1
|
Lu Y, Li J, Cheng K, Zhu G, Zhu B, Fu D, Qu G, Luo Y, Ma L, Lin T, Zhang B, Zhu H. SlMES1 modulates methyl salicylate to influence fruit volatile profiles in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109561. [PMID: 39933427 DOI: 10.1016/j.plaphy.2025.109561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Methyl salicylate (MeSA), known as phloem-based mobile signal, has been identified as undesirable volatile compounds for tomato fruits due to its medicinal and wintergreen aroma properties. However, the response of most volatile compounds to endogenous MeSA are still unclarified. In this work, we found the concentration of MeSA can be regulated by salicylic acid methyl esterase 1 (SlMES1). We used CRISPR/Cas9 and GC-MS strategies to investigate the effect of SlMES1 on the biosynthesis of flavor compounds during tomato fruit ripening. Our results showed that the loss of function of SlMES1 significantly increased the MeSA content by altering the flux of MeSA and SA interconversion. Although the increased endogenous MeSA did not affect the fruit ripening process, it altered the concentration and proportion of fruit volatiles, mainly reducing the concentration of soluble sugar and volatile substances derived from amino acids and carotenoids. Additionally, the reduction of soluble sugars and volatiles was associated with downregulated the gene encoding Sucrose synthase (SuSy), Alcohol dehydrogenase (ADH), Phenylalanine ammonia lyase (PAL), and β - Carotene hydroxylase (CHY-β) when compared with control. Taken together, SlMES1 plays a crucial role in regulating the MeSA content during fruit ripening and could become a breeding target for improving fruit flavor quality.
Collapse
Affiliation(s)
- Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jinyan Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ke Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guoning Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Liqun Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tao Lin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bo Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
2
|
Li J, Hu Y, Hu J, Xie Q, Chen X, Qi X. Sucrose synthase: An enzyme with multiple roles in plant physiology. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154352. [PMID: 39332324 DOI: 10.1016/j.jplph.2024.154352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024]
Abstract
Sucrose synthase (SuS) is a key enzyme in the regulation of sucrose metabolism in plants and participates in the reversible reaction of sucrose conversion to uridine diphosphate-glucose and fructose. It plays an important role in promoting taproot development, starch synthesis, cellulose synthesis, improving plant nitrogen fixation capacity, sugar metabolism, and fruit and seed development. Recent studies have shown that SuS responds to abiotic stresses such as drought stress, cold stress and waterlogging stress, especially in waterlogging stress. This paper provides a comprehensive review on the basic properties, physiological functions, and signal transduction pathways of SuS, aiming to establish a theoretical foundation for its further research.
Collapse
Affiliation(s)
- Jinling Li
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yingying Hu
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jiajia Hu
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Qingmin Xie
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Xuehao Chen
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Xiaohua Qi
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Iqbal A, Aslam S, Ahmed M, Khan F, Ali Q, Han S. Role of Actin Dynamics and GhACTIN1 Gene in Cotton Fiber Development: A Prototypical Cell for Study. Genes (Basel) 2023; 14:1642. [PMID: 37628693 PMCID: PMC10454433 DOI: 10.3390/genes14081642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Cotton crop is considered valuable for its fiber and seed oil. Cotton fiber is a single-celled outgrowth from the ovule epidermis, and it is a very dynamic cell for study. It has four distinct but overlapping developmental stages: initiation, elongation, secondary cell wall synthesis, and maturation. Among the various qualitative characteristics of cotton fiber, the important ones are the cotton fiber staple length, tensile strength, micronaire values, and fiber maturity. Actin dynamics are known to play an important role in fiber elongation and maturation. The current review gives an insight into the cotton fiber developmental stages, the qualitative traits associated with cotton fiber, and the set of genes involved in regulating these developmental stages and fiber traits. This review also highlights some prospects for how biotechnological approaches can improve cotton fiber quality.
Collapse
Affiliation(s)
- Adnan Iqbal
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China;
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Sibgha Aslam
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Mukhtar Ahmed
- Government Boys College Sokasan, Higher Education Department, Azad Jammu and Kashmir, Bhimber 10040, Pakistan
| | - Fahad Khan
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan 33001, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Shiming Han
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China;
| |
Collapse
|
4
|
Wang X, Wang M, Huang Y, Zhu P, Qian G, Zhang Y, Liu Y, Zhou J, Li L. Genome-Wide Identification and Analysis of Stress Response of Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase Genes in Quinoa. Int J Mol Sci 2023; 24:ijms24086950. [PMID: 37108114 PMCID: PMC10138372 DOI: 10.3390/ijms24086950] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Saline-alkali stress seriously affects the yield and quality of crops, threatening food security and ecological security. Improving saline-alkali land and increasing effective cultivated land are conducive to sustainable agricultural development. Trehalose, a nonreducing disaccharide, is closely related to plant growth and development and stress response. Trehalose 6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) are key enzymes catalyzing trehalose biosynthesis. To elucidate the effects of long-term saline-alkali stress on trehalose synthesis and metabolism, we conducted an integrated transcriptome and metabolome analysis. As a result, 13 TPS and 11 TPP genes were identified in quinoa (Chenopodium quinoa Willd.) and were named CqTPS1-13 and CqTPP1-11 according to the order of their Gene IDs. Through phylogenetic analysis, the CqTPS family is divided into two classes, and the CqTPP family is divided into three classes. Analyses of physicochemical properties, gene structures, conservative domains and motifs in the proteins, and cis-regulatory elements, as well as evolutionary relationships, indicate that the TPS and TPP family characteristics are highly conserved in quinoa. Transcriptome and metabolome analyses of the sucrose and starch metabolism pathway in leaves undergoing saline-alkali stress indicate that CqTPP and Class II CqTPS genes are involved in the stress response. Moreover, the accumulation of some metabolites and the expression of many regulatory genes in the trehalose biosynthesis pathway changed significantly, suggesting the metabolic process is important for the saline-alkali stress response in quinoa.
Collapse
Affiliation(s)
- Xiaoting Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yongshun Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Peng Zhu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jingwen Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
5
|
Pottier D, Roitsch T, Persson S. Cell wall regulation by carbon allocation and sugar signaling. Cell Surf 2023. [DOI: 10.1016/j.tcsw.2023.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
6
|
Joshi A, Verma KK, D Rajput V, Minkina T, Arora J. Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered 2022; 13:8135-8163. [PMID: 35297313 PMCID: PMC9161965 DOI: 10.1080/21655979.2022.2051856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023] Open
Abstract
Combating climate change and ensuring energy supply to a rapidly growing global population has highlighted the need to replace petroleum fuels with clean, and sustainable renewable fuels. Biofuels offer a solution to safeguard energy security with reduced ecological footprint and process economics. Over the past years, lignocellulosic biomass has become the most preferred raw material for the production of biofuels, such as fuel, alcohol, biodiesel, and biohydrogen. However, the cost-effective conversion of lignocellulose into biofuels remains an unsolved challenge at the industrial scale. Recently, intensive efforts have been made in lignocellulose feedstock and microbial engineering to address this problem. By improving the biological pathways leading to the polysaccharide, lignin, and lipid biosynthesis, limited success has been achieved, and still needs to improve sustainable biofuel production. Impressive success is being achieved by the retouring metabolic pathways of different microbial hosts. Several robust phenotypes, mostly from bacteria and yeast domains, have been successfully constructed with improved substrate spectrum, product yield and sturdiness against hydrolysate toxins. Cyanobacteria is also being explored for metabolic advancement in recent years, however, it also remained underdeveloped to generate commercialized biofuels. The bacterium Escherichia coli and yeast Saccharomyces cerevisiae strains are also being engineered to have cell surfaces displaying hydrolytic enzymes, which holds much promise for near-term scale-up and biorefinery use. Looking forward, future advances to achieve economically feasible production of lignocellulosic-based biofuels with special focus on designing more efficient metabolic pathways coupled with screening, and engineering of novel enzymes.
Collapse
Affiliation(s)
- Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning - 530007, China
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| |
Collapse
|
7
|
Liu L, Zheng J. Identification and expression analysis of the sucrose synthase gene family in pomegranate ( Punica granatum L.). PeerJ 2022; 10:e12814. [PMID: 35047243 PMCID: PMC8757371 DOI: 10.7717/peerj.12814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/29/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Sucrose synthase (SUS, EC 2.4.1.13) is one of the major enzymes of sucrose metabolism in higher plants. It has been associated with C allocation, biomass accumulation, and sink strength. The SUS gene families have been broadly explored and characterized in a number of plants. The pomegranate (Punica granatum) genome is known, however, it lacks a comprehensive study on its SUS genes family. METHODS PgSUS genes were identified from the pomegranate genome using a genome-wide search method. The PgSUS gene family was comprehensively analyzed by physicochemical properties, evolutionary relationship, gene structure, conserved motifs and domains, protein structure, syntenic relationships, and cis-acting elements using bioinformatics methods. The expression pattern of the PgSUS gene in different organs and fruit development stages were assayed with RNA-seq obtained from the NCBI SRA database as well as real-time quantitative polymerase chain reaction (qPCR). RESULTS Five pomegranate SUS genes, located on four different chromosomes, were divided into three subgroupsaccording to the classification of other seven species. The PgSUS family was found to be highly conserved during evolution after studying the gene structure, motifs, and domain analysis. Furthermore, the predicted PgSUS proteins showed similar secondary and tertiary structures. Syntenic analysis demonstrated that four PgSUS genes showed syntenic relationships with four species, with the exception of PgSUS2. Predictive promoter analysis indicated that PgSUS genes may be responsive to light, hormone signaling, and stress stimulation. RNA-seq analysis revealed that PgSUS1/3/4 were highly expressed in sink organs, including the root, flower, and fruit, and particularly in the outer seed coats. qPCR analysis showed also that PgSUS1, PgSUS3, and PgSUS4 were remarkably expressed during fruit seed coat development. Our results provide a systematic overview of the PgSUS gene family in pomegranate, developing the framework for further research and use of functional PgSUS genes.
Collapse
Affiliation(s)
- Longbo Liu
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Jie Zheng
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
8
|
Ashokkumar V, Venkatkarthick R, Jayashree S, Chuetor S, Dharmaraj S, Kumar G, Chen WH, Ngamcharussrivichai C. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review. BIORESOURCE TECHNOLOGY 2022; 344:126195. [PMID: 34710596 DOI: 10.1016/j.biortech.2021.126195] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic biomass is a highly renewable, economical, and carbon-neutral feedstock containing sugar-rich moieties that can be processed to produce second-generation biofuels and bio-sourced compounds. However, due to their heterogeneous multi-scale structure, the lignocellulosic materials have major limitations to valorization and exhibit recalcitrance to saccharification or hydrolysis by enzymes. In this context, this review focuses on the latest methods available and state-of-the-art technologies in the pretreatment of lignocellulosic biomass, which aids the disintegration of the complex materials into monomeric units. In addition, this review deals with the genetic engineering techniques to develop advanced strategies for fermentation processes or microbial cell factories to generate desired products in native or modified hosts. Further, it also intends to bridge the gap in developing various economically feasible lignocellulosic products and chemicals using biorefining technologies.
Collapse
Affiliation(s)
- Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | | | - Shanmugam Jayashree
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, Tamil Nadu 600086, India
| | - Santi Chuetor
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Su J, Zhang C, Zhu L, Yang N, Yang J, Ma B, Ma F, Li M. MdFRK2-mediated sugar metabolism accelerates cellulose accumulation in apple and poplar. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:137. [PMID: 34130710 PMCID: PMC8204578 DOI: 10.1186/s13068-021-01989-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cellulose is not only a common component in vascular plants, but also has great economic benefits for paper, wood, and industrial products. In addition, its biosynthesis is highly regulated by carbohydrate metabolism and allocation in plant. MdFRK2, which encodes a key fructokinase (FRK) in apple, showed especially high affinity to fructose and regulated carbohydrate metabolism. RESULTS It was observed that overexpression of MdFRK2 in apple decreased sucrose (Suc) and fructose (Fru) with augmented FRK activity in stems, and caused the alterations of many phenotypic traits that include increased cellulose content and an increase in thickness of the phloem region. To further investigate the involved mechanisms, we generated FRK2-OE poplar lines OE#1, OE#4 and OE#9 and discovered (1) that overexpression of MdFRK2 resulted in the huge increased cellulose level by shifting the fructose 6-phosphate or glucose 6-phsophate towards UDPG formation, (2) a direct metabolic pathway for the biosynthesis of cellulose is that increased cleavage of Suc into UDP-glucose (UDPG) for cellulose synthesis via the increased sucrose synthase (SUSY) activity and transcript levels of PtrSUSY1, (3) that the increased FRK activity increases the sink strength overall so there is more carbohydrate available to fuel increased cambial activity and that resulted in more secondary phloem. These results demonstrated that MdFRK2 overexpression would significantly changes the photosynthetic carbon flux from sucrose and hexose to UDPG for increased cellulose synthesis. CONCLUSIONS The present data indicated that MdFRK2 overexpression in apple and poplar changes the photosynthetic carbon flux from sucrose and hexose to UDPG for stem cellulose synthesis. A strategy is proposed to increase cellulose production by regulating sugar metabolism as a whole.
Collapse
Affiliation(s)
- Jing Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chunxia Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Nanxiang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jingjing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
10
|
Zhang Y, Liu C, Cheng H, Tian S, Liu Y, Wang S, Zhang H, Saqib M, Wei H, Wei Z. DNA methylation and its effects on gene expression during primary to secondary growth in poplar stems. BMC Genomics 2020; 21:498. [PMID: 32689934 PMCID: PMC7372836 DOI: 10.1186/s12864-020-06902-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Background As an important epigenetic mark, 5-methylcytosine (5mC) methylation is involved in many DNA-dependent biological processes and plays a role during development and differentiation of multicellular organisms. However, there is still a lack of knowledge about the dynamic aspects and the roles of global 5mC methylation in wood formation in tree trunks. In this study, we not only scrutinized single-base resolution methylomes of primary stems (PS), transitional stems (TS), and secondary stems (SS) of Populus trichocarpa using a high-throughput bisulfite sequencing technique, but also analyzed the effects of 5mC methylation on the expression of genes involved in wood formation. Results The overall average percentages of CG, CHG, and CHH methylation in poplar stems were ~ 53.6%, ~ 37.7%, and ~ 8.5%, respectively, and the differences of 5mC in genome-wide CG/CHG/CHH contexts among PS, TS, and SS were statistically significant (p < 0.05). The evident differences in CG, CHG, and CHH methylation contexts among 2 kb proximal promoters, gene bodies, and 2 kb downstream regions were observed among PS, TS, and SS. Further analysis revealed a perceptible global correlation between 5mC methylation levels of gene bodies and transcript levels but failed to reveal a correlation between 5mC methylation levels of proximal promoter regions and transcript levels. We identified 653 and 858 DMGs and 4978 and 4780 DEGs in PS vs TS and TS vs SS comparisons, respectively. Only 113 genes of 653 DMGs and 4978 DEGs, and 114 genes of 858 DMGs and 4780 DEG were common. Counterparts of some of these common genes in other species, including Arabidopsis thaliana, are known to be involved in secondary cell wall biosynthesis and hormone signaling. This indicates that methylation may directly modulate wood formation genes and indirectly attune hormone signaling genes, which in turn impact wood formation. Conclusions DNA methylation only marginally affects pathway genes or regulators involved in wood formation, suggesting that further studies of wood formation should lean towards the indirect effects of methylation. The information and data we provide here will be instrumental for understanding the roles of methylation in wood formation in tree species.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Cong Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - He Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Shuanghui Tian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Shuang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Huaxin Zhang
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Muhammad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Zhigang Wei
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China.
| |
Collapse
|
11
|
Brandon AG, Scheller HV. Engineering of Bioenergy Crops: Dominant Genetic Approaches to Improve Polysaccharide Properties and Composition in Biomass. FRONTIERS IN PLANT SCIENCE 2020; 11:282. [PMID: 32218797 PMCID: PMC7078332 DOI: 10.3389/fpls.2020.00282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 05/24/2023]
Abstract
Large-scale, sustainable production of lignocellulosic bioenergy from biomass will depend on a variety of dedicated bioenergy crops. Despite their great genetic diversity, prospective bioenergy crops share many similarities in the polysaccharide composition of their cell walls, and the changes needed to optimize them for conversion are largely universal. Therefore, biomass modification strategies that do not depend on genetic background or require mutant varieties are extremely valuable. Due to their preferential fermentation and conversion by microorganisms downstream, the ideal bioenergy crop should contain a high proportion of C6-sugars in polysaccharides like cellulose, callose, galactan, and mixed-linkage glucans. In addition, the biomass should be reduced in inhibitors of fermentation like pentoses and acetate. Finally, the overall complexity of the plant cell wall should be modified to reduce its recalcitrance to enzymatic deconstruction in ways that do no compromise plant health or come at a yield penalty. This review will focus on progress in the use of a variety of genetically dominant strategies to reach these ideals. Due to the breadth and volume of research in the field of lignin bioengineering, this review will instead focus on approaches to improve polysaccharide component plant biomass. Carbohydrate content can be dramatically increased by transgenic overexpression of enzymes involved in cell wall polysaccharide biosynthesis. Additionally, the recalcitrance of the cell wall can be reduced via the overexpression of native or non-native carbohydrate active enzymes like glycosyl hydrolases or carbohydrate esterases. Some research in this area has focused on engineering plants that accumulate cell wall-degrading enzymes that are sequestered to organelles or only active at very high temperatures. The rationale being that, in order to avoid potential negative effects of cell wall modification during plant growth, the enzymes could be activated post-harvest, and post-maturation of the cell wall. A potentially significant limitation of this approach is that at harvest, the cell wall is heavily lignified, making the substrates for these enzymes inaccessible and their activity ineffective. Therefore, this review will only include research employing enzymes that are at least partially active under the ambient conditions of plant growth and cell wall development.
Collapse
Affiliation(s)
- Andrew G. Brandon
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Henrik V. Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|