondence: Uwe Sonnewald,
| |
Collapse
|
17
|
Kimotho RN, Baillo EH, Zhang Z. Transcription factors involved in abiotic stress responses in Maize ( Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ 2019; 7:e7211. [PMID: 31328030 PMCID: PMC6622165 DOI: 10.7717/peerj.7211] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maize (Zea mays L.) is a principal cereal crop cultivated worldwide for human food, animal feed, and more recently as a source of biofuel. However, as a direct consequence of water insufficiency and climate change, frequent occurrences of both biotic and abiotic stresses have been reported in various regions around the world, and recently, this has become a constant threat in increasing global maize yields. Plants respond to abiotic stresses by utilizing the activities of transcription factors (TFs), which are families of genes coding for specific TF proteins. TF target genes form a regulon that is involved in the repression/activation of genes associated with abiotic stress responses. Therefore, it is of utmost importance to have a systematic study on each TF family, the downstream target genes they regulate, and the specific TF genes involved in multiple abiotic stress responses in maize and other staple crops. METHOD In this review, the main TF families, the specific TF genes and their regulons that are involved in abiotic stress regulation will be briefly discussed. Great emphasis will be given on maize abiotic stress improvement throughout this review, although other examples from different plants like rice, Arabidopsis, wheat, and barley will be used. RESULTS We have described in detail the main TF families in maize that take part in abiotic stress responses together with their regulons. Furthermore, we have also briefly described the utilization of high-efficiency technologies in the study and characterization of TFs involved in the abiotic stress regulatory networks in plants with an emphasis on increasing maize production. Examples of these technologies include next-generation sequencing, microarray analysis, machine learning, and RNA-Seq. CONCLUSION In conclusion, it is expected that all the information provided in this review will in time contribute to the use of TF genes in the research, breeding, and development of new abiotic stress tolerant maize cultivars.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Elamin Hafiz Baillo
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
González FG, Capella M, Ribichich KF, Curín F, Giacomelli JI, Ayala F, Watson G, Otegui ME, Chan RL. Field-grown transgenic wheat expressing the sunflower gene HaHB4 significantly outyields the wild type. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1669-1681. [PMID: 30726944 PMCID: PMC6411379 DOI: 10.1093/jxb/erz037] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/18/2019] [Indexed: 05/07/2023]
Abstract
HaHB4 is a sunflower transcription factor belonging to the homeodomain-leucine zipper I family whose ectopic expression in Arabidopsis triggers drought tolerance. The use of PCR to clone the HaHB4 coding sequence for wheat transformation caused unprogrammed mutations producing subtle differences in its activation ability in yeast. Transgenic wheat plants carrying a mutated version of HaHB4 were tested in 37 field experiments. A selected transgenic line yielded 6% more (P<0.001) and had 9.4% larger water use efficiency (P<0.02) than its control across the evaluated environments. Differences in grain yield between cultivars were explained by the 8% improvement in grain number per square meter (P<0.0001), and were more pronounced in stress (16% benefit) than in non-stress conditions (3% benefit), reaching a maximum of 97% in one of the driest environments. Increased grain number per square meter of transgenic plants was accompanied by positive trends in spikelet numbers per spike, tillers per plant, and fertile florets per plant. The gene transcripts associated with abiotic stress showed that HaHB4's action was not dependent on the response triggered either by RD19 or by DREB1a, traditional candidates related to water deficit responses. HaHB4 enabled wheat to show some of the benefits of a species highly adapted to water scarcity, especially in marginal regions characterized by frequent droughts.
Collapse
Affiliation(s)
- Fernanda Gabriela González
- Estación Experimental Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA), Pergamino, Buenos Aires, Argentina
- CITNOBA, CONICET-UNNOBA, Pergamino, Buenos Aires, Argentina
| | - Matías Capella
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Karina Fabiana Ribichich
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Facundo Curín
- CITNOBA, CONICET-UNNOBA, Pergamino, Buenos Aires, Argentina
| | - Jorge Ignacio Giacomelli
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | | | | | - María Elena Otegui
- CONICET-INTA-FAUBA, Estación Experimental Pergamino, Facultad de Agronomía Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| |
Collapse
|
19
|
Moon SJ, Min MK, Kim JA, Kim DY, Yoon IS, Kwon TR, Byun MO, Kim BG. Ectopic Expression of OsDREB1G, a Member of the OsDREB1 Subfamily, Confers Cold Stress Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:297. [PMID: 30984209 PMCID: PMC6447655 DOI: 10.3389/fpls.2019.00297] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/25/2019] [Indexed: 05/20/2023]
Abstract
Plants adapt to adverse environmental conditions through physiological responses, such as induction of the abscisic acid signaling pathway, stomatal regulation, and root elongation. Altered gene expression is a major molecular response to adverse environmental conditions in plants. Several transcription factors function as master switches to induce the expression of stress-tolerance genes. To find out a master regulator for the cold stress tolerance in rice, we focused on functionally identifying DREB subfamily which plays important roles in cold stress tolerance of plants. Here, we characterized OsDREB1G (LOC_Os02g45450), a functionally unidentified member of the DREB1 subgroup. OsDREB1G is specifically induced under cold stress conditions among several abiotic stresses examined. This gene is dominantly expressed in leaf sheath, blade, node, and root. Transgenic rice overexpressing this gene exhibited strong cold tolerance and growth retardation, like transgenic rice overexpressing other OsDREB1 genes. However, unlike these rice lines, transgenic rice overexpressing OsDREB1G did not exhibit significant increases in drought or salt tolerance. Cold-responsive genes were highly induced in transgenic rice overexpressing DREB1G compared to wild type. In addition, OsDREB1G overexpression directly induced the expression of a reporter gene fused to the promoters of cold-induced genes in rice protoplasts. Therefore, OsDREB1G is a typical CBF/DREB1 transcription factor that specifically functions in the cold stress response. Therefore, OsDREB1G could be useful for developing transgenic rice with enhanced cold-stress tolerance.
Collapse
Affiliation(s)
- Seok-Jun Moon
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Myung Ki Min
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Jin-Ae Kim
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Dool Yi Kim
- Crop Foundation Division, National Institute of Crop Science, Rural Development Administration, Wanju-Gun, South Korea
| | - In Sun Yoon
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Taek Ryun Kwon
- International Technology Cooperation Division, Technology Cooperation Bureau, Rural Development Administration, Jeonju, South Korea
| | - Myung Ok Byun
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Beom-Gi Kim
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
- *Correspondence: Beom-Gi Kim,
| |
Collapse
|
20
|
Tang W, Luo C. Overexpression of Zinc Finger Transcription Factor ZAT6 Enhances Salt Tolerance. Open Life Sci 2018; 13:431-445. [PMID: 33817112 PMCID: PMC7874681 DOI: 10.1515/biol-2018-0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
The purpose of the present investigation is to examine the function of the C2H2-type zinc finger transcription factor of Arabidopsis thaliana 6 (ZAT6) in salt stress tolerance in cells of rice (Oryza sativa L.), cotton (Gossypium hirsutum L.) and slash pine (Pinus elliottii Engelm.). Cells of O. sativa, G. hirsutum, and P. elliottii overexpressing ZAT6 were generated using Agrobacterium-mediated genetic transformation. Molecular and functional analysis of transgenic cell lines demonstrate that overexpression of ZAT6 increased tolerance to salt stress by decreasing lipid peroxidation and increasing the content of abscisic acid (ABA) and GA8, as well as enhancing the activities of antioxidant enzymes such as ascorbate peroxidise (APOX), catalase (CAT), glutathione reductase (GR), and superoxide dismutase (SOD). In rice cells, ZAT6 also increased expression of Ca2+-dependent protein kinase genes OsCPK9 and OsCPK25 by 5–7 fold under NaCl stress. Altogether, our results suggest that overexpression of ZAT6 enhanced salt stress tolerance by increasing antioxidant enzyme activity, hormone content and expression of Ca2+-dependent protein kinase in transgenic cell lines of different plant species.
Collapse
Affiliation(s)
- Wei Tang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Caroline Luo
- Department of Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Muñiz García MN, Cortelezzi JI, Fumagalli M, Capiati DA. Expression of the Arabidopsis ABF4 gene in potato increases tuber yield, improves tuber quality and enhances salt and drought tolerance. PLANT MOLECULAR BIOLOGY 2018; 98:137-152. [PMID: 30143991 DOI: 10.1007/s11103-018-0769-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/21/2018] [Indexed: 05/23/2023]
Abstract
In this study we show that expression of the Arabidopsis ABF4 gene in potato increases tuber yield under normal and abiotic stress conditions, improves storage capability and processing quality of the tubers, and enhances salt and drought tolerance. Potato is the third most important food crop in the world. Potato plants are susceptible to salinity and drought, which negatively affect crop yield, tuber quality and market value. The development of new varieties with higher yields and increased tolerance to adverse environmental conditions is a main objective in potato breeding. In addition, tubers suffer from undesirable sprouting during storage that leads to major quality losses; therefore, the control of tuber sprouting is of considerable economic importance. ABF (ABRE-binding factor) proteins are bZIP transcription factors that regulate abscisic acid signaling during abiotic stress. ABF proteins also play an important role in the tuberization induction. We developed transgenic potato plants constitutively expressing the Arabidopsis ABF4 gene (35S::ABF4). In this study, we evaluated the performance of 35S::ABF4 plants grown in soil, determining different parameters related to tuber yield, tuber quality (carbohydrates content and sprouting behavior) and tolerance to salt and drought stress. Besides enhancing salt stress and drought tolerance, constitutive expression of ABF4 increases tuber yield under normal and stress conditions, enhances storage capability and improves the processing quality of the tubers.
Collapse
Affiliation(s)
- María Noelia Muñiz García
- Institute of Genetic Engineering and Molecular Biology "Dr. Héctor Torres" (INGEBI), National Scientific and Technical Research Council (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Juan Ignacio Cortelezzi
- Institute of Genetic Engineering and Molecular Biology "Dr. Héctor Torres" (INGEBI), National Scientific and Technical Research Council (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Marina Fumagalli
- Institute of Genetic Engineering and Molecular Biology "Dr. Héctor Torres" (INGEBI), National Scientific and Technical Research Council (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Daniela A Capiati
- Institute of Genetic Engineering and Molecular Biology "Dr. Héctor Torres" (INGEBI), National Scientific and Technical Research Council (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
- Biochemistry Department, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Khan SA, Li MZ, Wang SM, Yin HJ. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress. Int J Mol Sci 2018; 19:ijms19061634. [PMID: 29857524 PMCID: PMC6032162 DOI: 10.3390/ijms19061634] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/10/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
Owing to diverse abiotic stresses and global climate deterioration, the agricultural production worldwide is suffering serious losses. Breeding stress-resilient crops with higher quality and yield against multiple environmental stresses via application of transgenic technologies is currently the most promising approach. Deciphering molecular principles and mining stress-associate genes that govern plant responses against abiotic stresses is one of the prerequisites to develop stress-resistant crop varieties. As molecular switches in controlling stress-responsive genes expression, transcription factors (TFs) play crucial roles in regulating various abiotic stress responses. Hence, functional analysis of TFs and their interaction partners during abiotic stresses is crucial to perceive their role in diverse signaling cascades that many researchers have continued to undertake. Here, we review current developments in understanding TFs, with particular emphasis on their functions in orchestrating plant abiotic stress responses. Further, we discuss novel molecular mechanisms of their action under abiotic stress conditions. This will provide valuable information for understanding regulatory mechanisms to engineer stress-tolerant crops.
Collapse
Affiliation(s)
- Sardar-Ali Khan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Meng-Zhan Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Hong-Ju Yin
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
23
|
Transcriptome Analysis in Chinese Cabbage (Brassica rapa ssp. pekinensis) Provides the Role of Glucosinolate Metabolism in Response to Drought Stress. Molecules 2018; 23:molecules23051186. [PMID: 29762546 PMCID: PMC6099646 DOI: 10.3390/molecules23051186] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/12/2018] [Accepted: 05/12/2018] [Indexed: 02/01/2023] Open
Abstract
Although drought stress is one of the most limiting factors in growth and production of Chinese cabbage (Brassica rapa L. ssp. pekinensis), the underlying biochemical and molecular causes are poorly understood. In the present study, to address the mechanisms underlying the drought responses, we analyzed the transcriptome profile of Chinese cabbage grown under drought conditions. Drought stress transcriptionally activated several transcription factor genes, including AP2/ERFs, bHLHs, NACs and bZIPs, and was found to possibly result in transcriptional variation in genes involved in organic substance metabolic processes. In addition, comparative expression analysis of selected BrbZIPs under different stress conditions suggested that drought-induced BrbZIPs are important for improving drought tolerance. Further, drought stress in Chinese cabbage caused differential acclimation responses in glucosinolate metabolism in leaves and roots. Analysis of stomatal aperture indicated that drought-induced accumulation of glucosinolates in leaves directly or indirectly controlled stomatal closure to prevent water loss, suggesting that organ-specific responses are essential for plant survival under drought stress condition. Taken together, our results provide information important for further studies on molecular mechanisms of drought tolerance in Chinese cabbage.
Collapse
|
24
|
Xuanyuan G, Lu C, Zhang R, Jiang J. Overexpression of StNF-YB3.1 reduces photosynthetic capacity and tuber production, and promotes ABA-mediated stomatal closure in potato (Solanum tuberosum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 261:50-59. [PMID: 28554693 DOI: 10.1016/j.plantsci.2017.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Nuclear factor Y (NF-Y) is one of the most ubiquitous transcription factors (TFs), comprising NF-YA, NF-YB and NF-YC subunits, and has been identified and reported in various aspects of development for plants and animals. In this work, StNF-YB3.1, a putative potato NF-YB subunit encoding gene, was isolated from Solanum tuberosum by rapid amplification of cDNA ends (RACE). Overexpression of StNF-YB3.1 in potato (cv. Atlantic) resulted in accelerated onset of flowering, and significant increase in leaf chlorophyll content in field trials. However, transgenic potato plants overexpressing StNF-YB3.1 (OEYB3.1) showed significant decreases in photosynthetic rate and stomatal conductance both at tuber initiation and bulking stages. OEYB3.1 lines were associated with significantly fewer tuber numbers and yield reduction. Guard cell size and stomatal density were not changed in OEYB3.1 plants, whereas ABA-mediated stomatal closure was accelerated compared to that of wild type plants because of the up-regulation of genes for ABA signaling, such as StCPK10-like, StSnRK2.6/OST1-like, StSnRK2.7-like and StSLAC1-like. We speculate that the acceleration of stomatal closure was a possible reason for the significantly decreased stomatal conductance and photosynthetic rate.
Collapse
Affiliation(s)
- Guochao Xuanyuan
- Inner Mongolia Potato Engineering and Technology Research Centre, Inner Mongolia University, Hohhot 010021, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ruofang Zhang
- Inner Mongolia Potato Engineering and Technology Research Centre, Inner Mongolia University, Hohhot 010021, China.
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
25
|
Li X, Fan S, Hu W, Liu G, Wei Y, He C, Shi H. Two Cassava Basic Leucine Zipper (bZIP) Transcription Factors (MebZIP3 and MebZIP5) Confer Disease Resistance against Cassava Bacterial Blight. FRONTIERS IN PLANT SCIENCE 2017; 8:2110. [PMID: 29276527 PMCID: PMC5727076 DOI: 10.3389/fpls.2017.02110] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/27/2017] [Indexed: 05/19/2023]
Abstract
Basic domain-leucine zipper (bZIP) transcription factor, one type of conserved gene family, plays an important role in plant development and stress responses. Although 77 MebZIPs have been genome-wide identified in cassava, their in vivo roles remain unknown. In this study, we analyzed the expression pattern and the function of two MebZIPs (MebZIP3 and MebZIP5) in response to pathogen infection. Gene expression analysis indicated that MebZIP3 and MebZIP5 were commonly regulated by flg22, Xanthomonas axonopodis pv. manihotis (Xam), salicylic acid (SA), and hydrogen peroxide (H2O2). Subcellular localization analysis showed that MebZIP3 and MebZIP5 are specifically located in cell nucleus. Through overexpression in tobacco, we found that MebZIP3 and MebZIP5 conferred improved disease resistance against cassava bacterial blight, with more callose depositions. On the contrary, MebZIP3- and MebZIP5-silenced plants by virus-induced gene silencing (VIGS) showed disease sensitive phenotype, lower transcript levels of defense-related genes and less callose depositions. Taken together, this study highlights the positive role of MebZIP3 and MebZIP5 in disease resistance against cassava bacterial blight for further utilization in genetic improvement of cassava disease resistance.
Collapse
Affiliation(s)
- Xiaolin Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Shuhong Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- *Correspondence: Haitao Shi, Chaozu He,
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- *Correspondence: Haitao Shi, Chaozu He,
| |
Collapse
|
26
|
Zhang A, Liu D, Hua C, Yan A, Liu B, Wu M, Liu Y, Huang L, Ali I, Gan Y. The Arabidopsis Gene zinc finger protein 3(ZFP3) Is Involved in Salt Stress and Osmotic Stress Response. PLoS One 2016; 11:e0168367. [PMID: 27977750 PMCID: PMC5158053 DOI: 10.1371/journal.pone.0168367] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/30/2016] [Indexed: 11/18/2022] Open
Abstract
Plants are continuously challenged by various abiotic and biotic stresses. To tide over these adversities, plants evolved intricate regulatory networks to adapt these unfavorable environments. So far, many researchers have clarified the molecular and genetic pathways involved in regulation of stress responses. However, the mechanism through which these regulatory networks operate is largely unknown. In this study, we cloned a C2H2-type zinc finger protein gene ZFP3 from Arabidopsis thaliana and investigated its function in salt and osmotic stress response. Our results showed that the expression level of ZFP3 was highly suppressed by NaCl, mannitol and sucrose. Constitutive expression of ZFP3 enhanced tolerance of plants to salt and osmotic stress while the zfp3 mutant plants displays reduced tolerance in Arabidopsis. Gain- and Loss-of-function studies of ZFP3 showed that ZFP3 significantly changes proline accumulation and chlorophyll content. Furthermore, over-expression of ZFP3 induced the expressions of stress-related gene KIN1, RD22, RD29B and AtP5CS1. These results suggest that ZFP3 is involved in salt and osmotic stress response.
Collapse
Affiliation(s)
- Aidong Zhang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dongdong Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Changmei Hua
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - An Yan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bohan Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Minjie Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yihua Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Linli Huang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Imran Ali
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
27
|
Ye W, Murata Y. Microbe Associated Molecular Pattern Signaling in Guard Cells. FRONTIERS IN PLANT SCIENCE 2016; 7:583. [PMID: 27200056 PMCID: PMC4855242 DOI: 10.3389/fpls.2016.00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/15/2016] [Indexed: 05/04/2023]
Abstract
Stomata, formed by pairs of guard cells in the epidermis of terrestrial plants, regulate gas exchange, thus playing a critical role in plant growth and stress responses. As natural openings, stomata are exploited by microbes as an entry route. Recent studies reveal that plants close stomata upon guard cell perception of molecular signatures from microbes, microbe associated molecular patterns (MAMPs), to prevent microbe invasion. The perception of MAMPs induces signal transduction including recruitment of second messengers, such as Ca(2+) and H2O2, phosphorylation events, and change of transporter activity, leading to stomatal movement. In the present review, we summarize recent findings in signaling underlying MAMP-induced stomatal movement by comparing with other signalings.
Collapse
|