1
|
Chaudhary S, Sindhu SS. Iron sensing, signalling and acquisition by microbes and plants under environmental stress: Use of iron-solubilizing bacteria in crop biofortification for sustainable agriculture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112496. [PMID: 40222392 DOI: 10.1016/j.plantsci.2025.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Iron is very crucial micronutrient prerequisite for growth of all cellular organisms including plants, microbes, animals and humans. Though iron (Fe) is present in abundance in earth's crust, but most of its forms present in soil are biologically unavailable, thus putting a constraint to utilize it. Plants and microorganisms maintain iron homeostasis to balance the supply of enough Fe for metabolism from their surrounding environments and to avoid excessive toxic levels. Microorganisms and plants employ different strategies for sensing, signaling, transportation and uptake of Fe under different types of stressed environments. Microbial communities present in soil and vicinity of roots contribute in biogeochemical cycling and uptake of different nutrients including Fe resulting into improved soil fertility and plant health. In this review, the regulation of iron uptake and transport under different kinds of biotic and abiotic stresses is described. In addition, the insights have been provided for enhancing bioavailability of Fe in sustainable agriculture practices. The inoculation of different crop plants with iron solubilizing microbes improved bioavailablilty of Fe in soil and increased plant growth and crop yield. Insights were provided about possible role of recent bioengineering techniques to improve Fe availability and uptake by plants. However, well-planned and large-scale field trials are required before recommending particular iron solubilizing microbes as biofertilizers for increasing Fe availability, improving plant development and crop yields in sustainable agriculture.
Collapse
Affiliation(s)
- Suman Chaudhary
- CSIR-Institute of Microbial Technology, Sector - 39A, Chandigarh, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004, India.
| |
Collapse
|
2
|
Rahikainen M, Berkowitz O, Whelan J, Kangasjärvi S, Pascual J. Role of aconitase in plant stress response and signaling. PHYSIOLOGIA PLANTARUM 2025; 177:e70128. [PMID: 39968683 DOI: 10.1111/ppl.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
Mitochondria are the centres of carbon and energy metabolism in cells and are functionally integrated with other organelles. Under environmental stress, disturbances in organellar functions trigger stress signals that activate the necessary metabolic responses and maintain cell redox homeostasis. The tricarboxylic acid cycle enzyme aconitase has emerged as a key component in stress-induced organellar signalling and a regulator of metabolic and redox balance in photosynthetic organisms. Aconitase mediates mitochondrial and chloroplast retrograde signalling and contributes to the activation of the alternative oxidase (AOX) pathway in mitochondria. Aconitase-driven citrate metabolism plays a crucial role in providing reducing equivalents and metabolic precursors for cytosolic nitrogen metabolism and biosynthetic pathways relevant for stress acclimation. Besides its enzymatic activity, aconitase has a non-canonical function as it is a post-transcriptional regulator of specific gene transcripts. The varied functions of aconitase under stress are facilitated by the regulation of specific aconitase isoforms at multiple levels. This review discusses the emerging role of aconitase as a central regulator of stress responses and signalling in photosynthetic organisms.
Collapse
Affiliation(s)
- Moona Rahikainen
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, Australia
| | - James Whelan
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
- Provincial International Science and Technology Cooperation Base on Engineering Biology, Zhejiang University, Haining, P.R. China
| | - Saijaliisa Kangasjärvi
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Jesús Pascual
- Genetics, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
- Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| |
Collapse
|
3
|
Senoura T, Nozoye T, Yuki R, Yamamoto M, Maeda K, Sato-Izawa K, Ezura H, Itai RN, Bashir K, Masuda H, Kobayashi T, Nakanishi H, Nishizawa NK. Molecular-based characterization and bioengineering of Sorghum bicolor to enhance iron deficiency tolerance in iron-limiting calcareous soils. PLANT MOLECULAR BIOLOGY 2024; 114:117. [PMID: 39448407 DOI: 10.1007/s11103-024-01508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
Plant biomass can significantly contribute to alternative energy sources. Sorghum bicolor is a promising plant for producing energy, but is susceptible to iron deficiency, which inhibits its cultivation in iron-limiting calcareous soils. The molecular basis for the susceptibility of sorghum to iron deficiency remains unclear. Here, we explored the sorghum genome to identify genes involved in iron uptake and translocation. Iron deficiency-responsive gene expression was comparable to that in other graminaceous plants. A nicotianamine synthase gene, SbNAS1, was induced in response to iron deficiency, and SbNAS1 showed enzyme activity. Sorghum secreted 2'-deoxymugineic acid and other phytosiderophores under iron deficiency, but their levels were relatively low. Intercropping of sorghum with barley or rice rescued iron deficiency symptoms of sorghum. To produce bioengineered sorghum with enhanced tolerance to iron deficiency, we introduced four cassettes into sorghum: 35S promoter-OsIRO2 for activation of iron acquisition-related gene expression, SbIRT1 promoter-Refre1/372 for enhanced ferric-chelate reductase activity, and barley IDS3, and HvNAS1 genomic fragments for enhanced production of phytosiderophores and nicotianamine. The resultant single sorghum line exhibited enhanced secretion of phytosiderophores, increased ferric-chelate reductase activity, and improved iron uptake and leaf greenness compared with non-transformants under iron-limiting conditions. Similar traits were also conferred to rice by introducing the four cassettes. Moreover, these rice lines showed similar or better tolerance in calcareous soils and increased grain iron accumulation compared with previous rice lines carrying two or three comparable cassettes. These results provide a molecular basis for the bioengineering of sorghum tolerant of low iron availability in calcareous soils.
Collapse
Affiliation(s)
- Takeshi Senoura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Tomoko Nozoye
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
- Center for Liberal Arts, Meiji Gakuin University, 1518 Kamikurata-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8539, Japan
| | - Rintaro Yuki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Mayu Yamamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Keisuke Maeda
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Kanna Sato-Izawa
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, Setagaya, Japan
| | - Hiroshi Ezura
- Insitute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Reiko Nakanishi Itai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Khurram Bashir
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
- Department of Life Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Hiroshi Masuda
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Shimoshinjo-Nakano, Akita, 010-0195, Japan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Hiromi Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| |
Collapse
|
4
|
Huang S, Yamaji N, Ma JF. Metal Transport Systems in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:1-25. [PMID: 38382903 DOI: 10.1146/annurev-arplant-062923-021424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Plants take up metals, including essential micronutrients [iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn)] and the toxic heavy metal cadmium (Cd), from soil and accumulate these metals in their edible parts, which are direct and indirect intake sources for humans. Multiple transporters belonging to different families are required to transport a metal from the soil to different organs and tissues, but only a few of them have been fully functionally characterized. The transport systems (the transporters required for uptake, translocation, distribution, redistribution, and their regulation) differ with metals and plant species, depending on the physiological roles, requirements of each metal, and anatomies of different organs and tissues. To maintain metal homeostasis in response to spatiotemporal fluctuations of metals in soil, plants have developed sophisticated and tightly regulated mechanisms through the regulation of transporters at the transcriptional and/or posttranscriptional levels. The manipulation of some transporters has succeeded in generating crops rich in essential metals but low in Cd accumulation. A better understanding of metal transport systems will contribute to better and safer crop production.
Collapse
Affiliation(s)
- Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| |
Collapse
|
5
|
Ning X, Lin M, Huang G, Mao J, Gao Z, Wang X. Research progress on iron absorption, transport, and molecular regulation strategy in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1190768. [PMID: 37465388 PMCID: PMC10351017 DOI: 10.3389/fpls.2023.1190768] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 07/20/2023]
Abstract
Iron is a trace element essential for normal plant life activities and is involved in various metabolic pathways such as chlorophyll synthesis, photosynthesis, and respiration. Although iron is highly abundant in the earth's crust, the amount that can be absorbed and utilized by plants is very low. Therefore, plants have developed a series of systems for absorption, transport, and utilization in the course of long-term evolution. This review focuses on the findings of current studies of the Fe2+ absorption mechanism I, Fe3+ chelate absorption mechanism II and plant-microbial interaction iron absorption mechanism, particularly effective measures for artificially regulating plant iron absorption and transportation to promote plant growth and development. According to the available literature, the beneficial effects of using microbial fertilizers as iron fertilizers are promising but further evidence of the interaction mechanism between microorganisms and plants is required.
Collapse
Affiliation(s)
- Xinyi Ning
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- College of Environmental And Chemical Engineering, Nanchang Hangkong University, Nanchang, China
- Kiwifruit Engineering Research Center of Jiangxi Province, Nanchang, China
| | - Mengfei Lin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- Kiwifruit Engineering Research Center of Jiangxi Province, Nanchang, China
| | - Guohua Huang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- College of Environmental And Chemical Engineering, Nanchang Hangkong University, Nanchang, China
- Kiwifruit Engineering Research Center of Jiangxi Province, Nanchang, China
| | - Jipeng Mao
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- Kiwifruit Engineering Research Center of Jiangxi Province, Nanchang, China
| | - Zhu Gao
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- Kiwifruit Engineering Research Center of Jiangxi Province, Nanchang, China
- JInstitute of Biotechnology, Jiangxi Academy of Sciences, Ji’an, Jiangxi, China
| | - Xiaoling Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- Kiwifruit Engineering Research Center of Jiangxi Province, Nanchang, China
| |
Collapse
|
6
|
Vélez-Bermúdez IC, Schmidt W. Iron sensing in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1145510. [PMID: 36968364 PMCID: PMC10032465 DOI: 10.3389/fpls.2023.1145510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The ease of accepting or donating electrons is the raison d'être for the pivotal role iron (Fe) plays in a multitude of vital processes. In the presence of oxygen, however, this very property promotes the formation of immobile Fe(III) oxyhydroxides in the soil, which limits the concentration of Fe that is available for uptake by plant roots to levels well below the plant's demand. To adequately respond to a shortage (or, in the absence of oxygen, a possible surplus) in Fe supply, plants have to perceive and decode information on both external Fe levels and the internal Fe status. As a further challenge, such cues have to be translated into appropriate responses to satisfy (but not overload) the demand of sink (i.e., non-root) tissues. While this seems to be a straightforward task for evolution, the multitude of possible inputs into the Fe signaling circuitry suggests diversified sensing mechanisms that concertedly contribute to govern whole plant and cellular Fe homeostasis. Here, we review recent progress in elucidating early events in Fe sensing and signaling that steer downstream adaptive responses. The emerging picture suggests that Fe sensing is not a central event but occurs in distinct locations linked to distinct biotic and abiotic signaling networks that together tune Fe levels, Fe uptake, root growth, and immunity in an interwoven manner to orchestrate and prioritize multiple physiological readouts.
Collapse
Affiliation(s)
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Liang G. Iron uptake, signaling, and sensing in plants. PLANT COMMUNICATIONS 2022; 3:100349. [PMID: 35706354 PMCID: PMC9483112 DOI: 10.1016/j.xplc.2022.100349] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 05/10/2023]
Abstract
Iron (Fe) is an essential micronutrient that affects the growth and development of plants because it participates as a cofactor in numerous physiological and biochemical reactions. As a transition metal, Fe is redox active. Fe often exists in soil in the form of insoluble ferric hydroxides that are not bioavailable to plants. Plants have developed sophisticated mechanisms to ensure an adequate supply of Fe in a fluctuating environment. Plants can sense Fe status and modulate the transcription of Fe uptake-associated genes, finally controlling Fe uptake from soil to root. There is a critical need to understand the molecular mechanisms by which plants maintain Fe homeostasis in response to Fe fluctuations. This review focuses on recent advances in elucidating the functions of Fe signaling components. Taking Arabidopsis thaliana and Oryza sativa as examples, this review begins by discussing the Fe acquisition systems that control Fe uptake from soil, the major components that regulate Fe uptake systems, and the perception of Fe status. Future explorations of Fe signal transduction will pave the way for understanding the regulatory mechanisms that underlie the maintenance of plant Fe homeostasis.
Collapse
Affiliation(s)
- Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan 650223, China.
| |
Collapse
|
8
|
Kobayashi T, Shinkawa H, Nagano AJ, Nishizawa NK. The basic leucine zipper transcription factor OsbZIP83 and the glutaredoxins OsGRX6 and OsGRX9 facilitate rice iron utilization under the control of OsHRZ ubiquitin ligases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1731-1750. [PMID: 35411594 DOI: 10.1111/tpj.15767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 05/16/2023]
Abstract
Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron-related genes at the transcript level, but their protein-level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA-type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ-interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome- and OsHRZ-dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron-deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron-related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Haruka Shinkawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| |
Collapse
|
9
|
Krupinska K, Desel C, Frank S, Hensel G. WHIRLIES Are Multifunctional DNA-Binding Proteins With Impact on Plant Development and Stress Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:880423. [PMID: 35528945 PMCID: PMC9070903 DOI: 10.3389/fpls.2022.880423] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/24/2022] [Indexed: 06/01/2023]
Abstract
WHIRLIES are plant-specific proteins binding to DNA in plastids, mitochondria, and nucleus. They have been identified as significant components of nucleoids in the organelles where they regulate the structure of the nucleoids and diverse DNA-associated processes. WHIRLIES also fulfil roles in the nucleus by interacting with telomers and various transcription factors, among them members of the WRKY family. While most plants have two WHIRLY proteins, additional WHIRLY proteins evolved by gene duplication in some dicot families. All WHIRLY proteins share a conserved WHIRLY domain responsible for ssDNA binding. Structural analyses revealed that WHIRLY proteins form tetramers and higher-order complexes upon binding to DNA. An outstanding feature is the parallel localization of WHIRLY proteins in two or three cell compartments. Because they translocate from organelles to the nucleus, WHIRLY proteins are excellent candidates for transducing signals between organelles and nucleus to allow for coordinated activities of the different genomes. Developmental cues and environmental factors control the expression of WHIRLY genes. Mutants and plants with a reduced abundance of WHIRLY proteins gave insight into their multiple functionalities. In chloroplasts, a reduction of the WHIRLY level leads to changes in replication, transcription, RNA processing, and DNA repair. Furthermore, chloroplast development, ribosome formation, and photosynthesis are impaired in monocots. In mitochondria, a low level of WHIRLIES coincides with a reduced number of cristae and a low rate of respiration. The WHIRLY proteins are involved in the plants' resistance toward abiotic and biotic stress. Plants with low levels of WHIRLIES show reduced responsiveness toward diverse environmental factors, such as light and drought. Consequently, because such plants are impaired in acclimation, they accumulate reactive oxygen species under stress conditions. In contrast, several plant species overexpressing WHIRLIES were shown to have a higher resistance toward stress and pathogen attacks. By their multiple interactions with organelle proteins and nuclear transcription factors maybe a comma can be inserted here? and their participation in organelle-nucleus communication, WHIRLY proteins are proposed to serve plant development and stress resistance by coordinating processes at different levels. It is proposed that the multifunctionality of WHIRLY proteins is linked to the plasticity of land plants that develop and function in a continuously changing environment.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christine Desel
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Susann Frank
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Götz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
10
|
Lešková A, Javot H, Giehl RFH. Metal crossroads in plants: modulation of nutrient acquisition and root development by essential trace metals. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1751-1765. [PMID: 34791130 DOI: 10.1093/jxb/erab483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The metals iron, zinc, manganese, copper, molybdenum, and nickel are essential for the growth and development of virtually all plant species. Although these elements are required at relatively low amounts, natural factors and anthropogenic activities can significantly affect their availability in soils, inducing deficiencies or toxicities in plants. Because essential trace metals can shape root systems and interfere with the uptake and signaling mechanisms of other nutrients, the non-optimal availability of any of them can induce multi-element changes in plants. Interference by one essential trace metal with the acquisition of another metal or a non-metal nutrient can occur prior to or during root uptake. Essential trace metals can also indirectly impact the plant's ability to capture soil nutrients by targeting distinct root developmental programs and hormone-related processes, consequently inducing largely metal-specific changes in root systems. The presence of metal binding domains in many regulatory proteins also enables essential trace metals to coordinate nutrient uptake by acting at high levels in hierarchical signaling cascades. Here, we summarize the known molecular and cellular mechanisms underlying trace metal-dependent modulation of nutrient acquisition and root development, and highlight the importance of considering multi-element interactions to breed crops better adapted to non-optimal trace metal availabilities.
Collapse
Affiliation(s)
- Alexandra Lešková
- Aix Marseille Univ, CEA, CNRS, Bioscience and Biotechnology Institut of Aix-Marseille (BIAM), SAVE, Saint Paul-Lez-Durance, F-13108, France
| | - Hélène Javot
- Aix Marseille Univ, CEA, CNRS, Bioscience and Biotechnology Institut of Aix-Marseille (BIAM), SAVE, Saint Paul-Lez-Durance, F-13108, France
| | - Ricardo F H Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| |
Collapse
|
11
|
Sági-Kazár M, Solymosi K, Solti Á. Iron in leaves: chemical forms, signalling, and in-cell distribution. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1717-1734. [PMID: 35104334 PMCID: PMC9486929 DOI: 10.1093/jxb/erac030] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is an essential transition metal. Based on its redox-active nature under biological conditions, various Fe compounds serve as cofactors in redox enzymes. In plants, the photosynthetic machinery has the highest demand for Fe. In consequence, the delivery and incorporation of Fe into cofactors of the photosynthetic apparatus is the focus of Fe metabolism in leaves. Disturbance of foliar Fe homeostasis leads to impaired biosynthesis of chlorophylls and composition of the photosynthetic machinery. Nevertheless, mitochondrial function also has a significant demand for Fe. The proper incorporation of Fe into proteins and cofactors as well as a balanced intracellular Fe status in leaf cells require the ability to sense Fe, but may also rely on indirect signals that report on the physiological processes connected to Fe homeostasis. Although multiple pieces of information have been gained on Fe signalling in roots, the regulation of Fe status in leaves has not yet been clarified in detail. In this review, we give an overview on current knowledge of foliar Fe homeostasis, from the chemical forms to the allocation and sensing of Fe in leaves.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| |
Collapse
|
12
|
Vélez-Bermúdez IC, Schmidt W. How Plants Recalibrate Cellular Iron Homeostasis. PLANT & CELL PHYSIOLOGY 2022; 36:154-162. [PMID: 35048128 DOI: 10.1093/pcp/pcab166] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 05/16/2023]
Abstract
Insufficient iron supply poses severe constraints on plants, restricting species with inefficient iron uptake mechanisms from habitats with low iron availability and causing yield losses in agricultural ecosystems. Iron deficiency also poses a severe threat on human health. Anemia resulting from insufficient iron intake is affecting one of four people in the world. It is, therefore, imperative to understand the mechanisms by which plants acquire iron against a huge soil-cell gradient and how iron is distributed within the plant to develop strategies that increase its concentration in edible plant parts. Research into the processes that are employed by plants to adjust cellular iron homeostasis revealed an astonishingly complex puzzle of signaling nodes and circuits, which are intertwined with the perception and communication of other environmental cues such as pathogens, light, nutrient availability and edaphic factors such as pH. In a recent Spotlight issue in this journal, a collection of review articles summarized the state-of-the-art in plant iron research, covering the most active and, debatably, most important topics in this field. Here, we highlight breakthroughs that were reported after the publication date of this review collection, focusing on exciting and potentially influential studies that have changed our understanding of plant iron nutrition.
Collapse
Affiliation(s)
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, 1 Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
13
|
Bashir K, Ishimaru Y. Challenges and opportunities to regulate mineral transport in rice. Biosci Biotechnol Biochem 2021; 86:12-22. [PMID: 34661659 DOI: 10.1093/bbb/zbab180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022]
Abstract
Iron (Fe) is an essential mineral for plants, and its deficiency as well as toxicity severely affects plant growth and development. Although Fe is ubiquitous in mineral soils, its acquisition by plants is difficult to regulate particularly in acidic and alkaline soils. Under alkaline conditions, where lime is abundant, Fe and other mineral elements are sparingly soluble. In contrast, under low pH conditions, especially in paddy fields, Fe toxicity could occur. Fe uptake is complicated and could be integrated with copper (Cu), manganese (Mn), zinc (Zn), and cadmium (Cd) uptake. Plants have developed sophisticated mechanisms to regulate the Fe uptake from soil and its transport to root and above-ground parts. Here, we review recent developments in understanding metal transport and discuss strategies to effectively regulate metal transport in plants with a particular focus on rice.
Collapse
Affiliation(s)
- Khurram Bashir
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Yasuhiro Ishimaru
- Department of Biomolecular Engineering, Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
14
|
Bashir K, Ahmad Z, Kobayashi T, Seki M, Nishizawa NK. Roles of subcellular metal homeostasis in crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2083-2098. [PMID: 33502492 DOI: 10.1093/jxb/erab018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Improvement of crop production in response to rapidly changing environmental conditions is a serious challenge facing plant breeders and biotechnologists. Iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) are essential micronutrients for plant growth and reproduction. These minerals are critical to several cellular processes including metabolism, photosynthesis, and cellular respiration. Regulating the uptake and distribution of these minerals could significantly improve plant growth and development, ultimately leading to increased crop production. Plant growth is limited by mineral deficiency, but on the other hand, excess Fe, Mn, Cu, and Zn can be toxic to plants; therefore, their uptake and distribution must be strictly regulated. Moreover, the distribution of these metals among subcellular organelles is extremely important for maintaining optimal cellular metabolism. Understanding the mechanisms controlling subcellular metal distribution and availability would enable development of crop plants that are better adapted to challenging and rapidly changing environmental conditions. Here, we describe advances in understanding of subcellular metal homeostasis, with a particular emphasis on cellular Fe homeostasis in Arabidopsis and rice, and discuss strategies for regulating cellular metabolism to improve plant production.
Collapse
Affiliation(s)
- Khurram Bashir
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore, Pakistan
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, Suehiro, Tsurumi Ku, Yokohama, Kanagawa, Japan
| | - Zarnab Ahmad
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, Suehiro, Tsurumi Ku, Yokohama, Kanagawa, Japan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Motoaki Seki
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, Suehiro, Tsurumi Ku, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
15
|
Kobayashi T, Nagano AJ, Nishizawa NK. Iron deficiency-inducible peptide-coding genes OsIMA1 and OsIMA2 positively regulate a major pathway of iron uptake and translocation in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2196-2211. [PMID: 33206982 DOI: 10.1093/jxb/eraa546] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/12/2020] [Indexed: 05/16/2023]
Abstract
Under low iron (Fe) availability, plants transcriptionally induce various genes responsible for Fe uptake and translocation to obtain adequate amounts of Fe. Although transcription factors and ubiquitin ligases involved in these Fe deficiency responses have been identified, the mechanisms coordinating these pathways have not been clarified in rice. Recently identified Fe-deficiency-inducible IRON MAN (IMA)/FE UPTAKE-INDUCING PEPTIDE (FEP) positively regulates many Fe-deficiency-inducible genes for Fe uptake in Arabidopsis. Here, we report that the expression of two IMA/FEP genes in rice, OsIMA1 and OsIMA2, is strongly induced under Fe deficiency, positively regulated by the transcription factors IDEF1, OsbHLH058, and OsbHLH059, as well as OsIMA1 and OsIMA2 themselves, and negatively regulated by HRZ ubiquitin ligases. Overexpression of OsIMA1 or OsIMA2 in rice conferred tolerance to Fe deficiency and accumulation of Fe in leaves and seeds. These OsIMA-overexpressing rice exhibited enhanced expression of all of the known Fe-deficiency-inducible genes involved in Fe uptake and translocation, except for OsYSL2, a Fe-nicotianamine transporter gene, in roots but not in leaves. Knockdown of OsIMA1 or OsIMA2 caused minor effects, including repression of some Fe uptake- and translocation-related genes in OsIMA1 knockdown roots. These results indicate that OsIMA1 and OsIMA2 play key roles in enhancing the major pathway of the Fe deficiency response in rice.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi, Ishikawa, Japan
| | | | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi, Ishikawa, Japan
| |
Collapse
|