1
|
Zheng YP. Visual analysis of research progress and trend on hairy roots. FRONTIERS IN PLANT SCIENCE 2025; 16:1580007. [PMID: 40365568 PMCID: PMC12069351 DOI: 10.3389/fpls.2025.1580007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/02/2025] [Indexed: 05/15/2025]
Abstract
Hairy root is a special form of root tissue, which is induced by Rhizobium rhizogenes and could mediate genetic transformation after the infection of explants. They have attracted attentions because of their advantages of fast growth rate, convenient culture, stable genetic properties and strong synthesis ability of secondary metabolites. With bibliometrics, this study employed CiteSpace and VOSvivewer softwares to analyze the publications on hairy roots researches from 2009 to 2024 based on WOS database. The subject distribution, countries, institutions and personnel, research hotspots and research trends of hairy roots were discussed and analyzed. The results revealed a consistent increase in publications on hairy root with America, China and India as the main countries. The institutions were mainly universities and the Chinese Academy of Sciences was a major contributor to this topic and had close cooperation with other institutions. The researches of hairy roots mainly focused on plant genetic transformation, secondary metabolism and gene molecular function analysis, and in environmental remediation. The application of hairy roots could be an important research hotspot in the future.
Collapse
Affiliation(s)
- Yu-Ping Zheng
- Library of Henan University of Science and Technology, Henan University of Science and
Technology, Luoyang, China
| |
Collapse
|
2
|
Yang L, Wang C, Lai X, Jin S, Wang X, Wen Z, Yang M, Fazal A, Ding Y, Li Z, Cai J, Lu G, Lin H, Han H, Yang Y, Qi J. In vivo transgenic studies confirm the critical acylation function of LeBAHD56 for shikonin in Lithospermum erythrorhizon. PLANT CELL REPORTS 2024; 43:160. [PMID: 38825616 DOI: 10.1007/s00299-024-03242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
KEY MESSAGE LeBAHD56 is preferentially expressed in tissues where shikonin and its derivatives are biosynthesized, and it confers shikonin acylation in vivo. Two WRKY transcriptional factors might regulate LeBAHD56's expression. Shikonin and its derivatives, found in the roots of Lithospermum erythrorhizon, have extensive application in the field of medicine, cosmetics, and other industries. Prior research has demonstrated that LeBAHD1(LeSAT1) is responsible for the biochemical process of shikonin acylation both in vitro and in vivo. However, with the exception of its documented in vitro biochemical function, there is no in vivo genetic evidence supporting the acylation function of the highly homologous gene of LeSAT1, LeBAHD56(LeSAT2), apart from its reported role. Here, we validated the critical acylation function of LeBAHD56 for shikonin using overexpression (OE) and CRISPR/Cas9-based knockout (KO) strategies. The results showed that the OE lines had a significantly higher ratio of acetylshikonin, isobutyrylshikonin or isovalerylshikonin to shikonin than the control. In contrast, the KO lines had a significantly lower ratio of acetylshikonin, isobutyrylshikonin or isovalerylshikonin to shikonin than controls. As for its detailed expression patterns, we found that LeBAHD56 is preferentially expressed in roots and callus cells, which are the biosynthesis sites for shikonin and its derivatives. In addition, we anticipated that a wide range of putative transcription factors might control its transcription and verified the direct binding of two crucial WRKY members to the LeBAHD56 promoter's W-box. Our results not only confirmed the in vivo function of LeBAHD56 in shikonin acylation, but also shed light on its transcriptional regulation.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Changyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohui Lai
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- School of Biology and Geography Science, Yili Normal University, Yining, 835000, China
| | - Suo Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuhang Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhongyi Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinfeng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Wang X, Wang C, Yang M, Jie W, Fazal A, Fu J, Yin T, Cai J, Liu B, Lu G, Lin H, Han H, Wen Z, Qi J, Yang Y. Genome-Wide Comparison and Functional Characterization of HMGR Gene Family Associated with Shikonin Biosynthesis in Lithospermum erythrorhizon. Int J Mol Sci 2023; 24:12532. [PMID: 37569907 PMCID: PMC10419935 DOI: 10.3390/ijms241512532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/16/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), as the rate-limiting enzyme in the mevalonate pathway, is essential for the biosynthesis of shikonin in Lithospermum erythrorhizon. However, in the absence of sufficient data, the principles of a genome-wide in-depth evolutionary exploration of HMGR family members in plants, as well as key members related to shikonin biosynthesis, remain unidentified. In this study, 124 HMGRs were identified and characterized from 36 representative plants, including L. erythrorhizon. Vascular plants were found to have more HMGR family genes than nonvascular plants. The phylogenetic tree revealed that during lineage and species diversification, the HMGRs evolved independently and intronless LerHMGRs emerged from multi-intron HMGR in land plants. Among them, Pinus tabuliformis and L. erythrorhizon had the most HMGR gene duplications, with 11 LerHMGRs most likely expanded through WGD/segmental and tandem duplications. In seedling roots and M9 cultured cells/hairy roots, where shikonin biosynthesis occurs, LerHMGR1 and LerHMGR2 were expressed significantly more than other genes. The enzymatic activities of LerHMGR1 and LerHMGR2 further supported their roles in catalyzing the conversion of HMG-CoA to mevalonate. Our findings provide insight into the molecular evolutionary properties and function of the HMGR family in plants and a basis for the genetic improvement of efficiently produced secondary metabolites in L. erythrorhizon.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Changyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wencai Jie
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiangyan Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinfeng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Bagal D, Chowdhary AA, Mehrotra S, Mishra S, Rathore S, Srivastava V. Metabolic engineering in hairy roots: An outlook on production of plant secondary metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107847. [PMID: 37352695 DOI: 10.1016/j.plaphy.2023.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Plants are one of the vital sources of secondary metabolites. These secondary metabolites have diverse roles in human welfare, including therapeutic implication. Nevertheless, secondary metabolite yields obtained through the exploitation of natural plant populations is insufficient to meet the commercial demand due to their accumulation in low volumes. Besides, in-planta synthesis of these important metabolites is directly linked with the age and growing conditions of the plant. Such limitations have paved the way for the exploration of alternative production methodologies. Hairy root cultures, induced after the interaction of plants with Rhizobium rhizogenes (Agrobacterium rhizogenes), are a practical solution for producing valuable secondary metabolite at low cost and without the influence of seasonal, geographic or climatic variations. Hairy root cultures also offer the opportunity to get combined with other yield enhancements strategies (precursor feeding, elicitation and metabolic engineering) to further stimulate and/or enhance their production potential. Applications of metabolic engineering in exploiting hairy root cultures attracted the interest of several research groups as a means of yield enhancement. Currently, several engineering approaches like overexpression and silencing of pathway genes, and transcription factor overexpression are used to boost metabolite production, along with the contextual success of genome editing. This review attempts to cover metabolic engineering in hairy roots for the production of secondary metabolites, with a primary emphasis on alkaloids, and discusses prospects for taking this research forward to meet desired production demands.
Collapse
Affiliation(s)
- Diksha Bagal
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India
| | - Aksar Ali Chowdhary
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India
| | - Shakti Mehrotra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, 226020, India.
| | - Sonal Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India.
| | - Sonica Rathore
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India
| | - Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India.
| |
Collapse
|
5
|
Suttiyut T, Benzinger SW, McCoy RM, Widhalm JR. Strategies to study the metabolic origins of specialized plant metabolites: The specialized 1,4-naphthoquinones. Methods Enzymol 2023; 680:217-246. [PMID: 36710012 DOI: 10.1016/bs.mie.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
One of the hallmarks of specialized plant metabolites is that they are produced using precursors from central metabolism. Therefore, in addition to identifying and characterizing the pathway genes and enzymes involved in synthesizing a specialized compound, it is critical to study its metabolic origins. Identifying what primary metabolic pathways supply precursors to specialized metabolism and how primary metabolism has diversified to sustain fluxes to specialized metabolite pathways is imperative to optimizing synthetic biology strategies for producing high-value plant natural products in crops and microbial systems. Improved understanding of the metabolic origins of specialized plant metabolites has also revealed instances of recurrent evolution of the same compound, or nearly identical compounds, with similar ecological functions, thereby expanding knowledge about the factors driving the chemical diversity in the plant kingdom. In this chapter, we describe detailed methods for performing tracer studies, chemical inhibitor experiments, and reverse genetics. We use examples from investigations of the metabolic origins of specialized plant 1,4-naphthoquinones (1,4-NQs). The plant 1,4-NQs provide an excellent case study for illustrating the importance of investigating the metabolic origins of specialized metabolites. Over half a century of research by many groups has revealed that the pathways to synthesize plant 1,4-NQs are the result of multiple events of convergent evolution across several disparate plant lineages and that plant 1,4-NQ pathways are supported by extraordinary events of metabolic innovation and by various primary metabolic sources.
Collapse
Affiliation(s)
- Thiti Suttiyut
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Scott W Benzinger
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Rachel M McCoy
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
6
|
Suttiyut T, Auber RP, Ghaste M, Kane CN, McAdam SAM, Wisecaver JH, Widhalm JR. Integrative analysis of the shikonin metabolic network identifies new gene connections and reveals evolutionary insight into shikonin biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhab087. [PMID: 35048120 PMCID: PMC8969065 DOI: 10.1093/hr/uhab087] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/07/2021] [Indexed: 05/28/2023]
Abstract
Plant specialized 1,4-naphthoquinones present a remarkable case of convergent evolution. Species across multiple discrete orders of vascular plants produce diverse 1,4-naphthoquinones via one of several pathways using different metabolic precursors. Evolution of these pathways was preceded by events of metabolic innovation and many appear to share connections with biosynthesis of photosynthetic or respiratory quinones. Here, we sought to shed light on the metabolic connections linking shikonin biosynthesis with its precursor pathways and on the origins of shiknoin metabolic genes. Downregulation of Lithospermum erythrorhizon geranyl diphosphate synthase (LeGPPS), recently shown to have been recruited from a cytoplasmic farnesyl diphosphate synthase (FPPS), resulted in reduced shikonin production and a decrease in expression of mevalonic acid and phenylpropanoid pathway genes. Next, we used LeGPPS and other known shikonin pathway genes to build a coexpression network model for identifying new gene connections to shikonin metabolism. Integrative in silico analyses of network genes revealed candidates for biochemical steps in the shikonin pathway arising from Boraginales-specific gene family expansion. Multiple genes in the shikonin coexpression network were also discovered to have originated from duplication of ubiquinone pathway genes. Taken together, our study provides evidence for transcriptional crosstalk between shikonin biosynthesis and its precursor pathways, identifies several shikonin pathway gene candidates and their evolutionary histories, and establishes additional evolutionary links between shikonin and ubiquinone metabolism. Moreover, we demonstrate that global coexpression analysis using limited transcriptomic data obtained from targeted experiments is effective for identifying gene connections within a defined metabolic network.
Collapse
Affiliation(s)
- Thiti Suttiyut
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Robert P Auber
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Manoj Ghaste
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Cade N Kane
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jennifer H Wisecaver
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
7
|
Song W, Zhuang Y, Liu T. Potential role of two cytochrome P450s obtained from Lithospermum erythrorhizon in catalyzing the oxidation of geranylhydroquinone during Shikonin biosynthesis. PHYTOCHEMISTRY 2020; 175:112375. [PMID: 32305685 DOI: 10.1016/j.phytochem.2020.112375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Shikonin is a natural naphthoquinone derivative that specifically occurs in boraginaceous plants, and the major active ingredient of the medicinal plant Lithospermum erythrorhizon. Previously, a cytochrome P450 oxygenase (CYP) CYP76B74 catalyzing 3″-hydroxylation of geranylhydroquinone (GHQ) - a key intermediate of shikonin biosynthesis, was identified from cultured cells of Arnebia euchroma. However, the enzymes catalyzing oxidation of the geranyl side-chain of GHQ from L. erythrorhizon remain unknown. In this study, we performed transcriptome analysis of different tissues (red roots and green leaves/stems) from L. erythrorhizon using RNA sequencing technology. Highly expressed CYP genes found in the roots were then heterologously expressed in Saccharomyces cerevisiae and functionally screened with GHQ as the substrate. As the result, two CYPs of CYP76B subfamily catalyzing the oxidation of GHQ were characterized. CYP76B100 catalyzed the hydroxylation of the geranyl side-chain of GHQ at the C-3″ position to form 3″-hydroxyl geranylhydroquinone (GHQ-3″-OH). The enzyme CYP76B101 carried out oxidation reaction of GHQ at the C-3″ position to produce a 3″-carboxylic acid derivative of GHQ (GHQ-3″-COOH) as well as GHQ-3″-OH. This enzyme-catalyzed oxidation reaction with GHQ as the substrate is reported for the first time. This study implicates CYP76B100 and CYP76B101 as having a potential role in shikonin biosynthesis in L. erythrorhizon.
Collapse
Affiliation(s)
- Wan Song
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yibin Zhuang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
8
|
Auber RP, Suttiyut T, McCoy RM, Ghaste M, Crook JW, Pendleton AL, Widhalm JR, Wisecaver JH. Hybrid de novo genome assembly of red gromwell ( Lithospermum erythrorhizon) reveals evolutionary insight into shikonin biosynthesis. HORTICULTURE RESEARCH 2020; 7:82. [PMID: 32528694 PMCID: PMC7261806 DOI: 10.1038/s41438-020-0301-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 05/08/2023]
Abstract
Lithospermum erythrorhizon (red gromwell; zicao) is a medicinal and economically valuable plant belonging to the Boraginaceae family. Roots from L. erythrorhizon have been used for centuries based on the antiviral and wound-healing properties produced from the bioactive compound shikonin and its derivatives. More recently, shikonin, its enantiomer alkannin, and several other shikonin/alkannin derivatives have collectively emerged as valuable natural colorants and as novel drug scaffolds. Despite several transcriptomes and proteomes having been generated from L. erythrorhizon, a reference genome is still unavailable. This has limited investigations into elucidating the shikonin/alkannin pathway and understanding its evolutionary and ecological significance. In this study, we obtained a de novo genome assembly for L. erythrorhizon using a combination of Oxford Nanopore long-read and Illumina short-read sequencing technologies. The resulting genome is ∼367.41 Mb long, with a contig N50 size of 314.31 kb and 27,720 predicted protein-coding genes. Using the L. erythrorhizon genome, we identified several additional p-hydroxybenzoate:geranyltransferase (PGT) homologs and provide insight into their evolutionary history. Phylogenetic analysis of prenyltransferases suggests that PGTs originated in a common ancestor of modern shikonin/alkannin-producing Boraginaceous species, likely from a retrotransposition-derived duplication event of an ancestral prenyltransferase gene. Furthermore, knocking down expression of LePGT1 in L. erythrorhizon hairy root lines revealed that LePGT1 is predominantly responsible for shikonin production early in culture establishment. Taken together, the reference genome reported in this study and the provided analysis on the evolutionary origin of shikonin/alkannin biosynthesis will guide elucidation of the remainder of the pathway.
Collapse
Affiliation(s)
- Robert P. Auber
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Thiti Suttiyut
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Rachel M. McCoy
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Manoj Ghaste
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Joseph W. Crook
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Amanda L. Pendleton
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Joshua R. Widhalm
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Jennifer H. Wisecaver
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
9
|
Tatsumi K, Ichino T, Onishi N, Shimomura K, Yazaki K. Highly efficient method of Lithospermum erythrorhizon transformation using domestic Rhizobium rhizogenes strain A13. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:39-46. [PMID: 32362747 PMCID: PMC7193830 DOI: 10.5511/plantbiotechnology.19.1212a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/12/2019] [Indexed: 06/11/2023]
Abstract
Lithospermum erythrorhizon, a medicinal plant growing in Asian countries, produces shikonin derivatives that are lipophilic secondary metabolites. These red naphthoquinone pigments are traditionally used as a natural drug and a dye in East Asia. In intact L. erythrorhizon plants, shikonin derivatives are produced in the root epidermal cells and secreted into extracellular spaces. The biosynthetic pathway for shikonin derivatives remains incompletely understood and the secretion mechanisms are largely unknown. Understanding the molecular mechanisms underlying shikonin biosynthesis and transport in L. erythrorhizon cells requires functional analysis of candidate genes using transgenic plants. To date, however, standard transformation methods have not yet been established. This study describes an efficient method for L. erythrorhizon transformation using hairy roots by Rhizobium rhizogenes strain A13, present domestically in Japan. Hairy roots of L. erythrorhizon were generated from explants of the axenic shoots that were infected with R. rhizogenes strain A13. Integration into the genome was assessed by PCR amplifying a transgene encoding green fluorescent protein (GFP) and by monitoring GFP expression. This method enhanced transformation efficiency 50-70%. Although methods for the systematic stable transformation of L. erythrorhizon plants have not yet been reported, the method described in this study resulted in highly efficient stable transformation using hairy roots. This method enables the functional analysis of L. erythrorhizon genes.
Collapse
Affiliation(s)
- Kanade Tatsumi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takuji Ichino
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Noboru Onishi
- Central Laboratories for Key Technologies, Kirin Holdings Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Koichiro Shimomura
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
10
|
Zhu Y, Chu SJ, Luo YL, Fu JY, Tang CY, Lu GH, Pang YJ, Wang XM, Yang RW, Qi JL, Yang YH. Involvement of LeMRP, an ATP-binding cassette transporter, in shikonin transport and biosynthesis in Lithospermum erythrorhizon. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:365-373. [PMID: 29139179 DOI: 10.1111/plb.12666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Shikonin and its derivatives are important medicinal secondary metabolites accumulating in roots of Lithospermum erythrorhizon. Although some membrane proteins have been identified as transporters of secondary metabolites, the mechanisms underlying shikonin transport and accumulation in L. erythrorhizon cells still remain largely unknown. In this study, we isolated a cDNA encoding LeMRP, an ATP-binding cassette transporter from L. erythrorhizon, and further investigated its functions in the transport and biosynthesis of shikonin using the yeast transformation and transgenic hairy root methods, respectively. Real-time PCR was applied for expression analyses of LeMRP and shikonin biosynthetic enzyme genes. Functional analysis of LeMRP using the heterologous yeast cell expression system showed that LeMRP could be involved in shikonin transport. Transgenic hairy roots of L. erythrorhizon demonstrated that LeMRP overexpressing hairy roots produced more shikonin than the empty vector (EV) control. Real-time PCR results revealed that the enhanced shikonin biosynthesis in the overexpression lines was mainly caused by highly up-regulated expression of genes coding key enzymes (LePAL, HMGR, Le4CL and LePGT) involved in shikonin biosynthesis. Conversely, LeMRP RNAi decreased the accumulation of shikonin and effectively down-regulated expression level of the above genes. Typical inhibitors of ABC proteins, such as azide and buthionine sulphoximine, dramatically inhibited accumulation of shikonin in hairy roots. Our findings provide evidence for the important direct or indirect role of LeMRP in transmembrane transport and biosynthesis of shikonin.
Collapse
Affiliation(s)
- Y Zhu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - S-J Chu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Y-L Luo
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - J-Y Fu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - C-Y Tang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - G-H Lu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Y-J Pang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - X-M Wang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - R-W Yang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - J-L Qi
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Y-H Yang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Zhu Y, Lu GH, Bian ZW, Wu FY, Pang YJ, Wang XM, Yang RW, Tang CY, Qi JL, Yang YH. Involvement of LeMDR, an ATP-binding cassette protein gene, in shikonin transport and biosynthesis in Lithospermum erythrorhizon. BMC PLANT BIOLOGY 2017; 17:198. [PMID: 29132307 PMCID: PMC5683320 DOI: 10.1186/s12870-017-1148-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 11/01/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Shikonin is a naphthoquinone secondary metabolite with important medicinal value and is found in Lithospermum erythrorhizon. Considering the limited knowledge on the membrane transport mechanism of shikonin, this study investigated such molecular mechanism. RESULTS We successfully isolated an ATP-binding cassette protein gene, LeMDR, from L. erythrorhizon. LeMDR is predominantly expressed in L. erythrorhizon roots, where shikonin accumulated. Functional analysis of LeMDR by using the yeast cell expression system revealed that LeMDR is possibly involved in the shikonin efflux transport. The accumulation of shikonin is lower in yeast cells transformed with LeMDR-overexpressing vector than that with empty vector. The transgenic hairy roots of L. erythrorhizon overexpressing LeMDR (MDRO) significantly enhanced shikonin production, whereas the RNA interference of LeMDR (MDRi) displayed a reverse trend. Moreover, the mRNA expression level of LeMDR was up-regulated by treatment with shikonin and shikonin-positive regulators, methyl jasmonate and indole-3-acetic acid. There might be a relationship of mutual regulation between the expression level of LeMDR and shikonin biosynthesis. CONCLUSIONS Our findings demonstrated the important role of LeMDR in transmembrane transport and biosynthesis of shikonin.
Collapse
Affiliation(s)
- Yu Zhu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, 210023 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Gui-Hua Lu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, 210023 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Zhuo-Wu Bian
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, 210023 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Feng-Yao Wu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, 210023 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Yan-Jun Pang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, 210023 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Xiao-Ming Wang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, 210023 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Rong-Wu Yang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, 210023 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Cheng-Yi Tang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, 210023 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Jin-Liang Qi
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, 210023 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Yong-Hua Yang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, 210023 People’s Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| |
Collapse
|
12
|
Wu FY, Tang CY, Guo YM, Bian ZW, Fu JY, Lu GH, Qi JL, Pang YJ, Yang YH. Transcriptome analysis explores genes related to shikonin biosynthesis in Lithospermeae plants and provides insights into Boraginales' evolutionary history. Sci Rep 2017; 7:4477. [PMID: 28667265 PMCID: PMC5493674 DOI: 10.1038/s41598-017-04750-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/22/2017] [Indexed: 11/09/2022] Open
Abstract
Shikonin and its derivatives extracted from Lithospermeae plants' red roots have current applications in food and pharmaceutical industries. Previous studies have cloned some genes related to shikonin biosynthesis. However, most genes related to shikonin biosynthesis remain unclear, because the lack of the genome/transcriptome of the Lithospermeae plants. Therefore, in order to provide a new understanding of shikonin biosynthesis, we obtained transcriptome data and unigenes expression profiles in three shikonin-producing Lithospermeae plants, i.e., Lithospermum erythrorhizon, Arnebia euchroma and Echium plantagineum. As a result, two unigenes (i.e., G10H and 12OPR) that are involved in "shikonin downstream biosynthesis" and "methyl jasmonate biosynthesis" were deemed to relate to shikonin biosynthesis in this study. Furthermore, we conducted a Lamiids phylogenetic model and identified orthologous unigenes under positive selection in above three Lithospermeae plants. The results indicated Boraginales was more relative to Solanales/Gentianales than to Lamiales.
Collapse
Affiliation(s)
- Feng-Yao Wu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Cheng-Yi Tang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Yu-Min Guo
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Zhuo-Wu Bian
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Jiang-Yan Fu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Yan-Jun Pang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
13
|
Yu H, Zhang H, Chu Z, Ruan Q, Chen X, Kong D, Huang X, Li H, Tang H, Wu H, Wang Y, Xie W, Ding Y, Yao P. Combination of betulinic acid and chidamide synergistically inhibits Epstein-Barr virus replication through over-generation of reactive oxygen species. Oncotarget 2017; 8:61646-61661. [PMID: 28977893 PMCID: PMC5617453 DOI: 10.18632/oncotarget.18661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/23/2017] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) has widely infected more than 90% of human populations. Currently, there is no efficient way to remove the virus because the EBV carriers are usually in a latent stage that allows them to escape the immune system and common antiviral drugs. In the effort to develop an efficient strategy for the removal of the EBV virus, we have shown that betulinic acid (BA) slightly suppresses EBV replication through SOD2 suppression with subsequent reactive oxygen species (ROS) generation and DNA damage in EBV-transformed LCL (lymphoblastoid cell line) cells. Chidamide (CDM, CS055), a novel histone deacetylase inhibitor (HDACi), could significantly switch EBV from the latent stage to the lytic stage with increased gene expression of BZLF1 and BMRF1, but has a small effect on EBV replication due to the suppression effect of CDM-mediated ROS generation. Interestingly, a combination of BA and CDM synergistically inhibits EBV replication with ROS over-generation and subsequent DNA damage and apoptosis. Overexpression of SOD2 diminishes this effect, while SOD2 knockdown mimics this effect. An in vivo xenograft tumor development study with the tail vein injection of EBV-transformed LCL cells in nude mice proves that the combination of BA and CDM synergistically increases superoxide anion release in tumor tissues and suppresses EBV replication and tumor growth, and significantly prolongs mouse survival. We conclude that the combination of BA and CDM could be an efficient strategy for clinical EBV removal.
Collapse
Affiliation(s)
- Haibing Yu
- School of Public Health, Guangdong Medical University, Dongguan 523808, PR China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Zhigang Chu
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, PR China
| | - Qiongfang Ruan
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, PR China
| | - Xueru Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Danli Kong
- School of Public Health, Guangdong Medical University, Dongguan 523808, PR China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, PR China
| | - Huawen Li
- School of Public Health, Guangdong Medical University, Dongguan 523808, PR China
| | - Huanwen Tang
- School of Public Health, Guangdong Medical University, Dongguan 523808, PR China
| | - Hongjin Wu
- Beijing Haidian Hospital, Haidian Section of Peking University 3 Hospital, Beijing 100080, PR China
| | - Yifei Wang
- Guangzhou Biomedical Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, PR China
| | - Yuanling Ding
- School of Public Health, Guangdong Medical University, Dongguan 523808, PR China
| | - Paul Yao
- School of Public Health, Guangdong Medical University, Dongguan 523808, PR China.,Department of Hematology, Peking University Shenzhen Hospital, Shenzhen 518036, PR China.,Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, PR China
| |
Collapse
|
14
|
Fang R, Zou A, Zhao H, Wu F, Zhu Y, Zhao H, Liao Y, Tang RJ, Pang Y, Yang R, Wang X, Qi J, Lu G, Yang Y. Transgenic studies reveal the positive role of LeEIL-1 in regulating shikonin biosynthesis in Lithospermum erythrorhizon hairy roots. BMC PLANT BIOLOGY 2016; 16:121. [PMID: 27230755 PMCID: PMC4880835 DOI: 10.1186/s12870-016-0812-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/18/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND The phytohormone ethylene (ET) is a key signaling molecule for inducing the biosynthesis of shikonin and its derivatives, which are secondary metabolites in Lithospermum erythrorhizon. Although ETHYLENE INSENSITIVE3 (EIN3)/EIN3-like proteins (EILs) are crucial transcription factors in ET signal transduction pathway, the possible function of EIN3/EIL1 in shikonin biosynthesis remains unknown. In this study, by targeting LeEIL-1 (L. erythrorhizon EIN3-like protein gene 1) at the expression level, we revealed the positive regulatory effect of LeEIL-1 on shikonin formation. RESULTS The mRNA level of LeEIL-1 was significantly up-regulated and down-regulated in the LeEIL-1-overexpressing hairy root lines and LeEIL-1-RNAi hairy root lines, respectively. Specifically, LeEIL-1 overexpression resulted in increased transcript levels of the downstream gene of ET signal transduction pathway (LeERF-1) and a subset of genes for shikonin formation, excretion and/or transportation (LePAL, LeC4H-2, Le4CL-1, HMGR, LePGT-1, LeDI-2, and LePS-2), which was consistent with the enhanced shikonin contents in the LeEIL-1-overexpressing hairy root lines. Conversely, LeEIL-1-RNAi dramatically repressed the expression of the above genes and significantly reduced shikonin production. CONCLUSIONS The results revealed that LeEIL-1 is a positive regulator of the biosynthesis of shikonin and its derivatives in L. erythrorhizon hairy roots. Our findings gave new insights into the molecular regulatory mechanism of ET in shikonin biosynthesis. LeEIL-1 could be a crucial target gene for the genetic engineering of shikonin biosynthesis.
Collapse
Affiliation(s)
- Rongjun Fang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210046, People's Republic of China
- Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Ailan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210046, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Hua Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210046, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Fengyao Wu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210046, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210046, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Hu Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210046, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yonghui Liao
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210046, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Yanjun Pang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210046, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Rongwu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210046, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210046, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210046, People's Republic of China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210046, People's Republic of China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210046, People's Republic of China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
15
|
Rusanov K, Atanassov A, Atanassov I. Engineering Cell and Organ Cultures from Medicinal and Aromatic Plants Toward Commercial Production of Bioactive Metabolites. REFERENCE SERIES IN PHYTOCHEMISTRY 2016. [DOI: 10.1007/978-3-319-32004-5_8-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Widhalm JR, Rhodes D. Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. HORTICULTURE RESEARCH 2016; 3:16046. [PMID: 27688890 PMCID: PMC5030760 DOI: 10.1038/hortres.2016.46] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 05/20/2023]
Abstract
The 1,4-naphthoquinones (1,4-NQs) are a diverse group of natural products found in every kingdom of life. Plants, including many horticultural species, collectively synthesize hundreds of specialized 1,4-NQs with ecological roles in plant-plant (allelopathy), plant-insect and plant-microbe interactions. Numerous horticultural plants producing 1,4-NQs have also served as sources of traditional medicines for hundreds of years. As a result, horticultural species have been at the forefront of many basic studies conducted to understand the metabolism and function of specialized plant 1,4-NQs. Several 1,4-NQ natural products derived from horticultural plants have also emerged as promising scaffolds for developing new drugs. In this review, the current understanding of the core metabolic pathways leading to plant 1,4-NQs is provided with additional emphasis on downstream natural products originating from horticultural species. An overview on the biochemical mechanisms of action, both from an ecological and pharmacological perspective, of 1,4-NQs derived from horticultural plants is also provided. In addition, future directions for improving basic knowledge about plant 1,4-NQ metabolism are discussed.
Collapse
Affiliation(s)
- Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, USA
- ()
| | - David Rhodes
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, USA
| |
Collapse
|