1
|
Chen Y, Hu S, Hu B, Li Y, Chen Z. Functional insights into microbial community dynamics and resilience in mycorrhizal associated constructed wetlands under pesticide stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138315. [PMID: 40250281 DOI: 10.1016/j.jhazmat.2025.138315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) are critical mutualistic symbionts in most terrestrial ecosystems, where they facilitate nutrient acquisition, enhance plant resilience to environmental stressors, and shape the surrounding microbiome. However, its contributions (especially for microorganisms) to constructed wetlands (CWs) under pesticide stress remain poorly understood. This study investigated the effects of AMF on microbial community composition, diversity, metabolic pathways, and functional genes by metagenomics in CWs exposed to pesticides stress. Using comparative analyses of AMF-colonized and non-colonized CWs, we found that AMF enhanced overall microbial diversity, as evidenced by increases of 2.22 % (Chao1) and 2.83 % (observed species). Under fungicide stress, nitrogen-cycling microorganisms (e.g., Nitrososphaerota and Mucoromycota) increased in relative abundance, while carbon cycle-related microorganisms (e.g., Pseudomonadota and Bacteroidota) generally declined. AMF colonization improved microbial resilience, demonstrated by a 312 % rise in Rhizophagus abundance and significant increases in phosphorus-cycling microorganisms (e.g., Bradyrhizobium and Mesorhizobium). Functional gene analysis further revealed that AMF helped mitigate fungicide-induced reductions in genes related to nitrogen and carbon cycling, lowering the average decline rates to 4.02 % and 1.44 %, respectively, compared to higher rates in non-AMF treatments. In summary, these findings highlight the crucial role of AMF in enhancing pesticide stress resilience, maintaining microbial community stability, and improving the bioremediation capacity of CWs.
Collapse
Affiliation(s)
- Yingrun Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Praha - Suchdol 16500, Czech Republic
| | - Shanshan Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bo Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yungui Li
- Sichuan Provincial Sci-Tech Cooperation Base of Low-cost Wastewater Treatment Technology, Department of Environmental Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Praha - Suchdol 16500, Czech Republic.
| |
Collapse
|
2
|
Liu S, Zheng N, Wang J, Zhao S. Nitrogen metabolism of the highly ureolytic bacterium Proteus penneri S99 isolated from the rumen. BMC Microbiol 2025; 25:104. [PMID: 40021987 PMCID: PMC11869435 DOI: 10.1186/s12866-025-03808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND The model rumen-dominant ureolytic bacterium P. penneri S99 exhibits high urease activity. It was cultivated using ammonia, urea, amino acids, or their combination as nitrogen sources. To identify differences in gene expression, the transcript abundances of various genes involved in nitrogen metabolism were analyzed by harvesting mRNA from cells during the exponential growth phases on different nitrogen sources. RESULTS P. penneri S99 can utilize ammonia, urea, or amino acids as the sole nitrogen sources for growth and shows a preference for utilizing urea. It exhibits similar growth rates and maximum biomass on ammonia and urea, but showed higher growth rates and maximum biomass on amino acids. Transcriptome sequencing analysis revealed different transcription patterns in response to different nitrogen sources. The urease gene expression was detected in all three different nitrogen sources, and complete hydrolysis of urea was also observed when other nitrogen sources were added to the medium containing urea. The regulation of urease in P. penneri S99 was characterized by constitutive expression, not by urea. The growth of P. penneri S99 on ammonia, ammonium acid, and urea was similar, with the only observed difference being an increase in urease transcript abundance. CONCLUSIONS The transcription patterns of nitrogen metabolism genes offer insights into how nitrogen is utilized in the rumen.
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| |
Collapse
|
3
|
Sathee L, R S, Barman D, Adavi SB, Jha SK, Chinnusamy V. Nitrogen at the crossroads of light: integration of light signalling and plant nitrogen metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:803-818. [PMID: 39540633 DOI: 10.1093/jxb/erae437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Plants have developed complex mechanisms to perceive, transduce, and respond to environmental signals, such as light, which are essential for acquiring and allocating resources, including nitrogen (N). This review delves into the complex interaction between light signals and N metabolism, emphasizing light-mediated regulation of N uptake and assimilation. Firstly, we examine the details of light-mediated regulation of N uptake and assimilation, focusing on the light-responsive activity of nitrate reductase (NR) and nitrate transporters. Secondly, we discuss the influence of light on N-dependent developmental plasticity, elucidating how N availability regulates crucial developmental transitions such as flowering time, shoot branching, and root growth, as well as how light modulates these processes. Additionally, we consider the molecular interaction between light and N signalling, focusing on photoreceptors and transcription factors such as HY5, which are necessary for N uptake and assimilation under varying light conditions. A recent understanding of the nitrate signalling and perception of low N is also highlighted. The in silico transcriptome analysis suggests a reprogramming of N signalling genes by shade, and identifies NLP7, bZIP1, CPK30, CBL1, LBD37, LBD38, and HRS1 as crucial molecular regulators integrating light-regulated N metabolism.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Suriyaprakash R
- Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Dipankar Barman
- Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Sandeep B Adavi
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhattishgarh, 493 225, India
| | - Shailendra K Jha
- Division of Genetics, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| |
Collapse
|
4
|
Zhang W, Yuan S, Liu N, Zhang H, Zhang Y. Glutamine Synthetase and Glutamate Synthase Family Perform Diverse Physiological Functions in Exogenous Hormones and Abiotic Stress Responses in Pyrus betulifolia Bunge ( P.be). PLANTS (BASEL, SWITZERLAND) 2024; 13:2759. [PMID: 39409629 PMCID: PMC11479100 DOI: 10.3390/plants13192759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024]
Abstract
The unscientific application of nitrogen (N) fertilizer not only increases the economic input of pear growers but also leads to environmental pollution. Improving plant N use efficiency (NUE) is the most effective economical method to solve the above problems. The absorption and utilization of N by plants is a complicated process. Glutamine synthetase (GS) and glutamate synthase (GOGAT) are crucial for synthesizing glutamate from ammonium in plants. However, their gene family in pears has not been documented. This study identified 29 genes belonging to the GS and GOGAT family in the genomes of Pyrus betulaefolia (P.be, 10 genes), Pyrus pyrifolia (P.py, 9 genes), and Pyrus bretschneideri (P.br, 10 genes). These genes were classified into two GS subgroups (GS1 and GS2) and two GOGAT subgroups (Fd-GOGAT and NADH-GOGAT). The similar exon-intron structures and conserved motifs within each cluster suggest the evolutionary conservation of these genes. Meanwhile, segmental duplication has driven the expansion and evolution of the GS and GOGAT gene families in pear. The tissue-specific expression dynamics of PbeGS and PbeGOGAT genes suggest significant roles in pear growth and development. Cis-acting elements of the GS and GOGAT gene promoters are crucial for plant development, hormonal responses, and stress reactions. Furthermore, qRT-PCR analysis indicated that PbeGSs and PbeGOGATs showed differential expression under exogenous hormones (GA3, IAA, SA, ABA) and abiotic stress (NO3- and salt stress). In which, the expression of PbeGS2.2 was up-regulated under hormone treatment and down-regulated under salt stress. Furthermore, physiological experiments demonstrated that GA3 and IAA promoted GS, Fd-GOGAT, and NADH-GOGAT enzyme activities, as well as the N content. Correlation analysis revealed a significant positive relationship between PbeGS1.1, PbeGS2.2, PbeNADH-GOGATs, and the N content. Therefore, PbeGS1.1, PbeGS2.2, and PbeNADH-GOGATs could be key candidate genes for improving NUE under plant hormone and abiotic stress response. To the best of our knowledge, our study provides valuable biological information about the GS and GOGAT family in the pear for the first time and establishes a foundation for molecular breeding aimed at developing high NUE pear rootstocks.
Collapse
Affiliation(s)
- Weilong Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (W.Z.); (S.Y.); (N.L.)
| | - Shuai Yuan
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (W.Z.); (S.Y.); (N.L.)
| | - Na Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (W.Z.); (S.Y.); (N.L.)
- Pear Technology and Innovation Center of Hebei Province, Baoding 071001, China
| | - Haixia Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (W.Z.); (S.Y.); (N.L.)
- Pear Technology and Innovation Center of Hebei Province, Baoding 071001, China
| | - Yuxing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (W.Z.); (S.Y.); (N.L.)
- Pear Technology and Innovation Center of Hebei Province, Baoding 071001, China
| |
Collapse
|
5
|
Hou LY, Sommer F, Poeker L, Dziubek D, Schroda M, Geigenberger P. The impact of light and thioredoxins on the plant thiol-disulfide proteome. PLANT PHYSIOLOGY 2024; 195:1536-1560. [PMID: 38214043 PMCID: PMC11142374 DOI: 10.1093/plphys/kiad669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
Thiol-based redox regulation is a crucial posttranslational mechanism to acclimate plants to changing light availability. Here, we conducted a biotin switch-based redox proteomics study in Arabidopsis (Arabidopsis thaliana) to systematically investigate dynamics of thiol-redox networks in response to temporal changes in light availability and across genotypes lacking parts of the thioredoxin (Trx) or NADPH-Trx-reductase C (NTRC) systems in the chloroplast. Time-resolved dynamics revealed light led to marked decreases in the oxidation states of many chloroplast proteins with photosynthetic functions during the first 10 min, followed by their partial reoxidation after 2 to 6 h into the photoperiod. This involved f, m, and x-type Trx proteins showing similar light-induced reduction-oxidation dynamics, while NTRC, 2-Cys peroxiredoxins, and Trx y2 showed an opposing pattern, being more oxidized in light than dark. In Arabidopsis trxf1f2, trxm1m2, or ntrc mutants, most proteins showed increased oxidation states in the light compared to wild type, suggesting their light-dependent dynamics were related to NTRC/Trx networks. While NTRC deficiency had a strong influence in all light conditions, deficiencies in f- or m-type Trxs showed differential impacts on the thiol-redox proteome depending on the light environment, being higher in constant or fluctuating light, respectively. The results indicate plant redox proteomes are subject to dynamic changes in reductive and oxidative pathways to cooperatively fine-tune photosynthetic and metabolic processes in the light. The importance of the individual elements of the NTRC/Trx networks mediating these responses depend on the extent of light variability, with NTRC playing a crucial role to balance protein-redox states in rapidly fluctuating light.
Collapse
Affiliation(s)
- Liang-Yu Hou
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Plant and Microbial Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Frederik Sommer
- Molekulare Biotechnologie und Systembiologie, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Louis Poeker
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Dejan Dziubek
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Michael Schroda
- Molekulare Biotechnologie und Systembiologie, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Peter Geigenberger
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Yang J, Wang Y, Sun J, Li Y, Zhu R, Yin Y, Wang C, Yin X, Qin L. Metabolome and Transcriptome Association Analysis Reveals Mechanism of Synthesis of Nutrient Composition in Quinoa ( Chenopodium quinoa Willd.) Seeds. Foods 2024; 13:1325. [PMID: 38731698 PMCID: PMC11082971 DOI: 10.3390/foods13091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) seeds are rich in nutrition, superior to other grains, and have a high market value. However, the biosynthesis mechanisms of protein, starch, and lipid in quinoa grain are still unclear. The objective of this study was to ascertain the nutritional constituents of white, yellow, red, and black quinoa seeds and to employ a multi-omics approach to analyze the synthesis mechanisms of these nutrients. The findings are intended to furnish a theoretical foundation and technical support for the biological breeding of quinoa in China. In this study, the nutritional analysis of white, yellow, red, and black quinoa seeds from the same area showed that the nutritional contents of the quinoa seeds were significantly different, and the protein content increased with the deepening of color. The protein content of black quinoa was the highest (16.1 g/100 g) and the lipid content was the lowest (2.7 g/100 g), among which, linoleic acid was the main fatty acid. A combined transcriptome and metabolome analysis exhibited that differentially expressed genes were enriched in "linoleic acid metabolism", "unsaturated fatty acid biosynthesis", and "amino acid biosynthesis". We mainly identified seven genes involved in starch synthesis (LOC110716805, LOC110722789, LOC110738785, LOC110720405, LOC110730081, LOC110692055, and LOC110732328); five genes involved in lipid synthesis (LOC110701563, LOC110699636, LOC110709273, LOC110715590, and LOC110728838); and nine genes involved in protein synthesis (LOC110710842, LOC110720003, LOC110687170, LOC110716004, LOC110702086, LOC110724454 LOC110724577, LOC110704171, and LOC110686607). The data presented in this study based on nutrient, transcriptome, and metabolome analyses contribute to an enhanced understanding of the genetic regulation of seed quality traits in quinoa, and provide candidate genes for further genetic improvements to improve the nutritional value of quinoa seeds.
Collapse
Affiliation(s)
- Jindan Yang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Yiyun Wang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Jiayi Sun
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Yuzhe Li
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Renbin Zhu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230036, China;
| | - Yongjie Yin
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Chuangyun Wang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Xuebin Yin
- Suzhou Selenium Valley Technology Co., Ltd., Suzhou 215100, China;
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Lixia Qin
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230036, China;
- Suzhou Selenium Valley Technology Co., Ltd., Suzhou 215100, China;
| |
Collapse
|
7
|
Ribeiro IDA, Paes JA, Wendisch VF, Ferreira HB, Passaglia LMP. Proteome profiling of Paenibacillus sonchi genomovar Riograndensis SBR5 T under conventional and alternative nitrogen fixation. J Proteomics 2024; 294:105061. [PMID: 38154550 DOI: 10.1016/j.jprot.2023.105061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Paenibacillus sonchi SBR5T is a Gram-positive, endospore-forming facultative aerobic diazotrophic bacterium that can fix nitrogen via an alternative Fe-only nitrogenase (AnfHDGK). In several bacteria, this alternative system is expressed under molybdenum (Mo)-limiting conditions when the conventional Mo-dependent nitrogenase (NifHDK) production is impaired. The regulatory mechanisms, metabolic processes, and cellular functions of N2 fixation by alternative and/or conventional systems are poorly understood in the Paenibacillus genus. We conducted a comparative proteomic profiling study of P. sonchi SBR5T grown under N2-fixing conditions with and without Mo supply through an LC-MS/MS and label-free quantification analysis to address this gap. Protein abundances revealed overrepresented processes related to anaerobiosis growth adaption, Fe-S cluster biosynthesis, ammonia assimilation, electron transfer, and sporulation under N2-fixing conditions compared to non-fixing control. Under Mo limitation, the Fe-only nitrogenase components were overrepresented together with the Mo-transporter system, while the dinitrogenase component (NifDK) of Mo‑nitrogenase was underrepresented. The dinitrogenase reductase component (NifH) and accessory proteins encoded by the nif operon had no significant differential expression, suggesting post-transcriptional regulation of nif gene products in this strain. Overall, this was the first comprehensive proteomic analysis of a diazotrophic strain from the Paenibacillaceae family, and it provided insights related to alternative N2-fixation by Fe-only nitrogenase. SIGNIFICANCE: In this work, we try to understand how the alternative nitrogen fixation system, presented by some diazotrophic bacteria, works. For this, we used the SBR5 lineage of P. sonchi, which presents the alternative system in which the nitrogenase cofactor is composed only of iron. In addition, we tried to unravel the proteome of this strain in different situations of nitrogen fixation, since, for Gram-positive bacteria, these systems are little known. The results achieved, through LC-MS/MS and label-free quantitative analysis, showed an overrepresentation of proteins related to different processes involved with growth under stressful conditions in situations of nitrogen deficiency, in addition to suggesting that some encoded proteins by the nif operon may be regulated at post-transcriptional levels. Our findings represent important steps toward the elucidation of nitrogen fixation systems in Gram-positive diazotrophic bacteria.
Collapse
Affiliation(s)
- Igor Daniel Alves Ribeiro
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 - Prédio 43312, Porto Alegre, RS, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Volker F Wendisch
- Institute for Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 - Prédio 43312, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Mardoukhi MSY, Rapp J, Irisarri I, Gunka K, Link H, Marienhagen J, de Vries J, Stülke J, Commichau FM. Metabolic rewiring enables ammonium assimilation via a non-canonical fumarate-based pathway. Microb Biotechnol 2024; 17:e14429. [PMID: 38483038 PMCID: PMC10938345 DOI: 10.1111/1751-7915.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Glutamate serves as the major cellular amino group donor. In Bacillus subtilis, glutamate is synthesized by the combined action of the glutamine synthetase and the glutamate synthase (GOGAT). The glutamate dehydrogenases are devoted to glutamate degradation in vivo. To keep the cellular glutamate concentration high, the genes and the encoded enzymes involved in glutamate biosynthesis and degradation need to be tightly regulated depending on the available carbon and nitrogen sources. Serendipitously, we found that the inactivation of the ansR and citG genes encoding the repressor of the ansAB genes and the fumarase, respectively, enables the GOGAT-deficient B. subtilis mutant to synthesize glutamate via a non-canonical fumarate-based ammonium assimilation pathway. We also show that the de-repression of the ansAB genes is sufficient to restore aspartate prototrophy of an aspB aspartate transaminase mutant. Moreover, in the presence of arginine, B. subtilis mutants lacking fumarase activity show a growth defect that can be relieved by aspB overexpression, by reducing arginine uptake and by decreasing the metabolic flux through the TCA cycle.
Collapse
Affiliation(s)
| | - Johanna Rapp
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of TübingenTübingenGermany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
- Campus Institute Data ScienceUniversity of GöttingenGöttingenGermany
| | - Katrin Gunka
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
| | - Hannes Link
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of TübingenTübingenGermany
| | - Jan Marienhagen
- Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyForschungszentrum JülichJülichGermany
- Institut of BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
- Campus Institute Data ScienceUniversity of GöttingenGöttingenGermany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
| | - Fabian M. Commichau
- FG Molecular Microbiology, Institute for BiologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
9
|
Fortunato S, Nigro D, Lasorella C, Marcotuli I, Gadaleta A, de Pinto MC. The Role of Glutamine Synthetase (GS) and Glutamate Synthase (GOGAT) in the Improvement of Nitrogen Use Efficiency in Cereals. Biomolecules 2023; 13:1771. [PMID: 38136642 PMCID: PMC10742212 DOI: 10.3390/biom13121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Cereals are the most broadly produced crops and represent the primary source of food worldwide. Nitrogen (N) is a critical mineral nutrient for plant growth and high yield, and the quality of cereal crops greatly depends on a suitable N supply. In the last decades, a massive use of N fertilizers has been achieved in the desire to have high yields of cereal crops, leading to damaging effects for the environment, ecosystems, and human health. To ensure agricultural sustainability and the required food source, many attempts have been made towards developing cereal crops with a more effective nitrogen use efficiency (NUE). NUE depends on N uptake, utilization, and lastly, combining the capability to assimilate N into carbon skeletons and remobilize the N assimilated. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a crucial metabolic step of N assimilation, regulating crop yield. In this review, the physiological and genetic studies on GS and GOGAT of the main cereal crops will be examined, giving emphasis on their implications in NUE.
Collapse
Affiliation(s)
- Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Cecilia Lasorella
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| |
Collapse
|
10
|
Zhang W, Ni K, Long L, Ruan J. Nitrogen transport and assimilation in tea plant ( Camellia sinensis): a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1249202. [PMID: 37810380 PMCID: PMC10556680 DOI: 10.3389/fpls.2023.1249202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Nitrogen is one of the most important nutrients for tea plants, as it contributes significantly to tea yield and serves as the component of amino acids, which in turn affects the quality of tea produced. To achieve higher yields, excessive amounts of N fertilizers mainly in the form of urea have been applied in tea plantations where N fertilizer is prone to convert to nitrate and be lost by leaching in the acid soils. This usually results in elevated costs and environmental pollution. A comprehensive understanding of N metabolism in tea plants and the underlying mechanisms is necessary to identify the key regulators, characterize the functional phenotypes, and finally improve nitrogen use efficiency (NUE). Tea plants absorb and utilize ammonium as the preferred N source, thus a large amount of nitrate remains activated in soils. The improvement of nitrate utilization by tea plants is going to be an alternative aspect for NUE with great potentiality. In the process of N assimilation, nitrate is reduced to ammonium and subsequently derived to the GS-GOGAT pathway, involving the participation of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH). Additionally, theanine, a unique amino acid responsible for umami taste, is biosynthesized by the catalysis of theanine synthetase (TS). In this review, we summarize what is known about the regulation and functioning of the enzymes and transporters implicated in N acquisition and metabolism in tea plants and the current methods for assessing NUE in this species. The challenges and prospects to expand our knowledge on N metabolism and related molecular mechanisms in tea plants which could be a model for woody perennial plant used for vegetative harvest are also discussed to provide the theoretical basis for future research to assess NUE traits more precisely among the vast germplasm resources, thus achieving NUE improvement.
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang Ni
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Xihu National Agricultural Experimental Station for Soil Quality, Hangzhou, China
| | - Lizhi Long
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Xihu National Agricultural Experimental Station for Soil Quality, Hangzhou, China
| |
Collapse
|
11
|
Soualiou S, Duan F, Li X, Zhou W. Nitrogen supply alleviates cold stress by increasing photosynthesis and nitrogen assimilation in maize seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3142-3162. [PMID: 36847687 DOI: 10.1093/jxb/erad073] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/23/2023] [Indexed: 05/21/2023]
Abstract
Cold stress inhibits the early growth of maize, leading to reduced productivity. Nitrogen (N) is an essential nutrient that stimulates maize growth and productivity, but the relationship between N availability and cold tolerance is poorly characterized. Therefore, we studied the acclimation of maize under combined cold stress and N treatments. Exposure to cold stress caused a decline in growth and N assimilation, but increased abscisic acid (ABA) and carbohydrate accumulation. The application of different N concentrations from the priming stage to the recovery period resulted in the following observations: (i) high N supply alleviated cold stress-dependent growth inhibition, as shown by increased biomass, chlorophyll and Rubisco content and PSII efficiency; (ii) cold stress-induced ABA accumulation was repressed under high N, presumably due to enhanced stomatal conductance; (iii) the mitigating effects of high N on cold stress could be due to the increased activities of N assimilation enzymes and improved redox homeostasis. After cold stress, the ability of maize seedlings to recover increased under high N treatment, indicating the potential role of high N in the cold stress tolerance of maize seedlings.
Collapse
Affiliation(s)
- Soualihou Soualiou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| |
Collapse
|
12
|
Maize Breeding for Low Nitrogen Inputs in Agriculture: Mechanisms Underlying the Tolerance to the Abiotic Stress. STRESSES 2023. [DOI: 10.3390/stresses3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nitrogen (N) is essential for sustaining life on Earth and plays a vital role in plant growth and thus agricultural production. The excessive use of N fertilizers not only harms the economy, but also the environment. In the context of the environmental impacts caused by agriculture, global maize improvement programs aim to develop cultivars with high N-use efficiency (NUE) to reduce the use of N fertilizers. Since N is highly mobile in plants, NUE is related to numerous little-known morphophysiological and molecular mechanisms. In this review paper we present an overview of the morpho-physiological adaptations of shoot and root, molecular mechanisms involved in plant response to low nitrogen environment, and the genetic effects involved in the control of key traits for NUE. Some studies show that the efficiency of cultivars growing under low N is related to deep root architecture, more lateral roots (LR), and sparser branching of LR, resulting in lower metabolic costs. The NUE cultivars also exhibit more efficient photosynthesis, which affects plant growth under suboptimal nitrogen conditions. In this sense, obtaining superior genotypes for NUE can be achieved with the exploitation of heterosis, as non-additive effects are more important in the expression of traits associated with NUE.
Collapse
|
13
|
Cao L, Xu C, Sun Y, Niu C, Leng X, Hao B, Ma J, Liu Z, Xu Z, Yang C, Liu G. Genome-wide identification of glutamate synthase gene family and expression patterns analysis in response to carbon and nitrogen treatment in Populus. Gene 2023; 851:146996. [DOI: 10.1016/j.gene.2022.146996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/01/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
14
|
de Souza Araújo DM, de Almeida AAF, Pirovani CP, Mora-Ocampo IY, Lima Silva JP, Valle Meléndez RR. Molecular, biochemical and micromorphological responses of cacao seedlings of the Parinari series, carrying the lethal gene Luteus-Pa, in the presence and absence of cotyledons. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:550-569. [PMID: 36525937 DOI: 10.1016/j.plaphy.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Investigations of the compatibility between cacao genotypes of the population of the Parinari series (Pa), resulting from the reciprocal crossing of Pa 30 × Pa 169 and Pa 121 × Pa 169, allowed the verification of the occurrence of the recessive lethal single character called Luteus-Pa. These genotypes have this gene in heterozygosity, which when intercross or self-fertilize, segregate in a 3:1 ratio. Normal (NS) and mutant (MS) seedlings grow normally and, after a period of approximately 30 days of age, MS leaves begin to show a metallic yellow color, followed by necrotic spots, and death of the entire seedling, approximately 40 days after the emergency. The work evaluate the molecular, biochemical and micromorphological responses in NS and MS, with and without cotyledons, resulting from the crossing of the Pa 30 × Pa 169 cacao genotypes, aiming to elucidate the possible lethal mechanisms of the homozygous recessive Luteus-Pa. The presence of the lethal gene Luteus-Pa in the seedlings of the cacao genotypes of the population of the Parinari (Pa), with and without cotyledons, resulting from the crossing of Pa 30 × Pa 169, in addition to regulating the synthesis of proteins related to the photosynthetic and stress defense processes, promoted an increase in the synthesis of proteins involved in the glycolic pathway, induced oxidative stress, altered the mobilization of cotyledonary reserves, the integrity of cell membranes, leaf micromorphology and induced the death of seedlings, soon after depletion of protein and carbohydrate reserves, especially in the absence of cotyledons.
Collapse
Affiliation(s)
- D'avila Maria de Souza Araújo
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil
| | - Alex-Alan Furtado de Almeida
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil.
| | - Carlos Priminho Pirovani
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil
| | - Irma Yuliana Mora-Ocampo
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil
| | - João Paulo Lima Silva
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil
| | - Raúl René Valle Meléndez
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil; Executive Commission for the Cacao farming Plan, km 22 Jorge Amado Highway, 45650-780, Ilhéus, BA, Brazil
| |
Collapse
|
15
|
Chatterjee P, Schafran P, Li FW, Meeks JC. Nostoc Talks Back: Temporal Patterns of Differential Gene Expression During Establishment of Anthoceros-Nostoc Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:917-932. [PMID: 35802132 DOI: 10.1094/mpmi-05-22-0101-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endosymbiotic associations between hornworts and nitrogen-fixing cyanobacteria form when the plant is limited for combined nitrogen (N). We generated RNA-seq data to examine temporal gene expression patterns during the culturing of N-starved Anthoceros punctatus in the absence and the presence of symbiotic cyanobacterium Nostoc punctiforme. In symbiont-free A. punctatus gametophytes, N starvation caused downregulation of chlorophyll content and chlorophyll fluorescence characteristics as well as transcription of photosynthesis-related genes. This downregulation was reversed in A. punctatus cocultured with N. punctiforme, corresponding to the provision by the symbiont of N2-derived NH4+, which commenced within 5 days of coculture and reached a maximum by 14 days. We also observed transient increases in transcription of ammonium and nitrate transporters in a N. punctiforme-dependent manner as well as that of a SWEET transporter that was initially independent of N2-derived NH4+. The temporal patterns of differential gene expression indicated that N. punctiforme transmits signals that impact gene expression to A. punctatus both prior to and after its provision of fixed N. This study is the first illustrating the temporal patterns of gene expression during establishment of an endosymbiotic nitrogen-fixing association in this monophyletic evolutionary lineage of land plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, U.S.A
| | - Peter Schafran
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
- Plant Biology Section, Cornell University, Ithaca, NY 14953, U.S.A
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
- Plant Biology Section, Cornell University, Ithaca, NY 14953, U.S.A
| | - John C Meeks
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
16
|
Chattha MS, Ali Q, Haroon M, Afzal MJ, Javed T, Hussain S, Mahmood T, Solanki MK, Umar A, Abbas W, Nasar S, Schwartz-Lazaro LM, Zhou L. Enhancement of nitrogen use efficiency through agronomic and molecular based approaches in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:994306. [PMID: 36237509 PMCID: PMC9552886 DOI: 10.3389/fpls.2022.994306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 05/22/2023]
Abstract
Cotton is a major fiber crop grown worldwide. Nitrogen (N) is an essential nutrient for cotton production and supports efficient crop production. It is a crucial nutrient that is required more than any other. Nitrogen management is a daunting task for plants; thus, various strategies, individually and collectively, have been adopted to improve its efficacy. The negative environmental impacts of excessive N application on cotton production have become harmful to consumers and growers. The 4R's of nutrient stewardship (right product, right rate, right time, and right place) is a newly developed agronomic practice that provides a solid foundation for achieving nitrogen use efficiency (NUE) in cotton production. Cropping systems are equally crucial for increasing production, profitability, environmental growth protection, and sustainability. This concept incorporates the right fertilizer source at the right rate, time, and place. In addition to agronomic practices, molecular approaches are equally important for improving cotton NUE. This could be achieved by increasing the efficacy of metabolic pathways at the cellular, organ, and structural levels and NUE-regulating enzymes and genes. This is a potential method to improve the role of N transporters in plants, resulting in better utilization and remobilization of N in cotton plants. Therefore, we suggest effective methods for accelerating NUE in cotton. This review aims to provide a detailed overview of agronomic and molecular approaches for improving NUE in cotton production, which benefits both the environment and growers.
Collapse
Affiliation(s)
- Muhammad Sohaib Chattha
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Qurban Ali
- Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sadam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Tahir Mahmood
- Department of Plant Breeding & Genetics, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Manoj K. Solanki
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Aisha Umar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Shanza Nasar
- Department of Botany, University of Gujrat Hafiz Hayat Campus, Gujrat, Pakistan
| | - Lauren M. Schwartz-Lazaro
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
17
|
Sakuraba Y. Molecular basis of nitrogen starvation-induced leaf senescence. FRONTIERS IN PLANT SCIENCE 2022; 13:1013304. [PMID: 36212285 PMCID: PMC9538721 DOI: 10.3389/fpls.2022.1013304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 06/01/2023]
Abstract
Nitrogen (N), a macronutrient, is often a limiting factor in plant growth, development, and productivity. To adapt to N-deficient environments, plants have developed elaborate N starvation responses. Under N-deficient conditions, older leaves exhibit yellowing, owing to the degradation of proteins and chlorophyll pigments in chloroplasts and subsequent N remobilization from older leaves to younger leaves and developing organs to sustain plant growth and productivity. In recent years, numerous studies have been conducted on N starvation-induced leaf senescence as one of the representative plant responses to N deficiency, revealing that leaf senescence induced by N deficiency is highly complex and intricately regulated at different levels, including transcriptional, post-transcriptional, post-translational and metabolic levels, by multiple genes and proteins. This review summarizes the current knowledge of the molecular mechanisms associated with N starvation-induced leaf senescence.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
He H, Li Y, Zhang L, Ding Z, Shi G. Understanding and application of Bacillus nitrogen regulation: A synthetic biology perspective. J Adv Res 2022:S2090-1232(22)00205-3. [PMID: 36103961 DOI: 10.1016/j.jare.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Nitrogen sources play an essential role in maintaining the physiological and biochemical activity of bacteria. Nitrogen metabolism, which is the core of microorganism metabolism, makes bacteria able to autonomously respond to different external nitrogen environments by exercising complex internal regulatory networks to help them stay in an ideal state. Although various studies have been put forth to better understand this regulation in Bacillus, and many valuable viewpoints have been obtained, these views need to be presented systematically and their possible applications need to be specified. AIM OF REVIEW The intention is to provide a deep and comprehensive understanding of nitrogen metabolism in Bacillus, an important industrial microorganism, and thereby apply this regulatory logic to synthetic biology to improve biosynthesis competitiveness. In addition, the potential researches in the future are also discussed. KEY SCIENTIFIC CONCEPT OF REVIEW Understanding the meticulous regulation process of nitrogen metabolism in Bacillus not only could facilitate research on metabolic engineering but also could provide constructive insights and inspiration for studies of other microorganisms.
Collapse
Affiliation(s)
- Hehe He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
19
|
Du R, Gao D, Wang Y, Liu L, Cheng J, Liu J, Zhang XH, Yu M. Heterotrophic Sulfur Oxidation of Halomonas titanicae SOB56 and Its Habitat Adaptation to the Hydrothermal Environment. Front Microbiol 2022; 13:888833. [PMID: 35774465 PMCID: PMC9237845 DOI: 10.3389/fmicb.2022.888833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Halomonas bacteria are ubiquitous in global marine environments, however, their sulfur-oxidizing abilities and survival adaptations in hydrothermal environments are not well understood. In this study, we characterized the sulfur oxidation ability and metabolic mechanisms of Halomonas titanicae SOB56, which was isolated from the sediment of the Tangyin hydrothermal field in the Southern Okinawa Trough. Physiological characterizations showed that it is a heterotrophic sulfur-oxidizing bacterium that can oxidize thiosulfate to tetrathionate, with the Na2S2O3 degradation reaching 94.86%. Two potential thiosulfate dehydrogenase-related genes, tsdA and tsdB, were identified as encoding key catalytic enzymes, and their expression levels in strain SOB56 were significantly upregulated. Nine of fifteen examined Halomonas genomes possess TsdA- and TsdB-homologous proteins, whose amino acid sequences have two typical Cys-X2-Cys-His heme-binding regions. Moreover, the thiosulfate oxidation process in H. titanicae SOB56 might be regulated by quorum sensing, and autoinducer-2 synthesis protein LuxS was identified in its genome. Regarding the mechanisms underlying adaptation to hydrothermal environment, strain SOB56 was capable of forming biofilms and producing EPS. In addition, genes related to complete flagellum assembly system, various signal transduction histidine kinases, heavy metal transporters, anaerobic respiration, and variable osmotic stress regulation were also identified. Our results shed light on the potential functions of heterotrophic Halomonas bacteria in hydrothermal sulfur cycle and revealed possible adaptations for living at deep-sea hydrothermal fields by H. titanicae SOB56.
Collapse
Affiliation(s)
- Rui Du
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Di Gao
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yiting Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Lijun Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jingguang Cheng
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jiwen Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Min Yu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- *Correspondence: Min Yu,
| |
Collapse
|
20
|
Lee H, Xu Y, Zhu X, Jang C, Choi W, Bae H, Wang W, He L, Jin S, Arany Z, Simons M. Endothelium-derived lactate is required for pericyte function and blood-brain barrier maintenance. EMBO J 2022; 41:e109890. [PMID: 35243676 PMCID: PMC9058541 DOI: 10.15252/embj.2021109890] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/05/2023] Open
Abstract
Endothelial cells differ from other cell types responsible for the formation of the vascular wall in their unusual reliance on glycolysis for most energy needs, which results in extensive production of lactate. We find that endothelium-derived lactate is taken up by pericytes, and contributes substantially to pericyte metabolism including energy generation and amino acid biosynthesis. Endothelial-pericyte proximity is required to facilitate the transport of endothelium-derived lactate into pericytes. Inhibition of lactate production in the endothelium by deletion of the glucose transporter-1 (GLUT1) in mice results in loss of pericyte coverage in the retina and brain vasculatures, leading to the blood-brain barrier breakdown and increased permeability. These abnormalities can be largely restored by oral lactate administration. Our studies demonstrate an unexpected link between endothelial and pericyte metabolisms and the role of endothelial lactate production in the maintenance of the blood-brain barrier integrity. In addition, our observations indicate that lactate supplementation could be a useful therapeutic approach for GLUT1 deficiency metabolic syndrome patients.
Collapse
Affiliation(s)
- Heon‐Woo Lee
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Yanying Xu
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Xiaolong Zhu
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Cholsoon Jang
- Department of Biological ChemistryUniversity of California IrvineIrvineCAUSA
| | - Woosoung Choi
- School of Life Sciences and Cell Logistics Research CenterGwangju Institute of Science and Technology (GIST)GwangjuKorea
| | - Hosung Bae
- Department of Biological ChemistryUniversity of California IrvineIrvineCAUSA
| | - Weiwei Wang
- W. M. Keck Biotechnology Resource LaboratoryYale University School of MedicineNew HavenCTUSA
| | - Liqun He
- Department of Immunology, Genetics and PathologyRudbeck LaboratoryUppsala UniversityUppsalaSweden
| | - Suk‐Won Jin
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
- School of Life Sciences and Cell Logistics Research CenterGwangju Institute of Science and Technology (GIST)GwangjuKorea
| | - Zoltan Arany
- Cardiovascular InstitutePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Michael Simons
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
- Department of Cell BiologyYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
21
|
Liao HS, Chung YH, Hsieh MH. Glutamate: A multifunctional amino acid in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111238. [PMID: 35351313 DOI: 10.1016/j.plantsci.2022.111238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
22
|
Zhou Y, Kishchenko O, Stepanenko A, Chen G, Wang W, Zhou J, Pan C, Borisjuk N. The Dynamics of NO3- and NH4+ Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes. PLANTS (BASEL, SWITZERLAND) 2021; 11:11. [PMID: 35009015 PMCID: PMC8747334 DOI: 10.3390/plants11010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/05/2023]
Abstract
Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (NO3- ) and ammonium (NH4+), in six duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna aequinoctialis, Lemna turionifera, Lemna minor, and Wolffia globosa. All six duckweed species preferred NH4+ over NO3- and started using NO3- only when NH4+ was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in S. polyrhiza. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when NO3- was supplied and decreased when NH4+ was supplied. NO3- and NH4+ induced the glutamine synthetase (GS) genes GS1;2 and the GS2 by 2- to 5-fold, respectively, but repressed GS1;1 and GS1;3. NH4+ and NO3- upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC cis-elements, TATA-based enhancers, GA/CTn repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China; (Y.Z.); (O.K.); (A.S.); (G.C.); (W.W.); (J.Z.); (C.P.)
| |
Collapse
|
23
|
Hemkemeyer M, Schwalb SA, Heinze S, Joergensen RG, Wichern F. Functions of elements in soil microorganisms. Microbiol Res 2021; 252:126832. [PMID: 34508963 DOI: 10.1016/j.micres.2021.126832] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The soil microbial community fulfils various functions, such as nutrient cycling and carbon (C) sequestration, therefore contributing to maintenance of soil fertility and mitigation of global warming. In this context, a major focus of research has been on C, nitrogen (N) and phosphorus (P) cycling. However, from aquatic and other environments, it is well known that other elements beyond C, N, and P are essential for microbial functioning. Nonetheless, for soil microorganisms this knowledge has not yet been synthesised. To gain a better mechanistic understanding of microbial processes in soil systems, we aimed at summarising the current knowledge on the function of a range of essential or beneficial elements, which may affect the efficiency of microbial processes in soil. This knowledge is discussed in the context of microbial driven nutrient and C cycling. Our findings may support future investigations and data evaluation, where other elements than C, N, and P affect microbial processes.
Collapse
Affiliation(s)
- Michael Hemkemeyer
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany.
| | - Sanja A Schwalb
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Stefanie Heinze
- Department of Soil Science & Soil Ecology, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Rainer Georg Joergensen
- Department of Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
24
|
Yang J, Wang T, Di J, Liu Y, Hao X, Wang Y. l
‐glutamate inhibits blue mould caused by
Penicillium expansum
in apple fruits by altering the primary nitrogen and carbon metabolisms. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiali Yang
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Tengfei Wang
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Jianbing Di
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Yaping Liu
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Xiaoling Hao
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Yu Wang
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| |
Collapse
|
25
|
Eggers R, Jammer A, Jha S, Kerschbaumer B, Lahham M, Strandback E, Toplak M, Wallner S, Winkler A, Macheroux P. The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana. PHYTOCHEMISTRY 2021; 189:112822. [PMID: 34118767 DOI: 10.1016/j.phytochem.2021.112822] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are utilized as coenzymes in many biochemical reduction-oxidation reactions owing to the ability of the tricyclic isoalloxazine ring system to employ the oxidized, radical and reduced state. We have analyzed the genome of Arabidopsis thaliana to establish an inventory of genes encoding flavin-dependent enzymes (flavoenzymes) as a basis to explore the range of flavin-dependent biochemical reactions that occur in this model plant. Expectedly, flavoenzymes catalyze many pivotal reactions in primary catabolism, which are connected to the degradation of basic metabolites, such as fatty and amino acids as well as carbohydrates and purines. On the other hand, flavoenzymes play diverse roles in anabolic reactions most notably the biosynthesis of amino acids as well as the biosynthesis of pyrimidines and sterols. Importantly, the role of flavoenzymes goes much beyond these basic reactions and extends into pathways that are equally crucial for plant life, for example the production of natural products. In this context, we outline the participation of flavoenzymes in the biosynthesis and maintenance of cofactors, coenzymes and accessory plant pigments (e. g. carotenoids) as well as phytohormones. Moreover, several multigene families have emerged as important components of plant immunity, for example the family of berberine bridge enzyme-like enzymes, flavin-dependent monooxygenases and NADPH oxidases. Furthermore, the versatility of flavoenzymes is highlighted by their role in reactions leading to tRNA-modifications, chromatin regulation and cellular redox homeostasis. The favorable photochemical properties of the flavin chromophore are exploited by photoreceptors to govern crucial processes of plant adaptation and development. Finally, a sequence- and structure-based approach was undertaken to gain insight into the catalytic role of uncharacterized flavoenzymes indicating their involvement in unknown biochemical reactions and pathways in A. thaliana.
Collapse
Affiliation(s)
- Reinmar Eggers
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Alexandra Jammer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Bianca Kerschbaumer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Majd Lahham
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Emilia Strandback
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria.
| |
Collapse
|
26
|
Lian L, Lin Y, Wei Y, He W, Cai Q, Huang W, Zheng Y, Xu H, Wang F, Zhu Y, Luo X, Xie H, Zhang J. PEPC of sugarcane regulated glutathione S-transferase and altered carbon-nitrogen metabolism under different N source concentrations in Oryza sativa. BMC PLANT BIOLOGY 2021; 21:287. [PMID: 34167489 PMCID: PMC8223297 DOI: 10.1186/s12870-021-03071-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Phosphoenolpyruvate carboxylase (PEPC) plays an important role in the primary metabolism of higher plants. Several studies have revealed the critical importance of PEPC in the interaction of carbon and nitrogen metabolism. However, the function mechanism of PEPC in nitrogen metabolism is unclear and needs further investigation. RESULTS This study indicates that transgenic rice expressing the sugarcane C4-PEPC gene displayed shorter primary roots and fewer crown roots at the seedling stage. However, total nitrogen content was significantly higher in transgenic rice than in wild type (WT) plants. Proteomic analysis revealed that there were more differentially expressed proteins (DEPs) responding to nitrogen changes in transgenic rice. In particular, the most enriched pathway "glutathione (GSH) metabolism", which mainly contains GSH S-transferase (GST), was identified in transgenic rice. The expression of endogenous PEPC, GST and several genes involved in the TCA cycle, glycolysis and nitrogen assimilation changed in transgenic rice. Correspondingly, the activity of enzymes including GST, citrate synthase, 6-phosphofructokinase, pyruvate kinase and ferredoxin-dependent glutamate synthase significantly changed. In addition, the levels of organic acids in the TCA cycle and carbohydrates including sucrose, starch and soluble sugar altered in transgenic rice under different nitrogen source concentrations. GSH that the substrate of GST and its components including glutamic acid, cysteine and glycine accumulated in transgenic rice. Moreover, the levels of phytohormones including indoleacetic acid (IAA), zeatin (ZT) and isopentenyladenosine (2ip) were lower in the roots of transgenic rice under total nutrients. Taken together, the phenotype, physiological and biochemical characteristics of transgenic rice expressing C4-PEPC were different from WT under different nitrogen levels. CONCLUSIONS Our results revealed the possibility that PEPC affects nitrogen metabolism through regulating GST, which provide a new direction and concepts for the further study of the PEPC functional mechanism in nitrogen metabolism.
Collapse
Affiliation(s)
- Ling Lian
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Yuelong Lin
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Wei Huang
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Huibin Xu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Fuxiang Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Xi Luo
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China.
| |
Collapse
|
27
|
Sandhu N, Sethi M, Kumar A, Dang D, Singh J, Chhuneja P. Biochemical and Genetic Approaches Improving Nitrogen Use Efficiency in Cereal Crops: A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:657629. [PMID: 34149755 PMCID: PMC8213353 DOI: 10.3389/fpls.2021.657629] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/06/2021] [Indexed: 05/22/2023]
Abstract
Nitrogen is an essential nutrient required in large quantities for the proper growth and development of plants. Nitrogen is the most limiting macronutrient for crop production in most of the world's agricultural areas. The dynamic nature of nitrogen and its tendency to lose soil and environment systems create a unique and challenging environment for its proper management. Exploiting genetic diversity, developing nutrient efficient novel varieties with better agronomy and crop management practices combined with improved crop genetics have been significant factors behind increased crop production. In this review, we highlight the various biochemical, genetic factors and the regulatory mechanisms controlling the plant nitrogen economy necessary for reducing fertilizer cost and improving nitrogen use efficiency while maintaining an acceptable grain yield.
Collapse
|
28
|
Metabolic network of ammonium in cereal vinegar solid-state fermentation and its response to acid stress. Food Microbiol 2020; 95:103684. [PMID: 33397616 DOI: 10.1016/j.fm.2020.103684] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022]
Abstract
Shanxi aged vinegar (SAV), a Chinese traditional vinegar, is produced by various microorganisms. Ammonium is an important nitrogen source for microorganisms and a key intermediate for the utilization of non-ammonium nitrogen sources. In this work, an ammonium metabolic network during SAV fermentation was constructed through the meta-transcriptomic analysis of in situ samples, and the potential mechanism of acid affecting ammonium metabolism was revealed. The results showed that ammonium was enriched as the acidity increased. Meta-transcriptomic analysis showed that the conversion of glutamine to ammonia is the key pathway of ammonium metabolism in vinegar and that Lactobacillus and Acetobacter are the dominant genera. The construction and analysis of the metabolic network showed that amino acid metabolism, nucleic acid metabolism, pentose phosphate pathway and energy metabolism were enhanced to resist acid damage to the intracellular environment and cell structures. The enhancement of nitrogen assimilation provides nitrogen for metabolic pathways that resist acid cytotoxicity. In addition, the concentration gradient allows ammonium to diffuse outside the cell, which causes ammonium to accumulate during fermentation.
Collapse
|
29
|
Luo J, Havé M, Clément G, Tellier F, Balliau T, Launay-Avon A, Guérard F, Zivy M, Masclaux-Daubresse C. Integrating multiple omics to identify common and specific molecular changes occurring in Arabidopsis under chronic nitrate and sulfate limitations. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6471-6490. [PMID: 32687580 DOI: 10.1093/jxb/eraa337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Plants have fundamental dependences on nitrogen and sulfur and frequently have to cope with chronic limitations when their supply is sub-optimal. This study aimed at characterizing the metabolomic, proteomic, and transcriptomic changes occurring in Arabidopsis leaves under chronic nitrate (Low-N) and chronic sulfate (Low-S) limitations in order to compare their effects, determine interconnections, and examine strategies of adaptation. Metabolite profiling globally revealed opposite effects of Low-S and Low-N on carbohydrate and amino acid accumulations, whilst proteomic data showed that both treatments resulted in increases in catabolic processes, stimulation of mitochondrial and cytosolic metabolism, and decreases in chloroplast metabolism. Lower abundances of ribosomal proteins and translation factors under Low-N and Low-S corresponded with growth limitation. At the transcript level, the major and specific effect of Low-N was the enhancement of expression of defence and immunity genes. The main effect of chronic Low-S was a decrease in transcripts of genes involved in cell division, DNA replication, and cytoskeleton, and an increase in the expression of autophagy genes. This was consistent with a role of target-of-rapamycin kinase in the control of plant metabolism and cell growth and division under chronic Low-S. In addition, Low-S decreased the expression of several NLP transcription factors, which are master actors in nitrate sensing. Finally, both the transcriptome and proteome data indicated that Low-S repressed glucosinolate synthesis, and that Low-N exacerbated glucosinolate degradation. This showed the importance of glucosinolate as buffering molecules for N and S management.
Collapse
Affiliation(s)
- Jie Luo
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
| | - Marien Havé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Frédérique Tellier
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Thierry Balliau
- UMR GQE- le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Florence Guérard
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Michel Zivy
- UMR GQE- le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
30
|
Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation into Glutamine, Glutamate, Aspartate, and Asparagine Traced by 15N. PLANTS 2020; 9:plants9101303. [PMID: 33023108 PMCID: PMC7600499 DOI: 10.3390/plants9101303] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 01/26/2023]
Abstract
Although the nitrate assimilation into amino acids in photosynthetic leaf tissues is active under the light, the studies during 1950s and 1970s in the dark nitrate assimilation provided fragmental and variable activities, and the mechanism of reductant supply to nitrate assimilation in darkness remained unclear. 15N tracing experiments unraveled the assimilatory mechanism of nitrogen from nitrate into amino acids in the light and in darkness by the reactions of nitrate and nitrite reductases, glutamine synthetase, glutamate synthase, aspartate aminotransferase, and asparagine synthetase. Nitrogen assimilation in illuminated leaves and non-photosynthetic roots occurs either in the redundant way or in the specific manner regarding the isoforms of nitrogen assimilatory enzymes in their cellular compartments. The electron supplying systems necessary to the enzymatic reactions share in part a similar electron donor system at the expense of carbohydrates in both leaves and roots, but also distinct reducing systems regarding the reactions of Fd-nitrite reductase and Fd-glutamate synthase in the photosynthetic and non-photosynthetic organs.
Collapse
|
31
|
Koksharova OA, Butenko IO, Pobeguts OV, Safronova NA, Govorun VM. Proteomic Insights into Starvation of Nitrogen-Replete Cells of Nostoc sp. PCC 7120 under β-N-Methylamino-L-Alanine (BMAA) Treatment. Toxins (Basel) 2020; 12:toxins12060372. [PMID: 32512731 PMCID: PMC7354497 DOI: 10.3390/toxins12060372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 01/05/2023] Open
Abstract
All cyanobacteria produce a neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA). However, the biological function of BMAA in the regulation of cyanobacteria metabolism still remains undetermined. It is known that BMAA suppresses the formation of heterocysts in diazotrophic cyanobacteria under nitrogen starvation conditions, and BMAA induces the formation of heterocyst-like cells under nitrogen excess conditions, by causing the expression of heterocyst-specific genes that are usually “silent” under nitrogen-replete conditions, as if these bacteria receive a nitrogen deficiency intracellular molecular signal. In order to find out the molecular mechanisms underlying this unexpected BMAA effect, we studied the proteome of cyanobacterium Nostoc sp. PCC 7120 grown under BMAA treatment in nitrogen-replete medium. Experiments were performed in two experimental settings: (1) in control samples consisted of cells grown without the BMAA treatment and (2) the treated samples consisted of cells grown with addition of an aqueous solution of BMAA (20 µM). In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by LC-MS/MS spectrometry. Among them, 80 proteins belonging to different functional categories were chosen for further functional analysis and interpretation of obtained proteomic data. Here, we provide the evidence that a pleiotropic regulatory effect of BMAA on the proteome of cyanobacterium was largely different under conditions of nitrogen-excess compared to its effect under nitrogen starvation conditions (that was studied in our previous work). The most significant difference in proteome expression between the BMAA-treated and untreated samples under different growth conditions was detected in key regulatory protein PII (GlnB). BMAA downregulates protein PII in nitrogen-starved cells and upregulates this protein in nitrogen-replete conditions. PII protein is a key signal transduction protein and the change in its regulation leads to the change of many other regulatory proteins, including different transcriptional factors, enzymes and transporters. Complex changes in key metabolic and regulatory proteins (RbcL, RbcS, Rca, CmpA, GltS, NodM, thioredoxin 1, RpbD, ClpP, MinD, RecA, etc.), detected in this experimental study, could be a reason for the appearance of the “starvation” state in nitrogen-replete conditions in the presence of BMAA. In addition, 15 proteins identified in this study are encoded by genes, which are under the control of NtcA—a global transcriptional regulator—one of the main protein partners and transcriptional regulators of PII protein. Thereby, this proteomic study gives a possible explanation of cyanobacterium starvation under nitrogen-replete conditions and BMAA treatment. It allows to take a closer look at the regulation of cyanobacteria metabolism affected by this cyanotoxin.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119992 Moscow, Russia;
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
- Correspondence: ; Tel.: +7-917-534-7543
| | - Ivan O. Butenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Olga V. Pobeguts
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Nina A. Safronova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119992 Moscow, Russia;
| | - Vadim M. Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| |
Collapse
|
32
|
Ortigosa F, Valderrama-Martín JM, Urbano-Gámez JA, García-Martín ML, Ávila C, Cánovas FM, Cañas RA. Inorganic Nitrogen Form Determines Nutrient Allocation and Metabolic Responses in Maritime Pine Seedlings. PLANTS 2020; 9:plants9040481. [PMID: 32283755 PMCID: PMC7238028 DOI: 10.3390/plants9040481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Nitrate and ammonium are the main forms of inorganic nitrogen available to plants. The present study aimed to investigate the metabolic changes caused by ammonium and nitrate nutrition in maritime pine (Pinus pinaster Ait.). Seedlings were grown with five solutions containing different proportions of nitrate and ammonium. Their nitrogen status was characterized through analyses of their biomass, different biochemical and molecular markers as well as a metabolite profile using 1H-NMR. Ammonium-fed seedlings exhibited higher biomass than nitrate-fed-seedlings. Nitrate mainly accumulated in the stem and ammonium in the roots. Needles of ammonium-fed seedlings had higher nitrogen and amino acid contents but lower levels of enzyme activities related to nitrogen metabolism. Higher amounts of soluble sugars and L-arginine were found in the roots of ammonium-fed seedlings. In contrast, L-asparagine accumulated in the roots of nitrate-fed seedlings. The differences in the allocation of nitrate and ammonium may function as metabolic buffers to prevent interference with the metabolism of photosynthetic organs. The metabolite profiles observed in the roots suggest problems with carbon and nitrogen assimilation in nitrate-supplied seedlings. Taken together, this new knowledge contributes not only to a better understanding of nitrogen metabolism but also to improving aspects of applied mineral nutrition for conifers.
Collapse
Affiliation(s)
- Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - José Miguel Valderrama-Martín
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - José Alberto Urbano-Gámez
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - María Luisa García-Martín
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, 29590 Málaga, Spain;
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - Francisco M. Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - Rafael A. Cañas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
- Correspondence: ; Tel.: +34-952-13-4272
| |
Collapse
|
33
|
Iqbal A, Qiang D, Alamzeb M, Xiangru W, Huiping G, Hengheng Z, Nianchang P, Xiling Z, Meizhen S. Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:904-914. [PMID: 31612486 DOI: 10.1002/jsfa.10085] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 05/19/2023]
Abstract
A huge amount of nitrogenous fertilizer is used to increase crop production. This leads to an increase in the cost of production, and to human and environmental problems. It is therefore necessary to improve nitrogen use efficiency (NUE) and to design agronomic, biotechnological and breeding strategies for better fertilizer use. Nitrogen use efficiency relies primarily on how plants extract, uptake, transport, assimilate, and remobilize nitrogen. Many plants use nitrate as a preferred nitrogen source. It acts as a signaling molecule in the various important physiological processes required for growth and development. As nitrate is the main source of nitrogen in the soil, root nitrate transporters are important subjects for study. The latest reports have also discussed how nitrate transporter and assimilation genes can be used as molecular tools to improve NUE in crops. The purpose of this review is to describe the mechanisms and functions of nitrate as a specific factor that can be addressed to increase NUE. Improving factors such as nitrate uptake, transport, assimilation, and remobilization through activation by signaling, sensing, and regulatory processes will improve plant growth and NUE. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Madeeha Alamzeb
- Standardization of cotton planting technology, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Pang Nianchang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| |
Collapse
|
34
|
Lopez-Delacalle M, Camejo DM, García-Martí M, Nortes PA, Nieves-Cordones M, Martínez V, Rubio F, Mittler R, Rivero RM. Using Tomato Recombinant Lines to Improve Plant Tolerance to Stress Combination Through a More Efficient Nitrogen Metabolism. FRONTIERS IN PLANT SCIENCE 2020; 10:1702. [PMID: 32038679 PMCID: PMC6983915 DOI: 10.3389/fpls.2019.01702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/03/2019] [Indexed: 05/18/2023]
Abstract
The development of plant varieties with a better nitrogen use efficiency (NUE) is a means for modern agriculture to decrease environmental pollution due to an excess of nitrate and to maintain a sufficient net income. However, the optimum environmental conditions for agriculture will tend to be more adverse in the coming years, with increases in temperatures, water scarcity, and salinity being the most important productivity constrains for plants. NUE is inherently a complex trait, as each step, including N uptake, translocation, assimilation, and remobilization, is governed by multiple interacting genetic and environmental factors. In this study, two recombinant inbred lines (RIL-66 and RIL-76) from a cross between Solanum lycopersicum and Solanum pimpinellifoilum with different degree of tolerance to the combination of salinity and heat were subjected to a physiological, ionomic, amino acid profile, and gene expression study to better understand how nitrogen metabolism is affected in tolerant plants as compared to sensitive ones. The ionomics results showed a different profile between the two RILs, with K+ and Mg2+ being significantly lower in RIL-66 (low tolerant) as compared to RIL-76 (high tolerant) under salinity and heat combination. No differences were shown between the two RILs in N total content; however, N-NO3 - was significantly higher in RIL-66, whereas N-Norg was lower as compared to the other genotype, which could be correlated with its tolerance to the combination of salinity and heat. Total proteins and total amino acid concentration were significantly higher in RIL-76 as compared to the sensitive recombinant line under these conditions. Glutamate, but more importantly glutamine, was also highly synthesized and accumulated in RIL-76 under the combination of salinity and heat, which was in agreement with the upregulation of the nitrogen metabolism related transcripts studied (SlNR, SlNiR, SlGDH, SlGLT1, SlNRT1.2, SlAMT1, and SlAMT2). This study emphasized the importance of studying abiotic stress in combination and how recombinant material with different degrees of tolerance can be highly important for the improvement of nitrogen use efficiency in horticultural plants through the targeting of N-related markers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ron Mittler
- The Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Rosa M. Rivero
- Department of Plant Nutrition, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
35
|
Dellero Y. Manipulating Amino Acid Metabolism to Improve Crop Nitrogen Use Efficiency for a Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:602548. [PMID: 33329673 PMCID: PMC7733991 DOI: 10.3389/fpls.2020.602548] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/03/2020] [Indexed: 05/06/2023]
Abstract
In a context of a growing worldwide food demand coupled to the need to develop a sustainable agriculture, it is crucial to improve crop nitrogen use efficiency (NUE) while reducing field N inputs. Classical genetic approaches based on natural allelic variations existing within crops have led to the discovery of quantitative trait loci controlling NUE under low nitrogen conditions; however, the identification of candidate genes from mapping studies is still challenging. Amino acid metabolism is the cornerstone of plant N management, which involves N uptake, assimilation, and remobilization efficiencies, and it is finely regulated during acclimation to low N conditions and other abiotic stresses. Over the last two decades, biotechnological engineering of amino acid metabolism has led to promising results for the improvement of crop NUE, and more recently under low N conditions. This review summarizes current work carried out in crops and provides perspectives on the identification of new candidate genes and future strategies for crop improvement.
Collapse
|
36
|
Xie Z, Wang J, Wang W, Wang Y, Xu J, Li Z, Zhao X, Fu B. Integrated Analysis of the Transcriptome and Metabolome Revealed the Molecular Mechanisms Underlying the Enhanced Salt Tolerance of Rice Due to the Application of Exogenous Melatonin. FRONTIERS IN PLANT SCIENCE 2020; 11:618680. [PMID: 33519878 PMCID: PMC7840565 DOI: 10.3389/fpls.2020.618680] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/22/2020] [Indexed: 05/13/2023]
Abstract
High salinity is one of the major abiotic stresses limiting rice production. Melatonin has been implicated in the salt tolerance of rice. However, the molecular basis of melatonin-mediated salt tolerance in rice remains unclear. In the present study, we performed an integrated transcriptome and metabolome profiling of rice seedlings treated with salt, melatonin, or salt + melatonin. The application of exogenous melatonin increased the salt tolerance of rice plants by decreasing the sodium content to maintain Na+/K+ homeostasis, alleviating membrane lipid oxidation, and enhancing chlorophyll contention. A comparative transcriptome analysis revealed that complex molecular pathways contribute to melatonin-mediated salt tolerance. More specifically, the AP2/EREBP-HB-WRKY transcriptional cascade and phytohormone (e.g., auxin and abscisic acid) signaling pathways were activated by an exogenous melatonin treatment. On the basis of metabolome profiles, 64 metabolites, such as amino acids, organic acids, nucleotides, and secondary metabolites, were identified with increased abundances only in plants treated with salt + melatonin. Several of these metabolites including endogenous melatonin and its intermediates (5-hydroxy-L-tryptophan, N 1-acetyl-N 2-formyl-5-methoxykynuramine), gallic acid, diosmetin, and cyanidin 3-O-galactoside had antioxidant functions, suggesting melatonin activates multiple antioxidant pathways to alleviate the detrimental effects of salt stress. Combined transcriptome and metabolome analyses revealed a few gene-metabolite networks related to various pathways, including linoleic acid metabolism and amino acid metabolism that are important for melatonin-mediated salt tolerance. The data presented herein may be useful for further elucidating the multiple regulatory roles of melatonin in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Ziyan Xie
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yanru Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiuqin Zhao,
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Binying Fu,
| |
Collapse
|
37
|
Transcriptomic and metabolomic adaptation of Nannochloropsis gaditana grown under different light regimes. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Li W, Ni J, Cai S, Liu Y, Shen C, Yang H, Chen Y, Tao J, Yu Y, Liu Q. Variations in microbial community structure and functional gene expression in bio-treatment processes with odorous pollutants. Sci Rep 2019; 9:17870. [PMID: 31780738 PMCID: PMC6883040 DOI: 10.1038/s41598-019-54281-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/07/2019] [Indexed: 11/09/2022] Open
Abstract
Engineered microbial ecosystems in biofilters have been widely applied to treat odorous gases from industrial emissions. Variations in microbial community structure and function associated with the removal of odorous gases by biofilters are largely unknown. This study performed a metagenomic analysis to discover shifts in microbial community structures in a commercial scale biofilter after treating odorous gas. Our study identified 175,675 functional genes assigned into 43 functional KEGG pathways. Based on the unigene sequences, there were significant changes in microbial community structures in the biofilter after treating odorous gas. The dominant genera were Thiobacillus and Oceanicaulis before the treatment, and were Acidithiobacillus and Ferroplasma after the treatment. A clustering analysis showed that the number of down-regulated microbes exceeded the number of up-regulated microbes, suggesting that odorous gas treatment reduced in microbial community structures. A differential expression analysis identified 29,975 up- and 452,599 down-regulated genes. An enrichment analysis showed 17 classic types of xenobiotic biodegradation pathways. The results identified 16 and 15 genes involved in ammonia and sulfite metabolism, respectively; an analysis of their relative abundance identified several up-regulated genes, which may be efficient genes involved in removing odorous gases. The data provided in this study demonstrate the changes in microbial communities and help identify the dominant microflora and genes that play key roles in treating odorous gases.
Collapse
Affiliation(s)
- Weidong Li
- College of Qianjiang, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Jianguo Ni
- Hangzhou Ecological Environment Bureau of Xiaoshan Branch, Hangzhou, 311201, Zhejiang, People's Republic of China
| | - Shaoqin Cai
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China.,College of Environment, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Ying Liu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Huayun Yang
- College of Qianjiang, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Yuquan Chen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Jia Tao
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Yunfeng Yu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Qi Liu
- College of Qianjiang, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China. .,College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China.
| |
Collapse
|
39
|
Xu W, Wang H, Tang T, Ma J, Cui Z, Li L, Guo S, Zhou Y, Jiang T, Li C. Effect of Dihydroartemisinin on Plasmodium NADH-Dependent Glutamate Synthase: The Implication in Malaria Management. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1325-1343. [PMID: 31488031 DOI: 10.1142/s0192415x1950068x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Artemisinin and its analogues (ARTs) are currently the most effective anti-malarial drugs, but the precise mechanism of action is still highly controversial. Effects of ARTs on Plasmodium genes expression are studied in our Lab. The overexpression of an interesting amidotransferase, NADH-dependent glutamate synthase (NADH-GltS) was found in treated by dihydroartemisinin (DHA). The increased expression occurred not only from global transcriptomics analysis on the human malaria parasite Plasmodium falciparum (P. falciparum) 3D7 and gene expression screening on all of iron-sulphur cluster proteins from P.f. 3D7 in vitro but also from Plasmodium berghei (P. berghei) ANKA in mice. Influence of DHA on NADH-GltS was specifically at trophozoite stage of P. falciparum and in a dose-dependent manner below the effective doses. L-glutamine (Gln) and L-glutamate (Glu) are the substrate and product of NADH-GltS respectively. Azaserine (Aza) is specific inhibitor for NADH-GltS. Experimental data showed that Glu levels were significantly decreasing with DHA dose increasing but NADH-GltS enzyme activities were still remained at higher levels in parasites, and appropriate amount of exogenous Glu could significantly reduce anti-malarial action of DHA but excessive amount lost the above effect. Aza alone could inhibit proliferation of P. falciparum and had an additive effect in combination with DHA. Those results could suggest that: Glutamate depletion is one of the anti-malarial actions of DHA; overexpression of NADH-GltS would be a feedback pattern of parasite itself due to glutamate depletion, but not a direct action of DHA; the "feedback pattern" is one of protective strategies of Plasmodium to interfere with the anti-malarial actions of DHA; and specific inhibitor for NADH-GltS as a new type of anti-malarial agents or new partner in ACT might provide a potential.
Collapse
Affiliation(s)
- Wenhui Xu
- Research Center of Artemisinin, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China.,Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Huajing Wang
- Research Center of Artemisinin, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China.,Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Tian Tang
- Research Center of Artemisinin, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China.,Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Ji Ma
- Research Center of Artemisinin, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China.,Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Zhao Cui
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Lanfang Li
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Shuying Guo
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Yang Zhou
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Tingliang Jiang
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Canghai Li
- Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| |
Collapse
|
40
|
Yuan L, Wang J, Xie S, Zhao M, Nie L, Zheng Y, Zhu S, Hou J, Chen G, Wang C. Comparative Proteomics Indicates That Redox Homeostasis Is Involved in High- and Low-Temperature Stress Tolerance in a Novel Wucai ( Brassica campestris L.) Genotype. Int J Mol Sci 2019; 20:ijms20153760. [PMID: 31374822 PMCID: PMC6696267 DOI: 10.3390/ijms20153760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
The genotype WS-1, previously identified from novel wucai germplasm, is tolerant to both low-temperature (LT) and high-temperature (HT) stress. However, it is unclear which signal transduction pathway or acclimation mechanisms are involved in the temperature-stress response. In this study, we used the proteomic method of tandem mass tag (TMT) coupled with liquid chromatography-mass spectrometry (LC-MS/MS) to identify 1022 differentially expressed proteins (DEPs) common to WS-1, treated with either LT or HT. Among these 1022 DEPs, 172 were upregulated in response to both LT and HT, 324 were downregulated in response to both LT and HT, and 526 were upregulated in response to one temperature stress and downregulated in response to the other. To illustrate the common regulatory pathway in WS-1, 172 upregulated DEPs were further analyzed. The redox homeostasis, photosynthesis, carbohydrate metabolism, heat-shockprotein, and chaperones and signal transduction pathways were identified to be associated with temperature stress tolerance in wucai. In addition, 35S:BcccrGLU1 overexpressed in Arabidopsis, exhibited higher reduced glutathione (GSH) content and reduced glutathione/oxidized glutathione (GSH/GSSG) ratio and less oxidative damage under temperature stress. This result is consistent with the dynamic regulation of the relevant proteins involved in redox homeostasis. These data demonstrate that maintaining redox homeostasis is an important common regulatory pathway for tolerance to temperature stress in novel wucai germplasm.
Collapse
Affiliation(s)
- Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jie Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shilei Xie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Mengru Zhao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Libing Nie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Yushan Zheng
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China.
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China.
| |
Collapse
|
41
|
Gupta S, Akhatar J, Kaur P, Sharma A, Sharma P, Mittal M, Bharti B, Banga SS. Genetic analyses of nitrogen assimilation enzymes in Brassica juncea (L.) Czern & Coss. Mol Biol Rep 2019; 46:4235-4244. [PMID: 31115836 DOI: 10.1007/s11033-019-04878-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Nitrogen (N) is a critical input for plant growth and development. A better understanding of N uptake and utilization is important to develop plant breeding strategies for improving nitrogen use efficiency (NUE). With that objective in mind, we assayed a SNP-genotyped association panel comprising 92 inbred lines for the activities of nitrate reductase (NR), nitrite reductase (NIR), glutamine synthetase (GS) and glutamate synthase (GOGAT). All these enzymes are associated with N assimilation. The experiments were carried out at two levels of N application: no added N (N0) and agrnomically recommened dose (100 kg/ha) of N application (N100). Genome wide association studies (GWAS) helped to identify several marker-trait associations (MTAs), involving chromosomes A01, A06, A08, B02, B04, B05 and B08. These explained high phenotypic variation (up to 32%). Annotation of the genomic region(s) in or around significant SNPs allowed prediction of genes encoding high affinity nitrate transporters, glutamine synthetase 1.3, myb-like transcription factor family protein, bidirectional amino acid transporter 1, auxin signaling F-box 3 and oxidoreductases. This is the first attempt to use GWAS for identification of enzyme QTLs to explain variation for nitrogen assimilation enzymes in Brassica juncea.
Collapse
Affiliation(s)
- Shilpa Gupta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Javed Akhatar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Palminder Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Anju Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Pushp Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Meenakshi Mittal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Baudh Bharti
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Surinder Singh Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India.
| |
Collapse
|
42
|
Yoneyama T, Suzuki A. Exploration of nitrate-to-glutamate assimilation in non-photosynthetic roots of higher plants by studies of 15N-tracing, enzymes involved, reductant supply, and nitrate signaling: A review and synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:245-254. [PMID: 30710774 DOI: 10.1016/j.plaphy.2018.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/16/2018] [Indexed: 05/03/2023]
Abstract
Roots of the higher plants can assimilate inorganic nitrogen by an enzymatic reduction of the most oxidized form (+6) nitrate to the reduced form (-2) glutamate. For such reactions, the substrates (originated from photosynthates) must be imported to supply energy through the reductant-generating systems within the root cells. Intensive studies over last 70 years (reviewed here) revealed the precise mechanisms of nitrate-to-glutamate transformation in roots with elaborate searches of 15N-tracing, enzymes involved, the reductant-supplying system, and nitrate signaling. In the 1970s, the tracing of 15N-labeled nitrate and ammonia in the roots demonstrated the sequential reduction and assimilation of nitrate to nitrite, ammonia, glutamine amide, and then glutamate. These reactions involve nitrate reductase (NADH-NR, EC 1.7.1.1) in the cytosol, nitrite reductase (ferredoxin [Fd]-NiR, EC 1.7.7.1), glutamine synthetase (GS2, EC 6.3.1.2), and glutamate synthase (Fd-GOGAT, EC 1.4.7.1) in the plastids. NADH for NR is generated by glycolysis in the cytosol, and NADPH for Fd-NIR and Fd-GOGAT are produced by the oxidative pentose phosphate pathway (OPPP). Electrons from NADPH are conveyed to reduce NIR and Fd-GOGAT through Fd-NADP+ reductase (FNR, EC 1.6.7.1) specifically in the roots. Physiological and molecular analyses showed the parallel inductions of NR, NIR, GS2, Fd-GOGAT, OPPP enzymes, FNR, and Fd in response to a short-term nitrate supply. Recent studies proposed a molecular mechanism of nitrate-induction of these genes and proteins. Roots can also assimilate the reduced form of inorganic ammonia by the combination of cytosolic GS1 and plastidic NADH-GOGAT.
Collapse
Affiliation(s)
- Tadakatsu Yoneyama
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan.
| | - Akira Suzuki
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, F-78026, France.
| |
Collapse
|
43
|
Liu A, Xiao Z, Li MW, Wong FL, Yung WS, Ku YS, Wang Q, Wang X, Xie M, Yim AKY, Chan TF, Lam HM. Transcriptomic reprogramming in soybean seedlings under salt stress. PLANT, CELL & ENVIRONMENT 2019; 42:98-114. [PMID: 29508916 DOI: 10.1111/pce.13186] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 05/22/2023]
Abstract
To obtain a comprehensive understanding of transcriptomic reprogramming under salt stress, we performed whole-transcriptome sequencing on the leaf and root of soybean seedlings subjected to salt treatment in a time-course experiment (0, 1, 2, 4, 24, and 48 hr). This time series dataset enabled us to identify important hubs and connections of gene expressions. We highlighted the analysis on phytohormone signaling pathways and their possible crosstalks. Differential expressions were also found among those genes involved in carbon and nitrogen metabolism. In general, the salt-treated seedlings slowed down their photosynthetic functions and ramped up sugar catabolism to provide extra energy for survival. Primary nitrogen assimilation was shut down whereas nitrogen resources were redistributed. Overall, the results from the transcriptomic analyses indicate that the plant uses a multipronged approach to overcome salt stress, with both fast-acting, immediate physiological responses, and longer term reactions that may involve metabolic adjustment.
Collapse
Affiliation(s)
- Ailin Liu
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Zhixia Xiao
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Man-Wah Li
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Fuk-Ling Wong
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Wai-Shing Yung
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Yee-Shan Ku
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Qianwen Wang
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Xin Wang
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Min Xie
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Aldrin Kay-Yuen Yim
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Ting-Fung Chan
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Hon-Ming Lam
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| |
Collapse
|
44
|
Tarento TD, McClure DD, Vasiljevski E, Schindeler A, Dehghani F, Kavanagh JM. Microalgae as a source of vitamin K1. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Gaignard C, Gargouch N, Dubessay P, Delattre C, Pierre G, Laroche C, Fendri I, Abdelkafi S, Michaud P. New horizons in culture and valorization of red microalgae. Biotechnol Adv 2018; 37:193-222. [PMID: 30500354 DOI: 10.1016/j.biotechadv.2018.11.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/16/2023]
Abstract
Research on marine microalgae has been abundantly published and patented these last years leading to the production and/or the characterization of some biomolecules such as pigments, proteins, enzymes, biofuels, polyunsaturated fatty acids, enzymes and hydrocolloids. This literature focusing on metabolic pathways, structural characterization of biomolecules, taxonomy, optimization of culture conditions, biorefinery and downstream process is often optimistic considering the valorization of these biocompounds. However, the accumulation of knowledge associated with the development of processes and technologies for biomass production and its treatment has sometimes led to success in the commercial arena. In the history of the microalgae market, red marine microalgae are well positioned particularly for applications in the field of high value pigment and hydrocolloid productions. This review aims to establish the state of the art of the diversity of red marine microalgae, the advances in characterization of their metabolites and the developments of bioprocesses to produce this biomass.
Collapse
Affiliation(s)
- Clement Gaignard
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Nesrine Gargouch
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; Laboratoire de Biotechnologies Végétales appliquées à l'amélioration des cultures, Life Sciences Department, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Pascal Dubessay
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Cedric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Guillaume Pierre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Celine Laroche
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales appliquées à l'amélioration des cultures, Life Sciences Department, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Unité de Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Philippe Michaud
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
46
|
Jauffrais T, LeKieffre C, Schweizer M, Geslin E, Metzger E, Bernhard JM, Jesus B, Filipsson HL, Maire O, Meibom A. Kleptoplastidic benthic foraminifera from aphotic habitats: insights into assimilation of inorganic C, N and S studied with sub-cellular resolution. Environ Microbiol 2018; 21:125-141. [PMID: 30277305 DOI: 10.1111/1462-2920.14433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/31/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
The assimilation of inorganic compounds in foraminiferal metabolism compared to predation or organic matter assimilation is unknown. Here, we investigate possible inorganic-compound assimilation in Nonionellina labradorica, a common kleptoplastidic benthic foraminifer from Arctic and North Atlantic sublittoral regions. The objectives were to identify the source of the foraminiferal kleptoplasts, assess their photosynthetic functionality in light and darkness and investigate inorganic nitrogen and sulfate assimilation. We used DNA barcoding of a ~ 830 bp fragment from the SSU rDNA to identify the kleptoplasts and correlated transmission electron microscopy and nanometre-scale secondary ion mass spectrometry (TEM-NanoSIMS) isotopic imaging to study 13 C-bicarbonate, 15 N-ammonium and 34 S-sulfate uptake. In addition, respiration rate measurements were determined to assess the response of N. labradorica to light. The DNA sequences established that over 80% of the kleptoplasts belonged to Thalassiosira (with 96%-99% identity), a cosmopolitan planktonic diatom. TEM-NanoSIMS imaging revealed degraded cytoplasm and an absence of 13 C assimilation in foraminifera exposed to light. Oxygen measurements showed higher respiration rates under light than dark conditions, and no O2 production was detected. These results indicate that the photosynthetic pathways in N. labradorica are not functional. Furthermore, N. labradorica assimilated both 15 N-ammonium and 34 S-sulfate into its cytoplasm, which suggests that foraminifera might have several ammonium or sulfate assimilation pathways, involving either the kleptoplasts or bona fide foraminiferal pathway(s) not yet identified.
Collapse
Affiliation(s)
- Thierry Jauffrais
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France.,Ifremer, RBE/LEAD, 101 Promenade Roger Laroque, 98897, Nouméa, New Caledonia
| | - Charlotte LeKieffre
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France.,Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Magali Schweizer
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France
| | - Emmanuelle Geslin
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France
| | - Edouard Metzger
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France
| | - Joan M Bernhard
- Woods Hole Oceanographic Institution, Geology & Geophysics Department, Woods Hole, MA, USA
| | - Bruno Jesus
- EA2160, Laboratoire Mer Molécules Santé, Université de Nantes, Nantes, France.,BioISI - Biosystems & Integrative Sciences Institute, Campo Grande University of Lisboa, Faculty of Sciences, Lisbon, Portugal
| | - Helena L Filipsson
- Department of Geology, Lund University, Sölvegatan 12, 223 62, Lund, Sweden
| | - Olivier Maire
- Univ. Bordeaux, EPOC, UMR 5805, 33400, Talence, France.,CNRS, EPOC, UMR 5805, 33400, Talence, France
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
47
|
Expression Analysis of Nitrogen Metabolism-Related Genes Reveals Differences in Adaptation to Low-Nitrogen Stress between Two Different Barley Cultivars at Seedling Stage. Int J Genomics 2018; 2018:8152860. [PMID: 30027094 PMCID: PMC6031091 DOI: 10.1155/2018/8152860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/07/2018] [Accepted: 05/03/2018] [Indexed: 11/17/2022] Open
Abstract
The excess use of nitrogen fertilizers causes many problems, including higher costs of crop production, lower nitrogen use efficiency, and environmental damage. Crop breeding for low-nitrogen tolerance, especially molecular breeding, has become the major route to solving these issues. Therefore, in crops such as barley (Hordeum vulgare L.), it is crucial to understand the mechanisms of low-nitrogen tolerance at the molecule level. In the present study, two barley cultivars, BI-04 (tolerant to low nitrogen) and BI-45 (sensitive to low nitrogen), were used for gene expression analysis under low-nitrogen stress, including 10 genes related to primary nitrogen metabolism. The results showed that the expressions of HvNIA2 (nitrite reductase), HvGS2 (chloroplastic glutamine synthetase), and HvGLU2 (ferredoxin-dependent glutamate synthase) were only induced in shoots of BI-04 under low-nitrogen stress, HvGLU2 was also only induced in roots of BI-04, and HvGS2 showed a rapid response to low-nitrogen stress in the roots of BI-04. The expression of HvASN1 (asparagine synthetase) was reduced in both cultivars, but it showed a lower reduction in the shoots of BI-04. In addition, gene expression and regulation differences in the shoots and roots were also compared between the barley cultivars. Taken together, the results indicated that the four above-mentioned genes might play important roles in low-nitrogen tolerance in barley.
Collapse
|
48
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part II. [4Fe-4S] and [3Fe-4S] iron-sulfur proteins. J Struct Biol 2018; 202:250-263. [DOI: 10.1016/j.jsb.2018.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 01/27/2023]
|
49
|
García-Gutiérrez Á, Cánovas FM, Ávila C. Glutamate synthases from conifers: gene structure and phylogenetic studies. BMC Genomics 2018; 19:65. [PMID: 29351733 PMCID: PMC5775586 DOI: 10.1186/s12864-018-4454-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/15/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plants synthesize glutamate from ammonium by the combined activity of the enzymes glutamine synthetase (GS) and glutamate synthase (GOGAT) through the glutamate synthase cycle. In plants, there are two forms of glutamate synthases that differ in their electron donors, NADH-GOGAT (EC 1.4.1.14) and Fd-GOGAT (EC 1.4.7.1), which have differential roles either in primary ammonia assimilation or in the reassimilation of ammonium from different catabolic processes. Glutamate synthases are complex iron-sulfur flavoproteins containing functional domains involved in the control and coordination of their catalytic activities in annual plants. In conifers, partial cDNA sequences for GOGATs have been isolated and used for gene expression studies. However, knowledge of the gene structure and of phylogenetic relationships with other plant enzymes is quite scant. RESULTS Technological advances in conifer megagenomes sequencing have made it possible to obtain full-length cDNA sequences encoding Fd- and NADH-GOGAT from maritime pine, as well as BAC clones containing sequences for NADH-GOGAT and Fd-GOGAT genes. In the current study, we studied the genomic organization of pine GOGAT genes, the size of their exons/introns, copy numbers in the pine genome and relationships with other plant genes. Phylogenetic analysis was performed, and the degree of preservation and dissimilarity of key domains for the catalytic activities of these enzymes in different taxa were determined. CONCLUSIONS Fd- and NADH-GOGAT are encoded by single-copy genes in the maritime pine genome. The Fd-GOGAT gene is extremely large spanning more than 330 kb and the presence of very long introns highlights the important contribution of LTR retrotransposons to the gene size in conifers. In contrast, the structure of the NADH-GOGAT gene is similar to the orthologous genes in angiosperms. Our phylogenetic analysis indicates that these two genes had different origins during plant evolution. The results provide new insights into the structure and molecular evolution of these essential genes.
Collapse
Affiliation(s)
- Ángel García-Gutiérrez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Francisco M. Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| |
Collapse
|
50
|
Dechorgnat J, Francis KL, Dhugga KS, Rafalski JA, Tyerman SD, Kaiser BN. Root Ideotype Influences Nitrogen Transport and Assimilation in Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:531. [PMID: 29740466 PMCID: PMC5928562 DOI: 10.3389/fpls.2018.00531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/05/2018] [Indexed: 05/02/2023]
Abstract
Maize (Zea mays, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program.
Collapse
Affiliation(s)
- Julie Dechorgnat
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camden, NSW, Australia
| | - Karen L. Francis
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | | | - J. A. Rafalski
- Genetic Discovery Group, DuPont Crop Genetics Research, DuPont Experimental Station, Wilmington, DE, United States
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Brent N. Kaiser
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camden, NSW, Australia
- *Correspondence: Brent N. Kaiser,
| |
Collapse
|