1
|
Li Q, Zhang H, Yang Y, Tang K, Yang Y, Ouyang W, Du G. Genome-Wide Identification of NAC Family Genes and Their Expression Analyses in Response to Osmotic Stress in Cannabis sativa L. Int J Mol Sci 2024; 25:9466. [PMID: 39273412 PMCID: PMC11394811 DOI: 10.3390/ijms25179466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors are unique and essential for plant growth and development. Although the NAC gene family has been identified in a wide variety of plants, its chromosomal location and function in Cannabis sativa are still unknown. In this study, a total of 69 putative CsNACs were obtained, and chromosomal location analysis indicated that the CsNAC genes mapped unevenly to 10 chromosomes. Phylogenetic analyses showed that the 69 CsNACs could be divided into six subfamilies. Additionally, the CsNAC genes in group IV-a are specific to Cannabis sativa and contain a relatively large number of exons. Promoter analysis revealed that most CsNAC promoters contained cis-elements related to plant hormones, the light response, and abiotic stress. Furthermore, transcriptome expression profiling revealed that 24 CsNAC genes in two Cannabis sativa cultivars (YM1 and YM7) were significantly differentially expressed under osmotic stress, and these 12 genes presented differential expression patterns across different cultivars according to quantitative real-time PCR (RT-qPCR) analysis. Among these, the genes homologous to the CsNAC18, CsNAC24, and CsNAC61 genes have been proven to be involved in the response to abiotic stress and might be candidate genes for further exploration to determine their functions. The present study provides a comprehensive insight into the sequence characteristics, structural properties, evolutionary relationships, and expression patterns of NAC family genes under osmotic stress in Cannabis sativa and provides a basis for further functional characterization of CsNAC genes under osmotic stress to improve agricultural traits in Cannabis sativa.
Collapse
Affiliation(s)
- Qi Li
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Hanxue Zhang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Yulei Yang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Kailei Tang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Yang Yang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Wenjing Ouyang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Guanghui Du
- School of Agriculture, Yunnan University, Kunming 650500, China
| |
Collapse
|
2
|
Guo L, Liao Y, Deng S, Li J, Bu X, Zhu C, Zhang W, Cong X, Cheng S, Chen Q, Xu F. Genome-wide analysis of NAC transcription factors and exploration of candidate genes regulating selenium metabolism in Broussonetia papyrifera. PLANTA 2024; 260:1. [PMID: 38753175 DOI: 10.1007/s00425-024-04438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/09/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Genome-wide identification revealed 79 BpNAC genes belonging to 16 subfamilies, and their gene structures and evolutionary relationships were characterized. Expression analysis highlighted their importance in plant selenium stress responses. Paper mulberry (Broussonetia papyrifera), a deciduous arboreal plant of the Moraceae family, is distinguished by its leaves, which are abundant in proteins, polysaccharides, and flavonoids, positioning it as a novel feedstock. NAC transcription factors, exclusive to plant species, are crucial in regulating growth, development, and response to biotic and abiotic stress. However, extensive characterization of the NAC family within paper mulberry is lacking. In this study, 79 BpNAC genes were identified from the paper mulberry genome, with an uneven distribution across 13 chromosomes. A comprehensive, genome-wide analysis of BpNACs was performed, including investigating gene structures, promoter regions, and chromosomal locations. Phylogenetic tree analysis, alongside comparisons with Arabidopsis thaliana NACs, allowed for categorizing these genes into 16 subfamilies in alignment with gene structure and motif conservation. Collinearity analysis suggested a significant homologous relationship between the NAC genes of paper mulberry and those in Morus notabilis, Ficus hispida, Antiaris toxicaria, and Cannabis sativa. Integrating transcriptome data and Se content revealed that 12 BpNAC genes were associated with selenium biosynthesis. Subsequent RT-qPCR analysis corroborated the correlation between BpNAC59, BpNAC62 with sodium selenate, and BpNAC55 with sodium selenite. Subcellular localization experiments revealed the nuclear functions of BpNAC59 and BpNAC62. This study highlights the potential BpNAC transcription factors involved in selenium metabolism, providing a foundation for strategically breeding selenium-fortified paper mulberry.
Collapse
Affiliation(s)
- Longfei Guo
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Shiming Deng
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Jitao Li
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Xianchen Bu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Changye Zhu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China.
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
3
|
Ma X, Wang J, Su Z, Ma H. Developmentally dependent reprogramming of the Arabidopsis floral transcriptome under sufficient and limited water availability. BMC PLANT BIOLOGY 2024; 24:273. [PMID: 38605371 PMCID: PMC11007919 DOI: 10.1186/s12870-024-04916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Environmental stresses negatively impact reproductive development and yield. Drought stress, in particular, has been examined during Arabidopsis reproductive development at morphological and transcriptomic levels. However, drought-responsive transcriptomic changes at different points in reproductive development remain unclear. Additionally, an investigation of the entire transcriptome at various stages during flower development is of great interest. RESULTS Here, we treat Arabidopsis plants with well-watered and moderately and severely limiting water amounts when the first flowers reach maturity and generate RNA-seq datasets for early, middle, and late phases during flower development at 5, 6, and 7 days following treatment. Under different drought conditions, flowers in different developmental phases display differential sets of drought-responsive genes (DTGs), including those that are enriched in different GO functional categories, such as transcriptional regulation and response to stresses (early phase), lipid storage (middle phase), and pollen and seed development and metabolic processes (late phase). Some gene families have different members induced at different floral phases, suggesting that similar biochemical functions are carried out by distinct members. Developmentally-regulated genes (DVGs) with differential expression among the three floral phases belong to GO terms that are similar between water conditions, such as development and reproduction, metabolism and transport, and signaling and stress response. However, for different water conditions, such similar GO terms correspond to either distinct gene families or different members of a gene family, suggesting that drought affects the expression of distinct families or family members during reproductive development. A further comparison among transcriptomes of tissues collected on different days after treatment identifies differential gene expression, suggesting age-related genes (ARGs) might reflect the changes in the overall plant physiology in addition to drought response and development. CONCLUSION Together, our study provides new insights into global transcriptome reprogramming and candidate genes for drought response, flower development, aging and coordination among these complex biological processes.
Collapse
Affiliation(s)
- Xinwei Ma
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jun Wang
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhao Su
- Laboratory of Plant Stress and Development, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hong Ma
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
4
|
Li Q, Zhang Z, Li K, Zhu Y, Sun K, He C. Identification of microRNAs and their target genes associated with chasmogamous and cleistogamous flower development in Viola prionantha. PLANTA 2024; 259:116. [PMID: 38592549 DOI: 10.1007/s00425-024-04398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
MAIN CONCLUSION Differentially expressed microRNAs were found associated with the development of chasmogamous and cleistogamous flowers in Viola prionantha, revealing potential roles of microRNAs in the developmental evolution of dimorphic flowers. In Viola prionantha, chasmogamous (CH) flowers are induced by short daylight, while cleistogamous (CL) flowers are triggered by long daylight. How environmental factors and microRNAs (miRNAs) affect dimorphic flower formation remains unknown. In this study, small RNA sequencing was performed on CH and CL floral buds at different developmental stages in V. prionantha, differentially expressed miRNAs (DEmiRNAs) were identified, and their target genes were predicted. In CL flowers, Viola prionantha miR393 (vpr-miR393a/b) and vpr-miRN3366 were highly expressed, while in CH flowers, vpr-miRN2005, vpr-miR172e-2, vpr-miR166m-3, vpr-miR396f-2, and vpr-miR482d-2 were highly expressed. In the auxin-activated signaling pathway, vpr-miR393a/b and vpr-miRN2005 could target Vpr-TIR1/AFB and Vpr-ARF2, respectively, and other DEmiRNAs could target genes involved in the regulation of transcription, e.g., Vpr-AP2-7. Moreover, Vpr-UFO and Vpr-YAB5, the main regulators in petal and stamen development, were co-expressed with Vpr-TIR1/AFB and Vpr-ARF2 and showed lower expression in CL flowers than in CH flowers. Some V. prionantha genes relating to the stress/defense responses were co-expressed with Vpr-TIR1/AFB, Vpr-ARF2, and Vpr-AP2-7 and highly expressed in CL flowers. Therefore, in V. prionantha, CH-CL flower development may be regulated by the identified DEmiRNAs and their target genes, thus providing the first insight into the formation of dimorphic flowers in Viola.
Collapse
Affiliation(s)
- Qiaoxia Li
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China.
| | - Zuoming Zhang
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Kunpeng Li
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Zhu
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Kun Sun
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Chaoying He
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Wang Z, Chen Z, Wu Y, Mu M, Jiang J, Nie W, Zhao S, Cui G, Yin X. Genome-wide identification and characterization of NAC transcription factor family members in Trifolium pratense and expression analysis under lead stress. BMC Genomics 2024; 25:128. [PMID: 38297198 PMCID: PMC10829316 DOI: 10.1186/s12864-023-09944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The NAC TF family is widely involved in plant responses to various types of stress. Red clover (Trifolium pratense) is a high-quality legume, and the study of NAC genes in red clover has not been comprehensive. The aim of this study was to analyze the NAC gene family of red clover at the whole-genome level and explore its potential role in the Pb stress response. RESULTS In this study, 72 TpNAC genes were identified from red clover; collinearity analysis showed that there were 5 pairs of large fragment replicators of TpNAC genes, and red clover was found to be closely related to Medicago truncatula. Interestingly, the TpNAC genes have more homologs in Arabidopsis thaliana than in soybean (Glycine max). There are many elements in the TpNAC genes promoters that respond to stress. Gene expression analysis showed that all the TpNAC genes responded to Pb stress. qRT-PCR showed that the expression levels of TpNAC29 and TpNAC42 were significantly decreased after Pb stress. Protein interaction network analysis showed that 21 TpNACs and 23 other genes participated in the interaction. In addition, the TpNAC proteins had three possible 3D structures, and the secondary structure of these proteins were mainly of other types. These results indicated that most TpNAC members were involved in the regulation of Pb stress in red clover. CONCLUSION These results suggest that most TpNAC members are involved in the regulation of Pb stress in red clover. TpNAC members play an important role in the response of red clover to Pb stress.
Collapse
Affiliation(s)
- Zicheng Wang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Zirui Chen
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yuchen Wu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Meiqi Mu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Jingwen Jiang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Wanting Nie
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Siwen Zhao
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xiujie Yin
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Zhang S, Han Y, Zeng Q, Wang C, Wang H, Zhang J, Cai M, Lu J, Chen T. Whole-Transcriptome Sequencing Reveals the Global Molecular Responses and NAC Transcription Factors Involved in Drought Stress in Dendrobium catenatum. Antioxidants (Basel) 2024; 13:94. [PMID: 38247518 PMCID: PMC10812421 DOI: 10.3390/antiox13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Dendrobium catenatum is a highly drought-tolerant herb, which usually grows on cliffs or in the branches of trees, yet the underlying molecular mechanisms for its tolerance remain poorly understood. We conducted a comprehensive study utilizing whole-transcriptome sequencing approaches to investigate the molecular response to extreme drought stress in D. catenatum. A large number of differentially expressed mRNAs, lncRNAs, and circRNAs have been identified, and the NAC transcription factor family was highly enriched. Meanwhile, 46 genes were significantly up-regulated in the ABA-activated signaling pathway. In addition to the 89 NAC family members accurately identified in this study, 32 members were found to have different expressions between the CK and extreme drought treatment. They may regulate drought stress through both ABA-dependent and ABA-independent pathways. Moreover, the 32 analyzed differentially expressed DcNACs were found to be predominantly expressed in the floral organs and roots. The ceRNA regulatory network showed that DcNAC87 is at the core of the ceRNA network and is regulated by miR169, miR393, and four lncRNAs. These investigations provided valuable information on the role of NAC transcription factors in D. catenatum's response to drought stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiangjie Lu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; (S.Z.); (Y.H.); (Q.Z.); (C.W.); (H.W.); (J.Z.); (M.C.)
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; (S.Z.); (Y.H.); (Q.Z.); (C.W.); (H.W.); (J.Z.); (M.C.)
| |
Collapse
|
7
|
Saimi G, Wang Z, Liusui Y, Guo Y, Huang G, Zhao H, Zhang J. The Functions of an NAC Transcription Factor, GhNAC2-A06, in Cotton Response to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3755. [PMID: 37960109 PMCID: PMC10649604 DOI: 10.3390/plants12213755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Drought stress imposes severe constraints on crop growth and yield. The NAC transcription factors (TF) play a pivotal role in regulating plant stress responses. However, the biological functions and regulatory mechanisms of many cotton NACs have not been explored. In this study, we report the cloning and characterization of GhNAC2-A06, a gene encoding a typical cotton NAC TF. The expression of GhNAC2-A06 was induced by PEG treatment, drought stress, and ABA treatment. Furthermore, we investigated its function using the virus-induced gene silencing (VIGS) method. GhNAC2-A06 silenced plants exhibited a poorer growth status under drought stress conditions compared to the controls. The GhNAC2-A06 silenced cotton plants had a lower leaf relative water and chlorophyll content and a higher MDA content compared to the controls under the drought treatment. The levels of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzyme activity in the GhNAC2-A06 silenced plants were found to be lower compared to the controls when exposed to drought stress. Additionally, the downregulation of the drought stress-related genes, GhSAP12-D07, GhNCED1-A01, GhLEA14-A11, GhZAT10-D02, GhPROT2-A05, GhABF3-A03, GhABF2-D05, GhSAP3-D07, and GhCPK1-D04, was observed in the GhNAC2-A06 silenced cotton. Together, our research reveals that GhNAC2-A06 plays a role in the reaction of cotton to drought stress by affecting the expression of genes related to drought stress. The data obtained from this study lay the theoretical foundation for further in-depth research on the biological function and regulatory mechanisms of GhNAC2-A06.
Collapse
Affiliation(s)
| | | | | | | | | | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (G.S.); (Z.W.); (Y.L.); (Y.G.); (G.H.)
| | - Jingbo Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (G.S.); (Z.W.); (Y.L.); (Y.G.); (G.H.)
| |
Collapse
|
8
|
Zhang Y, Qu X, Li X, Ren M, Tong Y, Wu X, Sun Y, Wu F, Yang A, Chen S. Comprehensive transcriptome and WGCNA analysis reveals the potential function of anthocyanins in low-temperature resistance of a red flower mutant tobacco. Genomics 2023; 115:110728. [PMID: 37858843 DOI: 10.1016/j.ygeno.2023.110728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
The anthocyanin is a protective substance in various plants, and plays important roles in resisting to low-temperature. Here, we explored transcriptome analysis of pink flower (as CK) and the natural mutant red flower (as research objects) under low-temperature conditions, and aimed to reveal the potential functions of anthocyanins and anthocyanin-related regulatory factors in resistance to low-temperature. Our results showed that most of the differentially expressed genes (DEGs) encoding key enzymes in the late stage of anthocyanin metabolism in the mutant were significantly up-regulated. Meanwhile, several genes significantly differentially expressed in CK or mutant were obtained by classification and analysis of transcription factors (TFs), phytohormones and osmoregulators. Additionally, WGCNA was carried out to mine hub genes resistanted to low-temperature stress in flavonoid pathway. Finally, one UFGT family gene, three MYB and one bHLH were obtained as the future hub genes of this study. Combined with the above information, we concluded that the ability of the red flower mutant to grow and develop normally at low-temperatures was the result of a combination of flavonoids and cold resistance genes.
Collapse
Affiliation(s)
- Yinchao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaoling Qu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiuchun Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Min Ren
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Tong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yangyang Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fengyan Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Shuai Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
9
|
Li J, Guo W, Zhao J, Meng H, Yang Y, Zheng G, Yuan W. Transcriptional Regulation of the Acer truncatum B. Response to Drought and the Contribution of AtruNAC36 to Drought Tolerance. Antioxidants (Basel) 2023; 12:1339. [PMID: 37507879 PMCID: PMC10376542 DOI: 10.3390/antiox12071339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Drought stress is one of the major environmental factors severely restricting plant development and productivity. Acer truncatum B, which is an economically important tree species, is highly tolerant to drought conditions, but the underlying molecular regulatory mechanisms remain relatively unknown. In this study, A. truncatum seedlings underwent a drought treatment (water withheld for 0, 3, 7, and 12 days), after which they were re-watered for 5 days. Physiological indices were measured and a transcriptome sequencing analysis was performed to reveal drought response-related regulatory mechanisms. In comparison to the control, the drought treatment caused a significant increase in antioxidant enzyme activities, with levels rising up to seven times, and relative electrical conductivity from 14.5% to 78.4%, but the relative water content decreased from 88.3% to 23.4%; these indices recovered somewhat after the 5-day re-watering period. The RNA sequencing analysis identified 9126 differentially expressed genes (DEGs), which were primarily involved with abscisic acid responses, and mitogen-activated protein kinase signaling. These DEGs included 483 (5.29%) transcription factor genes from 53 families, including ERF, MYB, and NAC. A co-expression network analysis was conducted and three important modules were analyzed to identify hub genes, one of which (AtruNAC36) was examined to clarify its function. The AtruNAC36 protein was localized to the nucleus and had a C-terminal transactivation domain. Moreover, it bounded specifically to the NACRS element. The overexpression of AtruNAC36 in Arabidopsis thaliana resulted in increased drought tolerance by enhancing antioxidant enzyme activities. These findings provide important insights into the transcriptional regulation mediating the A. truncatum response to drought. Furthermore, AtruNAC36 may be relevant for breeding forest trees resistant to drought stress.
Collapse
Affiliation(s)
- Jianbo Li
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
- National State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Tai'an 271000, China
| | - Jinna Zhao
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
| | - Huijing Meng
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
| | - Yanfei Yang
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
| | - Guangshun Zheng
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
| | - Weijie Yuan
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
| |
Collapse
|
10
|
Zhang Y, Zhang Q, Wang H, Tao S, Cao H, Shi Y, Bakirov A, Xu A, Huang Z. Discovery of common loci and candidate genes for controlling salt-alkali tolerance and yield-related traits in Brassica napus L. PLANT CELL REPORTS 2023; 42:1039-1057. [PMID: 37076701 DOI: 10.1007/s00299-023-03011-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Common loci and candidate genes for controlling salt-alkali tolerance and yield-related traits were identified in Brassica napus combining QTL mapping with transcriptome under salt and alkaline stresses. The yield of rapeseed (Brassica napus L.) is determined by multiple yield-related traits, which are susceptible to environmental factors. Many yield-related quantitative trait loci (QTLs) have been reported in Brassica napus; however, no studies have been conducted to investigate both salt-alkali tolerance and yield-related traits simultaneously. Here, specific-locus amplified fragment sequencing (SLAF-seq) technologies were utilized to map the QTLs for salt-alkali tolerance and yield-related traits. A total of 65 QTLs were identified, including 30 QTLs for salt-alkali tolerance traits and 35 QTLs for yield-related traits, accounting for 7.61-27.84% of the total phenotypic variations. Among these QTLs, 18 unique QTLs controlling two to four traits were identified by meta-analysis. Six novel and unique QTLs were detected for salt-alkali tolerance traits. By comparing these unique QTLs for salt-alkali tolerance traits with those previously reported QTLs for yield-related traits, seven co-localized chromosomal regions were identified on A09 and A10. Combining QTL mapping with transcriptome of two parents under salt and alkaline stresses, thirteen genes were identified as the candidates controlling both salt-alkali tolerance and yield. These findings provide useful information for future breeding of high-yield cultivars resistant to alkaline and salt stresses.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Han Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shunxian Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanming Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiji Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Aldiyar Bakirov
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Liu Y, Wang J, Liu B, Xu ZY. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2252-2274. [PMID: 36149776 DOI: 10.1111/jipb.13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
12
|
Ahmadi AJ, Ahmadikhah A. Occurrence of simple sequence repeats in cDNA sequences of safflower ( Carthamus tinctorius) reveals the importance of SSR-containing genes for cell biology and dynamic response to environmental cues. FRONTIERS IN PLANT SCIENCE 2022; 13:991107. [PMID: 36466261 PMCID: PMC9714374 DOI: 10.3389/fpls.2022.991107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Safflower (Carthamus tinctorius) is a diploid crop plant belonging to the family Asteraceae and is well known as one of important oilseed crops due to edible oil containing unsaturated fatty acids. In recent years it is gaining increased attention for food, pharmaceutical and industrial uses, and hence the updating its breeding methods is necessary. Genic simple sequence repeats (SSRs) in addition of being desire molecular markers, are supposed to influence gene function and the respective phenotype. This study aimed to identify SSRs in cDNA sequences and further analysis of the functional features of the SSR-containing genes to elucidate their role in biological and cellular processes. We identified 1,841 SSR regions in 1,667 cDNA sequences. Among all types of repeats, trinucleotide repeats were the most abundant (35.7%), followed by hexanucleotide (29.6%) and dinucleotide repeats (22.0%). Thirty five SSR primer pairs were validated by PCR reaction, detected a high rate of polymorphism (>57%) among safflower accessions, physically mapped on safflower genome and could clearly discriminate the cultivated accessions from wild relatives. The cDNA-derived SSR markers are suitable for evaluation of genetic diversity, linkage and association mapping studies and genome-based breeding programmes. Occurrence of SSR repeats in biologically-important classes of proteins such as kinases, transferases and transcription factors was inferred from functional analyses, which along with variability of their repeat copies, can endow the cell and whole organism the flexibility of facing with continuously changing environment, and indicate a structure-based evolution mechanism of the genome which acts as an up-to-dating tool for the cell and whole origanism, which is realized in GO terms such as involvement of most SSR-containing genes in biological, cellular and metabolic processes, especially in response to stimulus, response to stress, interaction to other organisms and defense responses.
Collapse
Affiliation(s)
- Ahmad Jawid Ahmadi
- Agronomy Department, Faculty of Agriculture, Higher Education Institute of Samangan, Samangan, Afghanistan
| | - Assadollah Ahmadikhah
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
13
|
Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr. Int J Mol Sci 2022; 23:ijms232012378. [PMID: 36293235 PMCID: PMC9604218 DOI: 10.3390/ijms232012378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Soybean transcription factor GmNAC plays important roles in plant resistance to environmental stresses. In this study, GmNAC3 was cloned in the drought tolerant soybean variety “Jiyu47”, with the molecular properties of GmNAC3 characterized to establish its candidacy as a NAC transcription factor. The yeast self-activation experiments revealed the transcriptional activation activity of GmNAC3, which was localized in the nucleus by the subcellular localization analysis. The highest expression of GmNAC3 was detected in roots in the podding stage of soybean, and in roots of soybean seedlings treated with 20% PEG6000 for 12 h, which was 16 times higher compared with the control. In the transgenic soybean hairy roots obtained by the Agrobacterium-mediated method treated with 20% PEG6000 for 12 h, the activities of superoxide dismutase, peroxidase, and catalase and the content of proline were increased, the malondialdehyde content was decreased, and the expressions of stress resistance-related genes (i.e., APX2, LEA14, 6PGDH, and P5CS) were up-regulated. These expression patterns were confirmed by transgenic Arabidopsis thaliana with the overexpression of GmNAC3. This study provided strong scientific evidence to support further investigation of the regulatory function of GmNAC3 in plant drought resistance and the molecular mechanisms regulating the plant response to environmental stresses.
Collapse
|
14
|
Shao C, Cai F, Bao Z, Zhang Y, Shi G, Zhou Z, Chen X, Li Y, Bao M, Zhang J. PaNAC089 is a membrane-tethered transcription factor (MTTF) that modulates flowering, chlorophyll breakdown and trichome initiation. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:392-404. [PMID: 35209991 DOI: 10.1071/fp21320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Flowering and senescence are essential developmental stages of green plants, which are governed by complex molecular regulatory networks. However, the connection between flowering regulation and senescence regulation in London plane tree (Platanus acerifolia ) remains unknown. In this study, we identified a gene PaNAC089 from London plane tree, which encodes a membrane-tethered transcription factor (MTTF) belonging to the NAC (NAM, ATAF1/2, CUC2) transcription factor family. We investigated the functions of PaNAC089 in the regulation of flowering and senescence through the analysis of expression profiles and transgenic phenotypes. Heterologous overexpression of ΔPaNAC089 delayed flowering and inhibited chlorophyll breakdown to produce dark green rosette leaves in Arabidopsis . In addition, the trichome density of rosette leaves was decreased in transgenic lines. In ΔPaNAC089 overexpression plants, a series of functional genes with inhibited expression were identified by quantitative real-time polymerase chain reaction (qRT-PCR), including genes that regulate flowering, chlorophyll decomposition, and trichome initiation. Furthermore, Δ PaNAC089 directly binds to the promoter of CONSTANS (CO ) and NON-YELLOWING2 (NYE2 ) in the yeast one-hybrid assay. Consistent with this, luciferase (LUC) transient expression assays also showed that Δ PaNAC089 could inhibit the activity of NYE2 . To summarise, our data suggests that PaNAC089 is an MTTF that modulates flowering, chlorophyll breakdown and trichome initiation.
Collapse
Affiliation(s)
- Changsheng Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Fangfang Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China; and Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Zhiru Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanping Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Gehui Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zheng Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiyan Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yangyang Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
15
|
A NAC Transcription Factor TuNAC69 Contributes to ANK-NLR-WRKY NLR-Mediated Stripe Rust Resistance in the Diploid Wheat Triticum urartu. Int J Mol Sci 2022; 23:ijms23010564. [PMID: 35008990 PMCID: PMC8745140 DOI: 10.3390/ijms23010564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 01/27/2023] Open
Abstract
Stripe rust is one of the most devastating diseases in wheat. Nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain receptors (NLRs) recognize pathogenic effectors and trigger plant immunity. We previously identified a unique NLR protein YrU1 in the diploid wheat Triticum urartu, which contains an N-terminal ANK domain and a C-terminal WRKY domain and confers disease resistance to stripe rust fungus Puccinia striiformis f. sp. Tritici (Pst). However, how YrU1 functions in disease resistance is not clear. In this study, through the RNA-seq analysis, we found that the expression of a NAC member TuNAC69 was significantly up-regulated after inoculation with Pst in the presence of YrU1. TuNAC69 was mainly localized in the nucleus and showed transcriptional activation in yeast. Knockdown TuNAC69 in diploid wheat Triticum urartu PI428309 that contains YrU1 by virus-induced gene silencing reduced the resistance to stripe rust. In addition, overexpression of TuNAC69 in Arabidopsis enhanced the resistance to powdery mildew Golovinomyces cichoracearum. In summary, our study indicates that TuNAC69 participates in the immune response mediated by NLR protein YrU1, and likely plays an important role in disease resistance to other pathogens.
Collapse
|
16
|
Yan H, Ma G, Teixeira da Silva JA, Qiu L, Xu J, Zhou H, Wei M, Xiong J, Li M, Zhou S, Wu J, Tang X. Genome-Wide Identification and Analysis of NAC Transcription Factor Family in Two Diploid Wild Relatives of Cultivated Sweet Potato Uncovers Potential NAC Genes Related to Drought Tolerance. Front Genet 2021; 12:744220. [PMID: 34899836 DOI: 10.3389/fgene.021.744220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) proteins play a pivotal role in modulating plant development and offer protection against biotic and abiotic stresses. Until now, no systematic knowledge of NAC family genes is available for the food security crop, sweet potato. Here, a comprehensive genome-wide survey of NAC domain-containing proteins identified 130 ItbNAC and 144 ItfNAC genes with full length sequences in the genomes of two diploid wild relatives of cultivated sweet potato, Ipomoea triloba and Ipomoea trifida, respectively. These genes were physically mapped onto 15 I. triloba and 16 I. trifida chromosomes, respectively. Phylogenetic analysis divided all 274 NAC proteins into 20 subgroups together with NAC transcription factors (TFs) from Arabidopsis. There were 9 and 15 tandem duplication events in the I. triloba and I. trifida genomes, respectively, indicating an important role of tandem duplication in sweet potato gene expansion and evolution. Moreover, synteny analysis suggested that most NAC genes in the two diploid sweet potato species had a similar origin and evolutionary process. Gene expression patterns based on RNA-Seq data in different tissues and in response to various hormone, biotic or abiotic treatments revealed their possible involvement in organ development and response to various biotic/abiotic stresses. The expression of 36 NAC TFs, which were upregulated in the five tissues and in response to mannitol treatment, was also determined by real-time quantitative polymerase chain reaction (RT-qPCR) in hexaploid cultivated sweet potato exposed to drought stress. Those results largely corroborated the expression profile of mannitol treatment uncovered by the RNA-Seq data. Some significantly up-regulated genes related to drought stress, such as ItbNAC110, ItbNAC114, ItfNAC15, ItfNAC28, and especially ItfNAC62, which had a conservative spatial conformation with a closely related paralogous gene, ANAC019, may be potential candidate genes for a sweet potato drought tolerance breeding program. This analysis provides comprehensive and systematic information about NAC family genes in two diploid wild relatives of cultivated sweet potato, and will provide a blueprint for their functional characterization and exploitation to improve the tolerance of sweet potato to abiotic stresses.
Collapse
Affiliation(s)
- Haifeng Yan
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | | | - Lihang Qiu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Juan Xu
- Biological Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Minzheng Wei
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jun Xiong
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Mingzhi Li
- Biodata Biotechnology Co., Ltd, Hefei, China
| | - Shaohuan Zhou
- GuangXi Center for Disease Prevention and Control, Nanning, China
| | - Jianming Wu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Xiuhua Tang
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
17
|
Yan H, Ma G, Teixeira da Silva JA, Qiu L, Xu J, Zhou H, Wei M, Xiong J, Li M, Zhou S, Wu J, Tang X. Genome-Wide Identification and Analysis of NAC Transcription Factor Family in Two Diploid Wild Relatives of Cultivated Sweet Potato Uncovers Potential NAC Genes Related to Drought Tolerance. Front Genet 2021; 12:744220. [PMID: 34899836 PMCID: PMC8653416 DOI: 10.3389/fgene.2021.744220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) proteins play a pivotal role in modulating plant development and offer protection against biotic and abiotic stresses. Until now, no systematic knowledge of NAC family genes is available for the food security crop, sweet potato. Here, a comprehensive genome-wide survey of NAC domain-containing proteins identified 130 ItbNAC and 144 ItfNAC genes with full length sequences in the genomes of two diploid wild relatives of cultivated sweet potato, Ipomoea triloba and Ipomoea trifida, respectively. These genes were physically mapped onto 15 I. triloba and 16 I. trifida chromosomes, respectively. Phylogenetic analysis divided all 274 NAC proteins into 20 subgroups together with NAC transcription factors (TFs) from Arabidopsis. There were 9 and 15 tandem duplication events in the I. triloba and I. trifida genomes, respectively, indicating an important role of tandem duplication in sweet potato gene expansion and evolution. Moreover, synteny analysis suggested that most NAC genes in the two diploid sweet potato species had a similar origin and evolutionary process. Gene expression patterns based on RNA-Seq data in different tissues and in response to various hormone, biotic or abiotic treatments revealed their possible involvement in organ development and response to various biotic/abiotic stresses. The expression of 36 NAC TFs, which were upregulated in the five tissues and in response to mannitol treatment, was also determined by real-time quantitative polymerase chain reaction (RT-qPCR) in hexaploid cultivated sweet potato exposed to drought stress. Those results largely corroborated the expression profile of mannitol treatment uncovered by the RNA-Seq data. Some significantly up-regulated genes related to drought stress, such as ItbNAC110, ItbNAC114, ItfNAC15, ItfNAC28, and especially ItfNAC62, which had a conservative spatial conformation with a closely related paralogous gene, ANAC019, may be potential candidate genes for a sweet potato drought tolerance breeding program. This analysis provides comprehensive and systematic information about NAC family genes in two diploid wild relatives of cultivated sweet potato, and will provide a blueprint for their functional characterization and exploitation to improve the tolerance of sweet potato to abiotic stresses.
Collapse
Affiliation(s)
- Haifeng Yan
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | | | - Lihang Qiu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Juan Xu
- Biological Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Minzheng Wei
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jun Xiong
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Mingzhi Li
- Biodata Biotechnology Co., Ltd, Hefei, China
| | - Shaohuan Zhou
- GuangXi Center for Disease Prevention and Control, Nanning, China,*Correspondence: Shaohuan Zhou, ; Jianming Wu, ; Xiuhua Tang,
| | - Jianming Wu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China,*Correspondence: Shaohuan Zhou, ; Jianming Wu, ; Xiuhua Tang,
| | - Xiuhua Tang
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China,*Correspondence: Shaohuan Zhou, ; Jianming Wu, ; Xiuhua Tang,
| |
Collapse
|
18
|
Borràs D, Barchi L, Schulz K, Moglia A, Acquadro A, Kamranfar I, Balazadeh S, Lanteri S. Transcriptome-Based Identification and Functional Characterization of NAC Transcription Factors Responsive to Drought Stress in Capsicum annuum L. Front Genet 2021; 12:743902. [PMID: 34745217 PMCID: PMC8570119 DOI: 10.3389/fgene.2021.743902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Capsicum annuum L. is one of the most cultivated Solanaceae species, and in the open field, water limitation leading to drought stress affects its fruit quality, fruit setting, fruit size and ultimately yield. We identified stage-specific and a common core set of differentially expressed genes, following RNA-seq transcriptome analyses of a breeding line subjected to acute drought stress followed by recovery (rewatering), at three stages of plant development. Among them, two NAC transcription factor (TF) genes, i.e., CaNAC072 and CaNAC104, were always upregulated after drought stress and downregulated after recovery. The two TF proteins were observed to be localized in the nucleus following their transient expression in Nicotiana benthamiana leaves. The expression of the two NACs was also induced by NaCl, polyethylene glycol (PEG) and abscisic acid (ABA) treatments, suggesting that CaNAC072 is an early, while CaNAC104 is a late abiotic stress-responsive gene. Virus-induced gene silencing (VIGS) of CaNAC104 did not affect the pepper plantlet’s tolerance to drought stress, while VIGS of CaNAC072 increased drought tolerance. Heterologous expression of CaNAC072 in Arabidopsis thaliana as well as in plants mutated for its homolog ANAC072 did not increase drought stress tolerance. This highlights a different role of the two NAC homologs in the two species. Here, we discuss the complex role of NACs as transcriptional switches in the response to drought stress in bell pepper.
Collapse
Affiliation(s)
- Dionis Borràs
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Turin, Italy
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Turin, Italy
| | - Karina Schulz
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Andrea Moglia
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Turin, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Turin, Italy
| | - Iman Kamranfar
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.,Plant Sciences and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, Netherlands
| | - Sergio Lanteri
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Turin, Italy
| |
Collapse
|
19
|
Li P, Peng Z, Xu P, Tang G, Ma C, Zhu J, Shan L, Wan S. Genome-Wide Identification of NAC Transcription Factors and Their Functional Prediction of Abiotic Stress Response in Peanut. Front Genet 2021; 12:630292. [PMID: 33767732 PMCID: PMC7985091 DOI: 10.3389/fgene.2021.630292] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
The NAC transcription factor (TF) is one of the most significant TFs in plants and is widely involved in plant growth, development, and responses to biotic and abiotic stresses. To date, there are no systematic studies on the NAC family in peanuts. Herein, 132 AhNACs were identified from the genome of cultivated peanut, and they were classified into eight subgroups (I–VIII) based on phylogenetic relationships with Arabidopsis NAC proteins and their conserved motifs. These genes were unevenly scattered on all 20 chromosomes, among which 116 pairs of fragment duplication events and 1 pair of tandem duplications existed. Transcriptome analysis showed that many AhNAC genes responded to drought and abscisic acid (ABA) stresses, especially most of the members in groups IV, VII, and VIII, which were expressed at larger differential levels under polyethylene glycol (PEG) and/or ABA treatment in roots or leaves. Furthermore, 20 of them selected in response to PEG and ABA treatment were evaluated by quantitative real-time polymerase chain reaction. The results showed that these genes significantly responded to drought and ABA in roots and/or leaves. This study was helpful for guiding the functional characterization and improvement of drought-resistant germplasms in peanuts.
Collapse
Affiliation(s)
- Pengxiang Li
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China.,College of Life Science, Shandong Normal University, Jinan, China
| | - Zhenying Peng
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Pingli Xu
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Guiying Tang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Changle Ma
- College of Life Science, Shandong Normal University, Jinan, China
| | - Jieqiong Zhu
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China.,College of Life Science, Shandong Normal University, Jinan, China
| | - Lei Shan
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China.,College of Life Science, Shandong Normal University, Jinan, China
| | - Shubo Wan
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China.,College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
20
|
Zhang X, Cheng Z, Yao W, Zhao K, Wang X, Jiang T. Functional Characterization of PsnNAC036 under Salinity and High Temperature Stresses. Int J Mol Sci 2021; 22:2656. [PMID: 33800795 PMCID: PMC7961394 DOI: 10.3390/ijms22052656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Plant growth and development are challenged by biotic and abiotic stresses including salinity and heat stresses. For Populus simonii × P. nigra as an important greening and economic tree species in China, increasing soil salinization and global warming have become major environmental challenges. We aim to unravel the molecular mechanisms underlying tree tolerance to salt stress and high temprerature (HT) stress conditions. Transcriptomics revealed that a PsnNAC036 transcription factor (TF) was significantly induced by salt stress in P. simonii × P. nigra. This study focuses on addressing the biological functions of PsnNAC036. The gene was cloned, and its temporal and spatial expression was analyzed under different stresses. PsnNAC036 was significantly upregulated under 150 mM NaCl and 37 °C for 12 h. The result is consistent with the presence of stress responsive cis-elements in the PsnNAC036 promoter. Subcellular localization analysis showed that PsnNAC036 was targeted to the nucleus. Additionally, PsnNAC036 was highly expressed in the leaves and roots. To investigate the core activation region of PsnNAC036 protein and its potential regulatory factors and targets, we conducted trans-activation analysis and the result indicates that the C-terminal region of 191-343 amino acids of the PsnNAC036 was a potent activation domain. Furthermore, overexpression of PsnNAC036 stimulated plant growth and enhanced salinity and HT tolerance. Moreover, 14 stress-related genes upregulated in the transgenic plants under high salt and HT conditions may be potential targets of the PsnNAC036. All the results demonstrate that PsnNAC036 plays an important role in salt and HT stress tolerance.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Xueyi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| |
Collapse
|
21
|
Nadarajah KK. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E5208. [PMID: 32717820 PMCID: PMC7432042 DOI: 10.3390/ijms21155208] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Climate change-induced abiotic stress results in crop yield and production losses. These stresses result in changes at the physiological and molecular level that affect the development and growth of the plant. Reactive oxygen species (ROS) is formed at high levels due to abiotic stress within different organelles, leading to cellular damage. Plants have evolved mechanisms to control the production and scavenging of ROS through enzymatic and non-enzymatic antioxidative processes. However, ROS has a dual function in abiotic stresses where, at high levels, they are toxic to cells while the same molecule can function as a signal transducer that activates a local and systemic plant defense response against stress. The effects, perception, signaling, and activation of ROS and their antioxidative responses are elaborated in this review. This review aims to provide a purview of processes involved in ROS homeostasis in plants and to identify genes that are triggered in response to abiotic-induced oxidative stress. This review articulates the importance of these genes and pathways in understanding the mechanism of resistance in plants and the importance of this information in breeding and genetically developing crops for resistance against abiotic stress in plants.
Collapse
Affiliation(s)
- Kalaivani K Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM BANGI, Malaysia
| |
Collapse
|
22
|
Ma X, Su Z, Ma H. Molecular genetic analyses of abiotic stress responses during plant reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2870-2885. [PMID: 32072177 PMCID: PMC7260722 DOI: 10.1093/jxb/eraa089] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/12/2020] [Indexed: 05/20/2023]
Abstract
Plant responses to abiotic stresses during vegetative growth have been extensively studied for many years. Daily environmental fluctuations can have dramatic effects on plant vegetative growth at multiple levels, resulting in molecular, cellular, physiological, and morphological changes. Plants are even more sensitive to environmental changes during reproductive stages. However, much less is known about how plants respond to abiotic stresses during reproduction. Fortunately, recent advances in this field have begun to provide clues about these important processes, which promise further understanding and a potential contribution to maximize crop yield under adverse environments. Here we summarize information from several plants, focusing on the possible mechanisms that plants use to cope with different types of abiotic stresses during reproductive development, and present a tentative molecular portrait of plant acclimation during reproductive stages. Additionally, we discuss strategies that plants use to balance between survival and productivity, with some comparison among different plants that have adapted to distinct environments.
Collapse
Affiliation(s)
- Xinwei Ma
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhao Su
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Correspondence:
| | - Hong Ma
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
23
|
Min X, Lin X, Ndayambaza B, Wang Y, Liu W. Coordinated mechanisms of leaves and roots in response to drought stress underlying full-length transcriptome profiling in Vicia sativa L. BMC PLANT BIOLOGY 2020; 20:165. [PMID: 32293274 PMCID: PMC7161134 DOI: 10.1186/s12870-020-02358-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/24/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Common vetch (Vicia sativa L.) is an important self-pollinating annual forage legume and is of interest for drought prone regions as a protein source to feed livestock and human consumption. However, the development and production of common vetch are negatively affected by drought stress. Plants have evolved common or distinct metabolic pathways between the aboveground and underground in response to drought stress. Little is known regarding the coordinated response of aboveground and underground tissues of common vetch to drought stress. RESULTS Our results showed that a total of 30,427 full-length transcripts were identified in 12 samples, with an average length of 2278.89 bp. Global transcriptional profiles of the above 12 samples were then analysed via Illumina-Seq. A total of 3464 and 3062 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. Gene Ontology (GO) enrichment analyses identified that the dehydrin genes and Δ1-pyrroline-5-carboxylate synthase were induced for the biosynthesis of proline and water conservation. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results indicated that the DEGs were significantly enriched in hormone signal transduction, starch and sucrose metabolism, and arginine and proline metabolism, and various drought response candidate genes were also identified. Abscisic acid (ABA; the AREB/ABF-SnRK2 pathway) regulates the activity of AMY3 and BAM1 to induce starch degradation in leaves and increase carbon export to roots, which may be associated with the drought stress responses in common vetch. Among the co-induced transcription factors (TFs), AREB/ABF, bHLH, MYB, WRKY, and AP2/ERF had divergent expression patterns and may be key in the crosstalk between leaves and roots during adaption to drought stress. In transgenic yeast, the overexpression of four TFs increased yeast tolerance to osmotic stresses. CONCLUSION The multipronged approach identified in the leaves and roots broadens our understanding of the coordinated mechanisms of drought response in common vetch, and further provides targets to improve drought resistance through genetic engineering.
Collapse
Affiliation(s)
- Xueyang Min
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Centre for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xiaoshan Lin
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Centre for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Boniface Ndayambaza
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Centre for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Centre for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Centre for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
24
|
Afzal S, Sirohi P, Yadav AK, Singh MP, Kumar A, Singh NK. A comparative screening of abiotic stress tolerance in early flowering rice mutants. J Biotechnol 2019; 302:112-122. [DOI: 10.1016/j.jbiotec.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|