1
|
Liu S, Yu Y, Guo K, Zhang Q, Jia Z, Alfredo MR, Ma P, Xie H, Bian X. Expression and antiviral application of exogenous lectin (griffithsin) in sweetpotatoes. FRONTIERS IN PLANT SCIENCE 2024; 15:1421244. [PMID: 39081525 PMCID: PMC11286482 DOI: 10.3389/fpls.2024.1421244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024]
Abstract
Griffithsin (GRFT) is a highly effective, broad-spectrum, safe, and stable viral inhibitor used to suppress a variety of viruses. However, little information is available on whether GRFT can prevent plant viral diseases. In this study, we constructed a GRFT overexpression vector containing the sweetpotato storage cell signal peptide and generated exogenous GRFT overexpression lines through genetic transformation. The transgenic plants showed notable resistance to sweetpotato virus disease in the virus nursery. To verify the antiplant virus function of GRFT, transient expression in tobacco leaves showed that GRFT inhibited the sweetpotato leaf curl virus (SPLCV). The replication of SPLCV was entirely inhibited when the concentration of GRFT reached a certain level. The results of pulldown and BIFC assays showed that GRFT did not interact with the six components of SPLCV. In addition, the mutated GRFTD/A without the binding ability of carbohydrate and anticoronavirus function, in which three aspartate residues at carbohydrate binding sites were all mutated to alanine, also inhibited SPLCV. Quantitative reverse-transcription PCR analyses showed that the tobacco antiviral-related genes HIN1, ICS1, WRKY40, and PR10 were overexpressed after GRFT/GRFTD/A injection. Furthermore, HIN1, ICS1, and PR10 were more highly expressed in the leaves injected with GRFTD/A. The results suggest that sweetpotato is able to express GRFT exogenously as a bioreactor. Moreover, exogenous GRFT expression inhibits plant viruses by promoting the expression of plant antiviral genes.
Collapse
Affiliation(s)
- Shuai Liu
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yang Yu
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ke Guo
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qian Zhang
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhaodong Jia
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Morales Rodriguez Alfredo
- Center for Tropical Crop Research, Research Institute of Tropical Roots and Tuber Crops (INIVIT), Santo Domingo, Cuba
| | - Peiyong Ma
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hao Xie
- Xuzhou Institute of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Xuzhou, China
| | - Xiaofeng Bian
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
2
|
Walker EJL, Pampuch M, Chang N, Cochrane RR, Karas BJ. Design and assembly of the 117-kb Phaeodactylum tricornutum chloroplast genome. PLANT PHYSIOLOGY 2024; 194:2217-2228. [PMID: 38114089 PMCID: PMC10980414 DOI: 10.1093/plphys/kiad670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
There is growing impetus to expand the repertoire of chassis available to synthetic biologists. Chloroplast genomes present an interesting alternative for engineering photosynthetic eukaryotes; however, development of the chloroplast as a synthetic biology chassis has been limited by a lack of efficient techniques for whole-genome cloning and engineering. Here, we demonstrate two approaches for cloning the 117-kb Phaeodactylum tricornutum chloroplast genome that have 90% to 100% efficiency when screening as few as 10 yeast (Saccharomyces cerevisiae) colonies following yeast assembly. The first method reconstitutes the genome from PCR-amplified fragments, whereas the second method involves precloning these fragments into individual plasmids from which they can later be released. In both cases, overlapping fragments of the chloroplast genome and a cloning vector are homologously recombined into a singular contig through yeast assembly. The cloned chloroplast genome can be stably maintained and propagated within Escherichia coli, which provides an exciting opportunity for engineering a delivery mechanism for bringing DNA directly to the algal chloroplast. Also, one of the cloned genomes was designed to contain a single SapI site within the yeast URA3 (coding for orotidine-5'-phosphate decarboxylase) open-reading frame, which can be used to linearize the genome and integrate designer cassettes via golden-gate cloning or further iterations of yeast assembly. The methods presented here could be extrapolated to other species-particularly those with a similar chloroplast genome size and architecture (e.g. Thalassiosira pseudonana).
Collapse
Affiliation(s)
- Emma J L Walker
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Mark Pampuch
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Nelson Chang
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Ryan R Cochrane
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
3
|
Gupta A, Yadav K, Yadav A, Ahmad R, Srivastava A, Kumar D, Khan MA, Dwivedi UN. Mannose-specific plant and microbial lectins as antiviral agents: A review. Glycoconj J 2024; 41:1-33. [PMID: 38244136 DOI: 10.1007/s10719-023-10142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Lectins are non-immunological carbohydrate-binding proteins classified on the basis of their structure, origin, and sugar specificity. The binding specificity of such proteins with the surface glycan moiety determines their activity and clinical applications. Thus, lectins hold great potential as diagnostic and drug discovery agents and as novel biopharmaceutical products. In recent years, significant advancements have been made in understanding plant and microbial lectins as therapeutic agents against various viral diseases. Among them, mannose-specific lectins have being proven as promising antiviral agents against a variety of viruses, such as HIV, Influenza, Herpes, Ebola, Hepatitis, Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and most recent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The binding of mannose-binding lectins (MBLs) from plants and microbes to high-mannose containing N-glycans (which may be simple or complex) of glycoproteins found on the surface of viruses has been found to be highly specific and mainly responsible for their antiviral activity. MBLs target various steps in the viral life cycle, including viral attachment, entry and replication. The present review discusses the brief classification and structure of lectins along with antiviral activity of various mannose-specific lectins from plants and microbial sources and their diagnostic and therapeutic applications against viral diseases.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India.
| | - Anurag Yadav
- Department of Microbiology, C.P. College of Agriculture, Sardarkrushinagar Dantiwada Agriculture University, District-Banaskantha, Gujarat, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India.
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Dileep Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Khwaja Moinuddin Chishti Language University, Lucknow, Uttar Pradesh, India
| | - Mohammad Amir Khan
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - U N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
LaManna L, Chou CH, Lei H, Barton ER, Maliga P. Chloroplast transformation for bioencapsulation and oral delivery using the immunoglobulin G fragment crystallizable (Fc) domain. Sci Rep 2023; 13:18916. [PMID: 37919321 PMCID: PMC10622566 DOI: 10.1038/s41598-023-45698-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Proinsulin Like Growth Factor I (prolGF-I) and myostatin (Mstn) regulate muscle regeneration and mass when intravenously delivered. We tested if chloroplast bioencapsulated forms of these proteins may serve as a non-invasive means of drug delivery through the digestive system. We created tobacco (Nicotiana tabacum) plants carrying GFP-Fc1, proIGF-I-Fc1, and Mstn-Fc1 fusion genes, in which fusion with the immunoglobulin G Fc domain improved both protein stability and absorption in the small intestine. No transplastomic plants were obtained with the Mstn-Fc1 gene, suggesting that the protein is toxic to plant cells. proIGF-I-Fc1 protein levels were too low to enable in vivo testing. However, GFP-Fc1 accumulated at a high level, enabling evaluation of chloroplast-made Fc fusion proteins for oral delivery. Tobacco leaves were lyophilized for testing in a mouse system. We report that the orally administered GFP-Fc1 fusion protein (5.45 µg/g GFP-Fc1) has been taken up by the intestinal epithelium cells, evidenced by confocal microscopy. GFP-Fc1 subsequently entered the circulation where it was detected by ELISA. Data reported here confirm that chloroplast expression and oral administration of lyophilized leaves is a potential delivery system of therapeutic proteins fused with Fc1, with the advantage that the proteins may be stored at room temperature.
Collapse
Affiliation(s)
- Lisa LaManna
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Chih-Hsuan Chou
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA
| | - Hanqin Lei
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA.
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
5
|
LaManna L, Chou CH, Lei H, Barton ER, Maliga P. Chloroplast transformation for bioencapsulation and oral delivery using the immunoglobulin G fragment crystallizable (Fc) domain. RESEARCH SQUARE 2023:rs.3.rs-3073879. [PMID: 37546919 PMCID: PMC10402193 DOI: 10.21203/rs.3.rs-3073879/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Proinsulin Like Growth Factor (prolGF1) and myostatin (Mstn) regulate muscle regeneration when intravenously delivered. We set out to test if chloroplast bioencapsulated forms of these proteins may serve as a non-invasive means of drug delivery through the digestive system. We created tobacco (Nicotiana tabacum) plants carrying GFP-Fc1, proIGF-I-Fc1, and Mstn-Fc1 fusion genes, in which fusion with the immunoglobulin G Fc domain improved both protein stability and absorption in the small intestine. No transplastomic plants were obtained with the Mstn-Fc1 gene, suggesting that the protein is toxic to plant cells. proIGF-I-Fc1 protein levels were too law to enable in vivo testing. However, GFP-Fc1 accumulated at a high level, enabling evaluation of chloroplast-made Fc fusion proteins for oral delivery. Tobacco leaves were lyophilized for testing in a mouse system. We report that the orally administered GFP-Fc fusion protein (5.45 μg/g GFP-Fc) has been taken up by the intestinal epithelium cells, evidenced by confocal microscopy. GFP-Fc subsequently entered the circulation where it was detected by ELISA. Data reported here confirm that chloroplast expression and oral administration of lyophilized leaves is a potential delivery system of therapeutic proteins fused with Fc, with the advantage that the proteins may be stored at room temperature.
Collapse
Affiliation(s)
- Lisa LaManna
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Chih-Hsuan Chou
- Department of Applied Physiology & Kinesiology, University of Florida, College of Health and Human Performance, Gainesville, FL, 32611, USA
| | - Hanqin Lei
- Department of Applied Physiology & Kinesiology, University of Florida, College of Health and Human Performance, Gainesville, FL, 32611, USA
| | - Elisabeth R. Barton
- Department of Applied Physiology & Kinesiology, University of Florida, College of Health and Human Performance, Gainesville, FL, 32611, USA
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
6
|
Wang Y, Xu N, Fan J, Wei Z, Xin W, Xing S. Stable and efficient expression of human brain-derived neurotrophic factor in tobacco chloroplasts. Mol Biol Rep 2023; 50:409-416. [PMID: 36335524 DOI: 10.1007/s11033-022-08053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is an intensively studied neurotrophin that promotes various physiological processes, such as acceleration of cell proliferation and differentiation, and is, therefore widely used in clinical applications. METHODS AND RESULTS In this study, an expression vector with a codon-optimized hBDNF gene was constructed and transferred into chloroplasts of tobacco by gene-gun. After three or four rounds of selection with optimal spectinomycin concentration, hBDNF was integrated into the chloroplast genome of homoplastomic plants, as confirmed by PCR and Southern hybridization. ELISA indicated that hBDNF fused with GFP represented approximately 15.72% ± 0.33% of total soluble protein in the leaves of transplastomic plants. Moreover, the chloroplast-derived hBDNF displayed biological activity similar to the commercial product. CONCLUSIONS This is the first case report of hBDNF expression by chloroplast transformation in the plant model, providing an additional pathway for the production of chloroplast-expressed therapeutic proteins.
Collapse
Affiliation(s)
- Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, People's Republic of China
| | - Nuo Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jieying Fan
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, People's Republic of China
| | - Zhengyi Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, People's Republic of China
| | - Wen Xin
- Beijing TransGen Biotech Co., Ltd., Beijing, People's Republic of China
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
7
|
Gaobotse G, Venkataraman S, Mmereke KM, Moustafa K, Hefferon K, Makhzoum A. Recent Progress on Vaccines Produced in Transgenic Plants. Vaccines (Basel) 2022; 10:1861. [PMID: 36366370 PMCID: PMC9698746 DOI: 10.3390/vaccines10111861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 01/15/2024] Open
Abstract
The development of vaccines from plants has been going on for over two decades now. Vaccine production in plants requires time and a lot of effort. Despite global efforts in plant-made vaccine development, there are still challenges that hinder the realization of the final objective of manufacturing approved and safe products. Despite delays in the commercialization of plant-made vaccines, there are some human vaccines that are in clinical trials. The novel coronavirus (SARS-CoV-2) and its resultant disease, coronavirus disease 2019 (COVID-19), have reminded the global scientific community of the importance of vaccines. Plant-made vaccines could not be more important in tackling such unexpected pandemics as COVID-19. In this review, we explore current progress in the development of vaccines manufactured in transgenic plants for different human diseases over the past 5 years. However, we first explore the different host species and plant expression systems during recombinant protein production, including their shortcomings and benefits. Lastly, we address the optimization of existing plant-dependent vaccine production protocols that are aimed at improving the recovery and purification of these recombinant proteins.
Collapse
Affiliation(s)
- Goabaone Gaobotse
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Kamogelo M. Mmereke
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Khaled Moustafa
- The Arabic Preprint Server/Arabic Science Archive (ArabiXiv)
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| |
Collapse
|
8
|
Hoelscher MP, Forner J, Calderone S, Krämer C, Taylor Z, Loiacono FV, Agrawal S, Karcher D, Moratti F, Kroop X, Bock R. Expression strategies for the efficient synthesis of antimicrobial peptides in plastids. Nat Commun 2022; 13:5856. [PMID: 36195597 PMCID: PMC9532397 DOI: 10.1038/s41467-022-33516-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) kill microbes or inhibit their growth and are promising next-generation antibiotics. Harnessing their full potential as antimicrobial agents will require methods for cost-effective large-scale production and purification. Here, we explore the possibility to exploit the high protein synthesis capacity of the chloroplast to produce AMPs in plants. Generating a large series of 29 sets of transplastomic tobacco plants expressing nine different AMPs as fusion proteins, we show that high-level constitutive AMP expression results in deleterious plant phenotypes. However, by utilizing inducible expression and fusions to the cleavable carrier protein SUMO, the cytotoxic effects of AMPs and fused AMPs are alleviated and plants with wild-type-like phenotypes are obtained. Importantly, purified AMP fusion proteins display antimicrobial activity independently of proteolytic removal of the carrier. Our work provides expression strategies for the synthesis of toxic polypeptides in chloroplasts, and establishes transplastomic plants as efficient production platform for antimicrobial peptides.
Collapse
Affiliation(s)
- Matthijs P Hoelscher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Utrecht University, Pharmaceutical sciences, Pharmaceutics, Universiteitsweg 99, 3584 CG, Utrecht, Netherlands
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Silvia Calderone
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Carolin Krämer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Zachary Taylor
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - F Vanessa Loiacono
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Shreya Agrawal
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Neoplants, 630 Rue Noetzlin Bâtiment, 91190, Gif-sur-Yvette, France
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Fabio Moratti
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Xenia Kroop
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany.
| |
Collapse
|
9
|
Pinneh EC, van Dolleweerd CJ, Göritzer K, Drake PMW, Ma JK, Teh AY. Multiple gene expression in plants using MIDAS-P, a versatile type II restriction-based modular expression vector. Biotechnol Bioeng 2022; 119:1660-1672. [PMID: 35238400 PMCID: PMC9313558 DOI: 10.1002/bit.28073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
MIDAS-P is a plant expression vector with blue/white screening for iterative cloning of multiple, tandemly arranged transcription units (TUs). We have used the MIDAS-P system to investigate the expression of up to five genes encoding three anti-HIV proteins and the reporter gene DsRed in Nicotiana benthamiana plants. The anti-HIV cocktail was made up of a broadly neutralizing monoclonal antibody (VRC01), a lectin (Griffithsin), and a single-chain camelid nanobody (J3-VHH). Constructs containing different combinations of 3, 4, or 5 TUs encoding different components of the anti-HIV cocktail were assembled. Messenger RNA (mRNA) levels of the genes of interest decreased beyond two TUs. Coexpression of the RNA silencing suppressor P19 dramatically increased the overall mRNA and protein expression levels of each component. The position of individual TUs in 3 TU constructs did not affect mRNA or protein expression levels. However, their expression dropped to non-detectable levels in constructs with four or more TUs each containing the same promoter and terminator elements, with the exception of DsRed at the first or last position in 5 TU constructs. This drop was alleviated by co-expression of P19. In short, the MIDAS-P system is suitable for the simultaneous expression of multiple proteins in one construct.
Collapse
Affiliation(s)
- Elizabeth C. Pinneh
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Craig J. van Dolleweerd
- Protein Science & Engineering, Callaghan Innovation, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Kathrin Göritzer
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Pascal M. W. Drake
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Julian K‐C. Ma
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Audrey Y‐H. Teh
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| |
Collapse
|
10
|
Nabi-Afjadi M, Heydari M, Zalpoor H, Arman I, Sadoughi A, Sahami P, Aghazadeh S. Lectins and lectibodies: potential promising antiviral agents. Cell Mol Biol Lett 2022; 27:37. [PMID: 35562647 PMCID: PMC9100318 DOI: 10.1186/s11658-022-00338-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
In nature, lectins are widely dispersed proteins that selectively recognize and bind to carbohydrates and glycoconjugates via reversible bonds at specific binding sites. Many viral diseases have been treated with lectins due to their wide range of structures, specificity for carbohydrates, and ability to bind carbohydrates. Through hemagglutination assays, these proteins can be detected interacting with various carbohydrates on the surface of cells and viral envelopes. This review discusses the most robust lectins and their rationally engineered versions, such as lectibodies, as antiviral proteins. Fusion of lectin and antibody’s crystallizable fragment (Fc) of immunoglobulin G (IgG) produces a molecule called a “lectibody” that can act as a carbohydrate-targeting antibody. Lectibodies can not only bind to the surface glycoproteins via their lectins and neutralize and clear viruses or infected cells by viruses but also perform Fc-mediated antibody effector functions. These functions include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cell-mediated phagocytosis (ADCP). In addition to entering host cells, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein S1 binds to angiotensin-converting enzyme 2 (ACE2) and downregulates it and type I interferons in a way that may lead to lung disease. The SARS-CoV-2 spike protein S1 and human immunodeficiency virus (HIV) envelope are heavily glycosylated, which could make them a major target for developing vaccines, diagnostic tests, and therapeutic drugs. Lectibodies can lead to neutralization and clearance of viruses and cells infected by viruses by binding to glycans located on the envelope surface (e.g., the heavily glycosylated SARS-CoV-2 spike protein).
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Morteza Heydari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,American Association of Kidney Patients, Tampa, FL, USA
| | - Ibrahim Arman
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Arezoo Sadoughi
- Department of Immunology, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parisa Sahami
- Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Safiyeh Aghazadeh
- Division of Biochemistry, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, 5756151818, Iran.
| |
Collapse
|
11
|
Barre A, Van Damme EJM, Klonjkowski B, Simplicien M, Sudor J, Benoist H, Rougé P. Legume Lectins with Different Specificities as Potential Glycan Probes for Pathogenic Enveloped Viruses. Cells 2022; 11:cells11030339. [PMID: 35159151 PMCID: PMC8834014 DOI: 10.3390/cells11030339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pathogenic enveloped viruses are covered with a glycan shield that provides a dual function: the glycan structures contribute to virus protection as well as host cell recognition. The three classical types of N-glycans, in particular complex glycans, high-mannose glycans, and hybrid glycans, together with some O-glycans, participate in the glycan shield of the Ebola virus, influenza virus, human cytomegalovirus, herpes virus, human immunodeficiency virus, Lassa virus, and MERS-CoV, SARS-CoV, and SARS-CoV-2, which are responsible for respiratory syndromes. The glycans are linked to glycoproteins that occur as metastable prefusion glycoproteins on the surface of infectious virions such as gp120 of HIV, hemagglutinin of influenza, or spike proteins of beta-coronaviruses. Plant lectins with different carbohydrate-binding specificities and, especially, mannose-specific lectins from the Vicieae tribe, such as pea lectin and lentil lectin, can be used as glycan probes for targeting the glycan shield because of their specific interaction with the α1,6-fucosylated core Man3GlcNAc2, which predominantly occurs in complex and hybrid glycans. Other plant lectins with Neu5Ac specificity or GalNAc/T/Tn specificity can also serve as potential glycan probes for the often sialylated complex glycans and truncated O-glycans, respectively, which are abundantly distributed in the glycan shield of enveloped viruses. The biomedical and therapeutical potential of plant lectins as antiviral drugs is discussed.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Els J. M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Bernard Klonjkowski
- UMR Virologie, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, F-94700 Maisons-Alfort, France;
| | - Mathias Simplicien
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Jan Sudor
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Hervé Benoist
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
- Correspondence: ; Tel.: +33-069-552-0851
| |
Collapse
|
12
|
Overexpression of the recombinant human interferon-beta ( rhIFN-β) gene in tobacco chloroplasts. BIOTECHNOLOGIA 2021; 102:367-376. [PMID: 36605601 PMCID: PMC9642931 DOI: 10.5114/bta.2021.111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 01/09/2023] Open
Abstract
Chloroplast genetic engineering is a convenient method for the production of recombinant proteins by increasing the expression level of transgenes. Interferon-beta (IFN-β) is a member of type I interferons that possess some pharmaceutical properties. The present study aimed to investigate the overexpression and production of the recombinant human IFN-β gene (rhIFN-β) in the tobacco chloroplast genome. For this purpose, a codon-optimized rhIFN-β was transferred to the pVSR326 plastid vector containing the aadA gene as a selectable marker. The rhIFN-β gene was then successfully introduced into the tobacco chloroplast genome by using a gene gun. The integration of the rhIFN-β gene into the chloroplast genome and the homoplasmy of the T1 progeny were confirmed by PCR and Southern blot analysis, respectively. RT-PCR and western blot analyses confirmed the transcription and translation of the rhIFN-β gene, respectively. An enzyme-linked immunosorbent assay (ELISA) showed that the rhIFN-β protein in transplastomic plants comprised approximately 2.4% of total soluble protein (TSPs). The bioassay confirmed that the rhIFN-β protein expressed in the tobacco chloroplast had a relatively high biological activity (2.9 × 104 IU/ml) and protected human amnionic cells against the vesicular stomatitis virus (VSV). On the basis of these findings, it can be concluded that plastid transformation can serve as an operative method for the production of pharmaceutical recombinant proteins.
Collapse
|
13
|
Lobato Gómez M, Huang X, Alvarez D, He W, Baysal C, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennasser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Abreu IA, Balamurugan S, Bock R, Buyel J, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Ramalingam SK, Lacorte C, Lomonossoff GP, Luís IM, Ma JK, McDonald KA, Murad A, Nandi S, O’Keefe B, Oksman‐Caldentey K, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JCM, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Capell T, Christou P. Contributions of the international plant science community to the fight against human infectious diseases - part 1: epidemic and pandemic diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1901-1920. [PMID: 34182608 PMCID: PMC8486245 DOI: 10.1111/pbi.13657] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.
Collapse
Affiliation(s)
- Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Amaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennasser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andera Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes.F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Sathish Kumar Ramalingam
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen. A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keefe
- Molecular Targets ProgramCenter for Cancer Research, National Cancer Institute, and Natural Products BranchDevelopmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer Institute, NIHFrederickMDUSA
| | | | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
- Department of Biological ChemistryJohn Innes CentreNorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Julio C. M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| |
Collapse
|
14
|
Sørensen M, Møller BL. Metabolic Engineering of Photosynthetic Cells – in Collaboration with Nature. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Venkataraman S, Hefferon K, Makhzoum A, Abouhaidar M. Combating Human Viral Diseases: Will Plant-Based Vaccines Be the Answer? Vaccines (Basel) 2021; 9:vaccines9070761. [PMID: 34358177 PMCID: PMC8310141 DOI: 10.3390/vaccines9070761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular pharming or the technology of application of plants and plant cell culture to manufacture high-value recombinant proteins has progressed a long way over the last three decades. Whether generated in transgenic plants by stable expression or in plant virus-based transient expression systems, biopharmaceuticals have been produced to combat several human viral diseases that have impacted the world in pandemic proportions. Plants have been variously employed in expressing a host of viral antigens as well as monoclonal antibodies. Many of these biopharmaceuticals have shown great promise in animal models and several of them have performed successfully in clinical trials. The current review elaborates the strategies and successes achieved in generating plant-derived vaccines to target several virus-induced health concerns including highly communicable infectious viral diseases. Importantly, plant-made biopharmaceuticals against hepatitis B virus (HBV), hepatitis C virus (HCV), the cancer-causing virus human papillomavirus (HPV), human immunodeficiency virus (HIV), influenza virus, zika virus, and the emerging respiratory virus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been discussed. The use of plant virus-derived nanoparticles (VNPs) and virus-like particles (VLPs) in generating plant-based vaccines are extensively addressed. The review closes with a critical look at the caveats of plant-based molecular pharming and future prospects towards further advancements in this technology. The use of biopharmed viral vaccines in human medicine and as part of emergency response vaccines and therapeutics in humans looks promising for the near future.
Collapse
Affiliation(s)
- Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
- Correspondence:
| | - Kathleen Hefferon
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana;
| | - Mounir Abouhaidar
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| |
Collapse
|
16
|
Lico C, Santi L, Baschieri S, Noris E, Marusic C, Donini M, Pedrazzini E, Maga G, Franconi R, Di Bonito P, Avesani L. Plant Molecular Farming as a Strategy Against COVID-19 - The Italian Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:609910. [PMID: 33381140 PMCID: PMC7768017 DOI: 10.3389/fpls.2020.609910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/13/2020] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed more than 37,000 people in Italy and has caused widespread socioeconomic disruption. Urgent measures are needed to contain and control the virus, particularly diagnostic kits for detection and surveillance, therapeutics to reduce mortality among the severely affected, and vaccines to protect the remaining population. Here we discuss the potential role of plant molecular farming in the rapid and scalable supply of protein antigens as reagents and vaccine candidates, antibodies for virus detection and passive immunotherapy, other therapeutic proteins, and virus-like particles as novel vaccine platforms. We calculate the amount of infrastructure and production capacity needed to deal with predictable subsequent waves of COVID-19 in Italy by pooling expertise in plant molecular farming, epidemiology and the Italian health system. We calculate the investment required in molecular farming infrastructure that would enable us to capitalize on this technology, and provide a roadmap for the development of diagnostic reagents and biopharmaceuticals using molecular farming in plants to complement production methods based on the cultivation of microbes and mammalian cells.
Collapse
Affiliation(s)
- Chiara Lico
- Laboratory of Biotechnology, Biotechnologies and Agroindustry Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Luca Santi
- Department of Agriculture and Forest Science, Tuscia University, Viterbo, Italy
| | - Selene Baschieri
- Laboratory of Biotechnology, Biotechnologies and Agroindustry Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council IPSP-CNR, Turin, Italy
| | - Carla Marusic
- Laboratory of Biotechnology, Biotechnologies and Agroindustry Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Marcello Donini
- Laboratory of Biotechnology, Biotechnologies and Agroindustry Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Emanuela Pedrazzini
- Institute for Sustainable Plant Protection, National Research Council IBBA-CNR, Turin, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza,”Pavia, Italy
| | - Rosella Franconi
- Laboratory of Biomedical Technologies, Health Technologies Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Paola Di Bonito
- Department of Infectious Diseases, Viral Hepatitis, Oncoviruses and Retroviruses (EVOR) Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
17
|
Eapen P, Cates J, Mundell R, Palmer KE, Fuqua JL. In Preparation for Outdoor Pharming: Griffithsin Can Be Expressed in Nicotiana excelsiana and Retains Activity After Storage as Silage. Front Bioeng Biotechnol 2020; 8:199. [PMID: 32258012 PMCID: PMC7093594 DOI: 10.3389/fbioe.2020.00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
Griffithsin is an algae-derived lectin with strong anti-viral activity against HIV and a positive safety profile. Multiple clinical studies are investigating griffithsin's utility as topical HIV microbicide. HIV microbicides are an extremely cost-sensitive market and plant-based griffithsin protein expression has the potential to meet those demands. The griffithsin product used in the clinic has been expressed and purified in N. benthamiana, using a TMV-based viral vector system, Geneware®. Outdoor pharming of biopharmaceuticals would further alleviate startup costs for biotechnology firms and may allow broader product accessibility. Therefore, this study assessed expression in a hybrid tobacco line, N. excelsiana, that is susceptible to TMV-based viral vectors and can be grown outdoors. In addition to using this hybrid line we expand on methods for in planta storage of griffithsin in leafy plants by ensiling kilogram quantities of griffithsin. The ensiling process allows year-round biomanufacturing, minimal environmental-controlled storage, and reduces the industry need for multiple growth areas to maintain multi-product manufacturing of plant-based pharmaceuticals. This study shows that griffithsin can be expressed in N. excelsiana and is stable, recoverable, and active from ensiled tissue. These studies can pave the way for future plant-based pharmaceuticals to be expressed and stored in this manner.
Collapse
Affiliation(s)
- Paul Eapen
- University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States
| | - Jennifer Cates
- University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States
| | - Rich Mundell
- University of Kentucky College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Kenneth E Palmer
- University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States.,Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States
| | - Joshua L Fuqua
- University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States.,Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
18
|
Molecular farming - The slope of enlightenment. Biotechnol Adv 2020; 40:107519. [PMID: 31954848 DOI: 10.1016/j.biotechadv.2020.107519] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
Abstract
Molecular farming can be defined as the use of plants to produce recombinant protein products. The technology is now >30 years old. The early promise of molecular farming was based on three perceived advantages: the low costs of growing plants, the immense scalability of agricultural production, and the inherent safety of plants as hosts for the production of pharmaceuticals. This resulted in a glut of research publications in which diverse proteins were expressed in equally diverse plant-based systems, and numerous companies were founded hoping to commercialize the new technology. There was a moderate degree of success for companies producing non-pharmaceutical proteins, but in the pharmaceutical sector the anticipation raised by promising early research was soon met by the cold hard reality of industrial pragmatism. Plants did not have a track record of success in pharmaceutical protein manufacturing, lacked a regulatory framework, and did not perform as well as established industry platforms. Negative attitudes towards genetically modified plants added to the mix. By the early 2000s, major industry players started to lose interest and pharmaceutical molecular farming fell from a peak of expectation into a trough of disillusionment, just as predicted by the Gartner hype cycle. But many of the pioneers of molecular farming have refocused their activities and have worked to address the limitations that hampered the first generation of technologies. The field has now consolidated around a smaller number of better-characterized platforms and has started to develop standardized methods and best practices, mirroring the evolution of more mature industry sectors. Likewise, attention has turned from proof-of-principle studies to realistic techno-economic modeling to capture significant niche markets, replicating the success of the industrial molecular farming sector. Here we argue that these recent developments signify that pharmaceutical molecular farming is now climbing the slope of enlightenment and will soon emerge as a mature technology.
Collapse
|
19
|
Hefferon KL. The role of plant expression platforms in biopharmaceutical development: possibilities for the future. Expert Rev Vaccines 2019; 18:1301-1308. [PMID: 31829081 DOI: 10.1080/14760584.2019.1704264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Plant-made vaccines have been in the pipeline for nearly thirty years. Generated stably in transgenic plants or transiently using virus expression systems, pharmaceuticals have been developed to address global pandemics as well as several emerging One Health Diseases.Areas covered: This review describes the generation of plant-made vaccines to address some of the world's most growing health concerns, including both infectious and non-communicable diseases, such as cancer. The review provides an overview of the research taking place in this field over the past three to five years. The PubMed database was searched under the topic of plant-made vaccine between the periods of 2014 and 2019.Expert opinion: While vaccines and other biologics have been shown to be cheap safe and efficacious, they have not yet entered the marketplace largely due to regulatory constraints. The lack of an appropriate regulatory structure to guide plant-made vaccines through to commercial development has stalled efforts to provide life-saving medicines to low- and middle-income families. In my opinion, it is paramount that regulatory hurdles are mitigated to address emerging infectious diseases such as Ebola and Zika in a timely manner.
Collapse
|
20
|
Saba K, Gottschamel J, Younus I, Syed T, Gull K, Lössl AG, Mirza B, Waheed MT. Chloroplast-based inducible expression of ESAT-6 antigen for development of a plant-based vaccine against tuberculosis. J Biotechnol 2019; 305:1-10. [PMID: 31454508 DOI: 10.1016/j.jbiotec.2019.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis causes tuberculosis in humans. The major disease burden of tuberculosis lies in developing countries. Lack of an effective vaccine for adults is one of the major hurdles for controlling this deadly disease. In the present study, 6 kDa early secretory antigenic target (ESAT-6) of M. tuberculosis was inducibly expressed in chloroplasts of Nicotiana tabacum. The expression of ESAT-6 in chloroplasts was controlled by T7 promoter that was activated by nuclear-generated signal peptide. Tobacco plants, containing nuclear component, were transformed via biolistic bombardment with pEXP-T7-ESAT-6 obtained by Gateway® cloning. Transformation and homoplasmic status of transplastomic plants was confirmed by polymerase chain reaction and Southern blotting. Plants were induced for protein expression by spraying with 5% ethanol for 1 day, 3 days, 7 days and 10 days. ESAT-6 protein was detected by immunoblot analysis and maximum protein was obtained for 10 days induced plants that was estimated to accumulate up to 1.2% of total soluble fraction of protein. Transplastomic plants showed completely normal morphology. Transplastomic and untransformed plants became slightly chlorotic upon prolonged exposure to ethanol until 10 days. Taken together, this data could help in the development of an antigen-based subunit vaccine against tuberculosis.
Collapse
Affiliation(s)
- Kiran Saba
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Johanna Gottschamel
- University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Iqra Younus
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Tahira Syed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Kehkshan Gull
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Andreas Günter Lössl
- University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| |
Collapse
|
21
|
Griffithsin, a Highly Potent Broad-Spectrum Antiviral Lectin from Red Algae: From Discovery to Clinical Application. Mar Drugs 2019; 17:md17100567. [PMID: 31590428 PMCID: PMC6835697 DOI: 10.3390/md17100567] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Virus entry into a susceptible host cell is the first step in the formation of all viral diseases. Controlling viral infections by disrupting viral entry is advantageous for antibody-mediated neutralization by the host’s immune system and as a preventive and therapeutic antiviral strategy. Recently, several plant-derived carbohydrate-binding proteins (lectins) have emerged as a new class of antiviral biologics by taking advantage of a unique glycosylation pattern only found on the surface of viruses. In particular, a red algae-derived griffithsin (GRFT) protein has demonstrated superior in vitro and in vivo antiviral activity with minimum host toxicity against a variety of clinically relevant, enveloped viruses. This review examines the structural characteristics of GRFT, focusing on its carbohydrate-binding capability. Its in vitro antiviral profiles against human immunodeficiency virus (HIV) are also discussed followed by a description of the results from a combination study using anti-HIV drugs. The results of several studies regarding its novel antiviral mechanism of action are provided in conjunction with an explanation of viral resistance profiles to GRFT. In addition, its in vitro and in vivo host toxicity profiles are summarized with its pharmacokinetic behavior using in vivo efficacy study results. Also, a large-scale production and formulation strategy, as well as a drug delivery strategy, for GRFT as a new class of broad-spectrum microbicides is discussed. Finally, results from two ongoing clinical studies examining GRFT’s effects on viruses are presented.
Collapse
|
22
|
van der Horst S, van Butselaar T, Zhang H, Vismans G, Steenbergen M, Courbier S, Neilen M, Küpers JJ. Bringing together Europe's young plant scientists. THE NEW PHYTOLOGIST 2019; 222:29-32. [PMID: 30815945 DOI: 10.1111/nph.15691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Sjors van der Horst
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584CH Utrecht, the Netherlands
| | - Tijmen van Butselaar
- Plant-Microbe Interactions, Utrecht University, Padualaan 8, 3584CH Utrecht, the Netherlands
| | - Hao Zhang
- Plant-Microbe Interactions, Utrecht University, Padualaan 8, 3584CH Utrecht, the Netherlands
| | - Gilles Vismans
- Plant-Microbe Interactions, Utrecht University, Padualaan 8, 3584CH Utrecht, the Netherlands
| | - Merel Steenbergen
- Plant-Microbe Interactions, Utrecht University, Padualaan 8, 3584CH Utrecht, the Netherlands
| | - Sarah Courbier
- Plant-Microbe Interactions, Utrecht University, Padualaan 8, 3584CH Utrecht, the Netherlands
- Plant Ecophysiology, Utrecht University, Padualaan 8, 3584CH Utrecht, the Netherlands
| | - Manon Neilen
- Plant-Microbe Interactions, Utrecht University, Padualaan 8, 3584CH Utrecht, the Netherlands
| | - Jesse J Küpers
- Plant Ecophysiology, Utrecht University, Padualaan 8, 3584CH Utrecht, the Netherlands
| |
Collapse
|
23
|
Sathishkumar R, Kumar SR, Hema J, Baskar V. Green Biotechnology: A Brief Update on Plastid Genome Engineering. ADVANCES IN PLANT TRANSGENICS: METHODS AND APPLICATIONS 2019. [PMCID: PMC7120283 DOI: 10.1007/978-981-13-9624-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plant genetic engineering has become an inevitable tool in the molecular breeding of crops. Significant progress has been made in the generation of novel plastid transformation vectors and optimized transformation protocols. There are several advantages of plastid genome engineering over conventional nuclear transformation. Some of the advantages include multigene engineering by expression of biosynthetic pathway genes as operons, extremely high-level expression of protein accumulation, lack of transgene silencing, etc. Transgene containment owing to maternal inheritance is another important advantage of plastid genome engineering. Chloroplast genome modification usually results in alteration of several thousand plastid genome copies in a cell. Several therapeutic proteins, edible vaccines, antimicrobial peptides, and industrially important enzymes have been successfully expressed in chloroplasts so far. Here, we critically recapitulate the latest developments in plastid genome engineering. Latest advancements in plastid genome sequencing are briefed. In addition, advancement of extending the toolbox for plastid engineering for selected applications in the area of molecular farming and production of industrially important enzyme is briefed.
Collapse
Affiliation(s)
- Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu India
| | | | - Jagadeesan Hema
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu India
| | - Venkidasamy Baskar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu India
| |
Collapse
|