1
|
Liu HW, Khera R, Grob P, Gallaher SD, Purvine SO, Nicora CD, Lipton MS, Niyogi KK, Nogales E, Iwai M, Merchant SS. Fe starvation induces a second LHCI tetramer to photosystem I in green algae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.624522. [PMID: 39713434 PMCID: PMC11661224 DOI: 10.1101/2024.12.11.624522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Iron (Fe) availability limits photosynthesis at a global scale where Fe-rich photosystem (PS) I abundance is drastically reduced in Fe-poor environments. We used single-particle cryo-electron microscopy to reveal a unique Fe starvation-dependent arrangement of light-harvesting chlorophyll (LHC) proteins where Fe starvation-induced TIDI1 is found in an additional tetramer of LHC proteins associated with PSI in Dunaliella tertiolecta and Dunaliella salina. These cosmopolitan green algae are resilient to poor Fe nutrition. TIDI1 is a distinct LHC protein that co-occurs in diverse algae with flavodoxin (an Fe-independent replacement for the Fe-containing ferredoxin). The antenna expansion in eukaryotic algae we describe here is reminiscent of the iron-starvation induced (isiA-encoding) antenna ring in cyanobacteria, which typically co-occurs with isiB, encoding flavodoxin. Our work showcases the convergent strategies that evolved after the Great Oxidation Event to maintain PSI capacity.
Collapse
Affiliation(s)
- Helen W. Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Radhika Khera
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Patricia Grob
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Sean D. Gallaher
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Samuel O. Purvine
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Carrie D. Nicora
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Mary S. Lipton
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eva Nogales
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Masakazu Iwai
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sabeeha S. Merchant
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, USA, CA 94720
| |
Collapse
|
2
|
Biswas S, Niedzwiedzki DM, Liberton M, Pakrasi HB. Phylogenetic and spectroscopic insights on the evolution of core antenna proteins in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2024; 162:197-210. [PMID: 37737529 DOI: 10.1007/s11120-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
Light harvesting by antenna systems is the initial step in a series of electron-transfer reactions in all photosynthetic organisms, leading to energy trapping by reaction center proteins. Cyanobacteria are an ecologically diverse group and are the simplest organisms capable of oxygenic photosynthesis. The primary light-harvesting antenna in cyanobacteria is the large membrane extrinsic pigment-protein complex called the phycobilisome. In addition, cyanobacteria have also evolved specialized membrane-intrinsic chlorophyll-binding antenna proteins that transfer excitation energy to the reaction centers of photosystems I and II (PSI and PSII) and dissipate excess energy through nonphotochemical quenching. Primary among these are the CP43 and CP47 proteins of PSII, but in addition, some cyanobacteria also use IsiA and the prochlorophyte chlorophyll a/b binding (Pcb) family of proteins. Together, these proteins comprise the CP43 family of proteins owing to their sequence similarity with CP43. In this article, we have revisited the evolution of these chlorophyll-binding antenna proteins by examining their protein sequences in parallel with their spectral properties. Our phylogenetic and spectroscopic analyses support the idea of a common ancestor for CP43, IsiA, and Pcb proteins, and suggest that PcbC might be a distant ancestor of IsiA. The similar spectral properties of CP47 and IsiA suggest a closer evolutionary relationship between these proteins compared to CP43.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO, 63130, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
3
|
Shen L, Gao Y, Tang K, Qi R, Fu L, Chen JH, Wang W, Ma X, Li P, Chen M, Kuang T, Zhang X, Shen JR, Wang P, Han G. Structure of a unique PSII-Pcb tetrameric megacomplex in a chlorophyll d-containing cyanobacterium. SCIENCE ADVANCES 2024; 10:eadk7140. [PMID: 38394197 PMCID: PMC10889353 DOI: 10.1126/sciadv.adk7140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Acaryochloris marina is a unique cyanobacterium using chlorophyll d (Chl d) as its major pigment and thus can use far-red light for photosynthesis. Photosystem II (PSII) of A. marina associates with a number of prochlorophyte Chl-binding (Pcb) proteins to act as the light-harvesting system. We report here the cryo-electron microscopic structure of a PSII-Pcb megacomplex from A. marina at a 3.6-angstrom overall resolution and a 3.3-angstrom local resolution. The megacomplex is organized as a tetramer consisting of two PSII core dimers flanked by sixteen symmetrically related Pcb proteins, with a total molecular weight of 1.9 megadaltons. The structure reveals the detailed organization of PSII core consisting of 15 known protein subunits and an unknown subunit, the assembly of 4 Pcb antennas within each PSII monomer, and possible pathways of energy transfer within the megacomplex, providing deep insights into energy transfer and dissipation mechanisms within the PSII-Pcb megacomplex involved in far-red light utilization.
Collapse
Affiliation(s)
- Liangliang Shen
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yuanzhu Gao
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kailu Tang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruxi Qi
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lutang Fu
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Hua Chen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaomin Ma
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyao Li
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Chen
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney NSW 2006, Australia
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Peiyi Wang
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
4
|
Biswas S, Niedzwiedzki DM, Pakrasi HB. Introduction of cysteine-mediated quenching in the CP43 protein of photosystem II builds resilience to high-light stress in a cyanobacterium. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148580. [PMID: 35654167 DOI: 10.1016/j.bbabio.2022.148580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Photosystem (PS) II is prone to photodamage both as a direct consequence of light, and indirectly by producing reactive oxygen species. Engineering high-light tolerance in cyanobacteria with minimal impact on PSII function is desirable in synthetic biology. IsiA, a CP43 homolog found exclusively in cyanobacteria, can dissipate excess light energy. We have recently determined that the sole cysteine residue of IsiA in Synechocystis sp. PCC 6803 has a critical role in non-photochemical quenching. Similar cysteine-mediated energy quenching has also been observed in green‑sulfur bacteria. Sequence analysis of IsiA and CP43 aligns cysteine 260 of IsiA with valine 277 of CP43 in Synechocystis sp. PCC 6803. In the current study, we explore the impact of replacing valine 277 of CP43 to a cysteine on growth, PSII activity and high-light tolerance. Our results imply a decline in the PSII output for the mutant (CP43V277C) presumably due to the dissipation of absorbed light energy by cysteine. Spectroscopic analysis of isolated PSII from this mutant strain also suggests a delayed transfer of excitation energy from CP43-associated chlorophyll a to PSII reaction center. The mutation makes the PSII high-light tolerant and provides a small advantage in growth under high-light conditions. This previously unexplored strategy to engineer high-light tolerance could be a step further towards developing cyanobacterial cells as biofactories.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO 63130, USA; Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
5
|
Zheng F, Zhang T, Yin S, Qin G, Chen J, Zhang J, Zhao D, Leng X, An S, Xia L. Comparison and interpretation of freshwater bacterial structure and interactions with organic to nutrient imbalances in restored wetlands. Front Microbiol 2022; 13:946537. [PMID: 36212857 PMCID: PMC9533089 DOI: 10.3389/fmicb.2022.946537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023] Open
Abstract
Chemical oxygen demand to nitrogen (COD/N) and nitrogen to phosphorus (N/P) ratios have distinct effects on bacterial community structure and interactions. However, how organic to nutrient imbalances affect the structure of freshwater bacterial assemblages in restored wetlands remains poorly understood. Here, the composition and dominant taxa of bacterial assemblages in four wetlands [low COD/N and high N/P (LH), low COD/N and low N/P (LL), high COD/N and high N/P (HH), and high COD/N and low N/P (HL)] were investigated. A total of 7,709 operational taxonomic units were identified by high throughput sequencing, and Actinobacteria, Proteobacteria, and Cyanobacteria were the most abundant phyla in the restored wetlands. High COD/N significantly increased bacterial diversity and was negatively correlated with N/P (R 2 = 0.128; p = 0.039), and the observed richness (Sobs) indices ranged from 860.77 to 1314.66. The corresponding Chao1 and phylogenetic diversity (PD) values ranged from 1533.42 to 2524.56 and 127.95 to 184.63. Bacterial beta diversity was negatively related to COD/N (R 2 = 0.258; p < 0.001). The distribution of bacterial assemblages was mostly driven by variations in ammonia nitrogen (NH4 +-N, p < 0.01) and electrical conductivity (EC, p < 0.01), which collectively explained more than 80% of the variation in bacterial assemblages. However, the dominant taxa Proteobacteria, Firmicutes, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Chloroflexi, and Deinococcus-Thermus were obviously affected by variation in COD/N and N/P (p < 0.05). The highest node and edge numbers and average degree were observed in the LH group. The co-occurrence networkindicated that LH promoted bacterial network compactness and bacterial interaction consolidation. The relationships between organic to nutrient imbalances and bacterial assemblages may provide a theoretical basis for the empirical management of wetland ecosystems.
Collapse
Affiliation(s)
- Fuchao Zheng
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Tiange Zhang
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Shenglai Yin
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ge Qin
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Jun Chen
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Jinghua Zhang
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Dehua Zhao
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Leng
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Shuqing An
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Lu Xia
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
MacGregor-Chatwin C, Nürnberg DJ, Jackson PJ, Vasilev C, Hitchcock A, Ho MY, Shen G, Gisriel CJ, Wood WH, Mahbub M, Selinger VM, Johnson MP, Dickman MJ, Rutherford AW, Bryant DA, Hunter CN. Changes in supramolecular organization of cyanobacterial thylakoid membrane complexes in response to far-red light photoacclimation. SCIENCE ADVANCES 2022; 8:eabj4437. [PMID: 35138895 PMCID: PMC8827656 DOI: 10.1126/sciadv.abj4437] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are ubiquitous in nature and have developed numerous strategies that allow them to live in a diverse range of environments. Certain cyanobacteria synthesize chlorophylls d and f to acclimate to niches enriched in far-red light (FRL) and incorporate paralogous photosynthetic proteins into their photosynthetic apparatus in a process called FRL-induced photoacclimation (FaRLiP). We characterized the macromolecular changes involved in FRL-driven photosynthesis and used atomic force microscopy to examine the supramolecular organization of photosystem I associated with FaRLiP in three cyanobacterial species. Mass spectrometry showed the changes in the proteome of Chroococcidiopsis thermalis PCC 7203 that accompany FaRLiP. Fluorescence lifetime imaging microscopy and electron microscopy reveal an altered cellular distribution of photosystem complexes and illustrate the cell-to-cell variability of the FaRLiP response.
Collapse
Affiliation(s)
| | - Dennis J. Nürnberg
- Department of Life Sciences, Imperial College London, London, UK
- Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Philip J. Jackson
- School of Biosciences, University of Sheffield, Sheffield, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | | | - Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Christopher J. Gisriel
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | | | - Moontaha Mahbub
- Department of Life Sciences, Imperial College London, London, UK
| | | | | | - Mark J. Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - C. Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Jia A, Zheng Y, Chen H, Wang Q. Regulation and Functional Complexity of the Chlorophyll-Binding Protein IsiA. Front Microbiol 2021; 12:774107. [PMID: 34867913 PMCID: PMC8635728 DOI: 10.3389/fmicb.2021.774107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
As the oldest known lineage of oxygen-releasing photosynthetic organisms, cyanobacteria play the key roles in helping shaping the ecology of Earth. Iron is an ideal transition metal for redox reactions in biological systems. Cyanobacteria frequently encounter iron deficiency due to the environmental oxidation of ferrous ions to ferric ions, which are highly insoluble at physiological pH. A series of responses, including architectural changes to the photosynthetic membranes, allow cyanobacteria to withstand this condition and maintain photosynthesis. Iron-stress-induced protein A (IsiA) is homologous to the cyanobacterial chlorophyll (Chl)-binding protein, photosystem II core antenna protein CP43. IsiA is the major Chl-containing protein in iron-starved cyanobacteria, binding up to 50% of the Chl in these cells, and this Chl can be released from IsiA for the reconstruction of photosystems during the recovery from iron limitation. The pigment–protein complex (CPVI-4) encoded by isiA was identified and found to be expressed under iron-deficient conditions nearly 30years ago. However, its precise function is unknown, partially due to its complex regulation; isiA expression is induced by various types of stresses and abnormal physiological states besides iron deficiency. Furthermore, IsiA forms a range of complexes that perform different functions. In this article, we describe progress in understanding the regulation and functions of IsiA based on laboratory research using model cyanobacteria.
Collapse
Affiliation(s)
- Anqi Jia
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yanli Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Green BR. What Happened to the Phycobilisome? Biomolecules 2019; 9:biom9110748. [PMID: 31752285 PMCID: PMC6921069 DOI: 10.3390/biom9110748] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
The phycobilisome (PBS) is the major light-harvesting complex of photosynthesis in cyanobacteria, red algae, and glaucophyte algae. In spite of the fact that it is very well structured to absorb light and transfer it efficiently to photosynthetic reaction centers, it has been completely lost in the green algae and plants. It is difficult to see how selection alone could account for such a major loss. An alternative scenario takes into account the role of chance, enabled by (contingent on) the evolution of an alternative antenna system early in the diversification of the three lineages from the first photosynthetic eukaryote.
Collapse
Affiliation(s)
- Beverley R Green
- Botany Department, University of British Columbia, Vancouver, BC V6N 3T7, Canada
| |
Collapse
|
9
|
Luimstra VM, Schuurmans JM, de Carvalho CFM, Matthijs HCP, Hellingwerf KJ, Huisman J. Exploring the low photosynthetic efficiency of cyanobacteria in blue light using a mutant lacking phycobilisomes. PHOTOSYNTHESIS RESEARCH 2019; 141:291-301. [PMID: 30820745 PMCID: PMC6718569 DOI: 10.1007/s11120-019-00630-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/19/2019] [Indexed: 05/28/2023]
Abstract
The ubiquitous chlorophyll a (Chl a) pigment absorbs both blue and red light. Yet, in contrast to green algae and higher plants, most cyanobacteria have much lower photosynthetic rates in blue than in red light. A plausible but not yet well-supported hypothesis is that blue light results in limited energy transfer to photosystem II (PSII), because cyanobacteria invest most Chl a in photosystem I (PSI), whereas their phycobilisomes (PBS) are mostly associated with PSII but do not absorb blue photons. In this paper, we compare the photosynthetic performance in blue and orange-red light of wildtype Synechocystis sp. PCC 6803 and a PBS-deficient mutant. Our results show that the wildtype had much lower biomass, Chl a content, PSI:PSII ratio and O2 production rate per PSII in blue light than in orange-red light, whereas the PBS-deficient mutant had a low biomass, Chl a content, PSI:PSII ratio, and O2 production rate per PSII in both light colors. More specifically, the wildtype displayed a similar low photosynthetic efficiency in blue light as the PBS-deficient mutant in both light colors. Our results demonstrate that the absorption of light energy by PBS and subsequent transfer to PSII are crucial for efficient photosynthesis in cyanobacteria, which may explain both the low photosynthetic efficiency of PBS-containing cyanobacteria and the evolutionary success of chlorophyll-based light-harvesting antennae in environments dominated by blue light.
Collapse
Affiliation(s)
- Veerle M Luimstra
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - J Merijn Schuurmans
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Carolina F M de Carvalho
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Hans C P Matthijs
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
MacGregor-Chatwin C, Jackson PJ, Sener M, Chidgey JW, Hitchcock A, Qian P, Mayneord GE, Johnson MP, Luthey-Schulten Z, Dickman MJ, Scanlan DJ, Hunter CN. Membrane organization of photosystem I complexes in the most abundant phototroph on Earth. NATURE PLANTS 2019; 5:879-889. [PMID: 31332310 PMCID: PMC6699766 DOI: 10.1038/s41477-019-0475-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/13/2019] [Indexed: 05/20/2023]
Abstract
Prochlorococcus is a major contributor to primary production, and globally the most abundant photosynthetic genus of picocyanobacteria because it can adapt to highly stratified low-nutrient conditions that are characteristic of the surface ocean. Here, we examine the structural adaptations of the photosynthetic thylakoid membrane that enable different Prochlorococcus ecotypes to occupy high-light, low-light and nutrient-poor ecological niches. We used atomic force microscopy to image the different photosystem I (PSI) membrane architectures of the MED4 (high-light) Prochlorococcus ecotype grown under high-light and low-light conditions in addition to the MIT9313 (low-light) and SS120 (low-light) Prochlorococcus ecotypes grown under low-light conditions. Mass spectrometry quantified the relative abundance of PSI, photosystem II (PSII) and cytochrome b6f complexes and the various Pcb proteins in the thylakoid membrane. Atomic force microscopy topographs and structural modelling revealed a series of specialized PSI configurations, each adapted to the environmental niche occupied by a particular ecotype. MED4 PSI domains were loosely packed in the thylakoid membrane, whereas PSI in the low-light MIT9313 is organized into a tightly packed pseudo-hexagonal lattice that maximizes harvesting and trapping of light. There are approximately equal levels of PSI and PSII in MED4 and MIT9313, but nearly twofold more PSII than PSI in SS120, which also has a lower content of cytochrome b6f complexes. SS120 has a different tactic to cope with low-light levels, and SS120 thylakoids contained hundreds of closely packed Pcb-PSI supercomplexes that economize on the extra iron and nitrogen required to assemble PSI-only domains. Thus, the abundance and widespread distribution of Prochlorococcus reflect the strategies that various ecotypes employ for adapting to limitations in light and nutrient levels.
Collapse
Affiliation(s)
- C MacGregor-Chatwin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - P J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - M Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J W Chidgey
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - A Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - P Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - G E Mayneord
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - M P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Z Luthey-Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M J Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - D J Scanlan
- School of Life Sciences, University of Warwick, Coventry, UK
| | - C N Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
11
|
Wilhelm MB, Davila AF, Parenteau MN, Jahnke LL, Abate M, Cooper G, Kelly ET, Parro García V, Villadangos MG, Blanco Y, Glass B, Wray JJ, Eigenbrode JL, Summons RE, Warren-Rhodes K. Constraints on the Metabolic Activity of Microorganisms in Atacama Surface Soils Inferred from Refractory Biomarkers: Implications for Martian Habitability and Biomarker Detection. ASTROBIOLOGY 2018; 18:955-966. [PMID: 30035640 DOI: 10.1089/ast.2017.1705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dryness is one of the main environmental challenges to microbial survival. Understanding the threshold of microbial tolerance to extreme dryness is relevant to better constrain the environmental limits of life on Earth and critically evaluate long-term habitability models of Mars. Biomolecular proxies for microbial adaptation and growth were measured in Mars-like hyperarid surface soils in the Atacama Desert that experience only a few millimeters of precipitation per decade, and in biologically active soils a few hundred kilometers away that experience two- to fivefold more precipitation. Diversity and abundance of lipids and other biomolecules decreased with increasing dryness. Cyclopropane fatty acids (CFAs), which are indicative of adaptive response to environmental stress and growth in bacteria, were only detected in the wetter surface soils. The ratio of trans to cis isomers of an unsaturated fatty acid, another bacterial stress indicator, decreased with increasingly dry conditions. Aspartic acid racemization ratios increased from 0.01 in the wetter soils to 0.1 in the driest soils, which is indicative of racemization rates comparable to de novo biosynthesis over long timescales (∼10,000 years). The content and integrity of stress proteins profiled by immunoassays were additional indicators that biomass in the driest soils is not recycled at significant levels. Together, our results point to minimal or no in situ microbial growth in the driest surface soils of the Atacama, and any metabolic activity is likely to be basal for cellular repair and maintenance only. Our data add to a growing body of evidence that the driest Atacama surface soils represent a threshold for long-term habitability (i.e., growth and reproduction). These results place constraints on the potential for extant life on the surface of Mars, which is 100-1000 times drier than the driest regions in the Atacama. Key Words: Atacama Desert-Dryness-Growth-Habitability-Biomarker-Mars. Astrobiology 18, 955-966.
Collapse
Affiliation(s)
- Mary Beth Wilhelm
- 1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - Alfonso F Davila
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - Mary N Parenteau
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - Linda L Jahnke
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - Mastewal Abate
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - George Cooper
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | | | - Victor Parro García
- 4 Departamento Evolución Molecular, Centro de Astrobiologia (INTA-CSIC) , Madrid, Spain
| | - Miriam G Villadangos
- 4 Departamento Evolución Molecular, Centro de Astrobiologia (INTA-CSIC) , Madrid, Spain
| | - Yolanda Blanco
- 4 Departamento Evolución Molecular, Centro de Astrobiologia (INTA-CSIC) , Madrid, Spain
| | - Brian Glass
- 5 Intelligent Systems Division, NASA Ames Research Center , Moffett Field, California
| | - James J Wray
- 1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia
| | - Jennifer L Eigenbrode
- 6 Planetary Environments Laboratory, NASA Goddard Space Flight Center , Greenbelt, Maryland
| | - Roger E Summons
- 7 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | | |
Collapse
|
12
|
Li ZK, Yin YC, Zhang LD, Zhang ZC, Dai GZ, Chen M, Qiu BS. The identification of IsiA proteins binding chlorophyll d in the cyanobacterium Acaryochloris marina. PHOTOSYNTHESIS RESEARCH 2018; 135:165-175. [PMID: 28378245 DOI: 10.1007/s11120-017-0379-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
The bioavailable iron in many aquatic ecosystems is extremely low, and limits the growth and photosynthetic activity of phytoplankton. In response to iron limitation, a group of chlorophyll-binding proteins known as iron stress-induced proteins are induced and serve as accessory light-harvesting components for photosystems under iron limitation. In the present study, we investigated physiological features of Acaryochloris marina in response to iron-deficient conditions. The growth doubling time under iron-deficient conditions was prolonged to ~3.4 days compared with 1.9 days under normal culture conditions, accompanied with dramatically decreased chlorophyll content. The isolation of chlorophyll-binding protein complexes using sucrose density gradient centrifugation shows six main green bands and three main fluorescence components of 712, 728, and 748 nm from the iron-deficient culture. The fluorescence components of 712 and 728 nm co-exist in the samples collected from iron-deficient and iron-replete cultures and are attributed to Chl d-binding accessory chlorophyll-binding antenna proteins and also from photosystem II. A new chlorophyll-binding protein complex with its main fluorescence peak at 748 nm was observed and enriched in the heaviest fraction from the samples collected from the iron-deficient culture only. Combining western blotting analysis using antibodies of CP47 (PSII), PsaC (PSI) and IsiA and proteomic analysis on an excised protein band at ~37 kDa, the heaviest fraction (-F6) isolated from iron-deficient culture contained Chl d-bound PSI-IsiA supercomplexes. The PSII-antenna supercomplexes isolated from iron-replete conditions showed two fluorescence peaks of 712 and 728 nm, which can be assigned as 6-transmembrane helix chlorophyll-binding antenna and photosystem II fluorescence, respectively, which is supported by protein analysis of the fractions (F5 and F6).
Collapse
Affiliation(s)
- Zheng-Ke Li
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Yan-Chao Yin
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Lu-Dan Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Zhong-Chun Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Zer H, Margulis K, Georg J, Shotland Y, Kostova G, Sultan LD, Hess WR, Keren N. Resequencing of a mutant bearing an iron starvation recovery phenotype defines Slr1658 as a new player in the regulatory network of a model cyanobacterium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:235-245. [PMID: 29161470 DOI: 10.1111/tpj.13770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Photosynthetic microorganisms encounter an erratic nutrient environment characterized by periods of iron limitation and sufficiency. Surviving in such an environment requires mechanisms for handling these transitions. Our study identified a regulatory system involved in the process of recovery from iron limitation in cyanobacteria. We set out to study the role of bacterioferritin co-migratory proteins during transitions in iron bioavailability in the cyanobacterium Synechocystis sp. PCC 6803 using knockout strains coupled with physiological and biochemical measurements. One of the mutants displayed slow recovery from iron limitation. However, we discovered that the cause of the phenotype was not the intended knockout but rather the serendipitous selection of a mutation in an unrelated locus, slr1658. Bioinformatics analysis suggested similarities to two-component systems and a possible regulatory role. Transcriptomic analysis of the recovery from iron limitation showed that the slr1658 mutation had an extensive effect on the expression of genes encoding regulatory proteins, proteins involved in the remodeling and degradation of the photosynthetic apparatus and proteins modulating electron transport. Most significantly, expression of the cyanobacterial homologue of the cyclic electron transport protein PGR5 was upregulated 1000-fold in slr1658 disruption mutants. pgr5 transcripts in the Δslr1658 mutant retained these high levels under a range of stress and recovery conditions. The results suggest that slr1658 is part of a regulatory operon that, among other aspects, affects the regulation of alternative electron flow. Disruption of its function has deleterious results under oxidative stress promoting conditions.
Collapse
Affiliation(s)
- Hagit Zer
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Ketty Margulis
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Jens Georg
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Yoram Shotland
- Department of Chemical Engineering, Shamoon College of Engineering, Beer Sheva, 84100, Israel
| | - Gergana Kostova
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Laure D Sultan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Wolfgang R Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Albertstr. 19, D-79104, Freiburg, Germany
| | - Nir Keren
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| |
Collapse
|
14
|
Hernández-Prieto MA, Li Y, Postier BL, Blankenship RE, Chen M. Far-red light promotes biofilm formation in the cyanobacteriumAcaryochloris marina. Environ Microbiol 2017; 20:535-545. [DOI: 10.1111/1462-2920.13961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Miguel A. Hernández-Prieto
- ARC Centre of Excellence for Translational Photosynthesis and School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
| | - Yaqiong Li
- ARC Centre of Excellence for Translational Photosynthesis and School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
| | - Bradley L. Postier
- Departments of Biology and Chemistry; Washington University in St. Louis; St. Louis MO 63130 USA
| | - Robert E. Blankenship
- Departments of Biology and Chemistry; Washington University in St. Louis; St. Louis MO 63130 USA
| | - Min Chen
- ARC Centre of Excellence for Translational Photosynthesis and School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
| |
Collapse
|
15
|
Pieper J, Rätsep M, Golub M, Schmitt FJ, Artene P, Eckert HJ. Excitation energy transfer in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by spectral hole burning. PHOTOSYNTHESIS RESEARCH 2017; 133:225-234. [PMID: 28560566 DOI: 10.1007/s11120-017-0396-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
The cyanobacterium Acaryochloris marina developed two types of antenna complexes, which contain chlorophyll-d (Chl d) and phycocyanobilin (PCB) as light-harvesting pigment molecules, respectively. The latter membrane-extrinsic complexes are denoted as phycobiliproteins (PBPs). Spectral hole burning was employed to study excitation energy transfer and electron-phonon coupling in PBPs. The data reveal a rich spectral substructure with a total of four low-energy electronic states whose absorption bands peak at 633, 644, 654, and at about 673 nm. The electronic states at ~633 and 644 nm can be tentatively attributed to phycocyanin (PC) and allophycocyanin (APC), respectively. The remaining low-energy electronic states including the terminal emitter at 673 nm may be associated with different isoforms of PC, APC, or the linker protein. Furthermore, the hole burning data reveal a large number of excited state vibrational frequencies, which are characteristic for the chromophore PCB. In summary, the results are in good agreement with the low-energy level structure of PBPs and electron-phonon coupling parameters reported by Gryliuk et al. (BBA 1837:1490-1499, 2014) based on difference fluorescence line-narrowing experiments.
Collapse
Affiliation(s)
- Jörg Pieper
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia.
| | - Margus Rätsep
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Maksym Golub
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Franz-Josef Schmitt
- Max-Volmer-Laboratories for Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - Petrica Artene
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Hann-Jörg Eckert
- Max-Volmer-Laboratories for Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| |
Collapse
|
16
|
Solution structure and excitation energy transfer in phycobiliproteins of Acaryochloris marina investigated by small angle scattering. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:318-324. [PMID: 28131736 DOI: 10.1016/j.bbabio.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/09/2017] [Accepted: 01/24/2017] [Indexed: 11/22/2022]
Abstract
The structure of phycobiliproteins of the cyanobacterium Acaryochloris marina was investigated in buffer solution at physiological temperatures, i.e. under the same conditions applied in spectroscopic experiments, using small angle neutron scattering. The scattering data of intact phycobiliproteins in buffer solution containing phosphate can be well described using a cylindrical shape with a length of about 225Å and a diameter of approximately 100Å. This finding is qualitatively consistent with earlier electron microscopy studies reporting a rod-like shape of the phycobiliproteins with a length of about 250 (M. Chen et al., FEBS Letters 583, 2009, 2535) or 300Å (J. Marquart et al., FEBS Letters 410, 1997, 428). In contrast, phycobiliproteins dissolved in buffer lacking phosphate revealed a splitting of the rods into cylindrical subunits with a height of 28Å only, but also a pronounced sample aggregation. Complementary small angle neutron and X-ray scattering experiments on phycocyanin suggest that the cylindrical subunits may represent either trimeric phycocyanin or trimeric allophycocyanin. Our findings are in agreement with the assumption that a phycobiliprotein rod with a total height of about 225Å can accommodate seven trimeric phycocyanin subunits and one trimeric allophycocyanin subunit, each of which having a height of about 28Å. The structural information obtained by small angle neutron and X-ray scattering can be used to interpret variations in the low-energy region of the 4.5K absorption spectra of phycobiliproteins dissolved in buffer solutions containing and lacking phosphate, respectively.
Collapse
|
17
|
Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:71-97. [PMID: 25381655 DOI: 10.1007/s11120-014-0057-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Viruses infecting the environmentally important marine cyanobacteria Prochlorococcus and Synechococcus encode 'auxiliary metabolic genes' (AMGs) involved in the light and dark reactions of photosynthesis. Here, we discuss progress on the inventory of such AMGs in the ever-increasing number of viral genome sequences as well as in metagenomic datasets. We contextualise these gene acquisitions with reference to a hypothesised fitness gain to the phage. We also report new evidence with regard to the sequence and predicted structural properties of viral petE genes encoding the soluble electron carrier plastocyanin. Viral copies of PetE exhibit extensive modifications to the N-terminal signal peptide and possess several novel residues in a region responsible for interaction with redox partners. We also highlight potential knowledge gaps in this field and discuss future opportunities to discover novel phage-host interactions involved in the photosynthetic process.
Collapse
Affiliation(s)
- Richard J Puxty
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Andrew D Millard
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - David J Evans
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
18
|
Sun J, Golbeck JH. The Presence of the IsiA-PSI Supercomplex Leads to Enhanced Photosystem I Electron Throughput in Iron-Starved Cells of Synechococcus sp. PCC 7002. J Phys Chem B 2015; 119:13549-59. [DOI: 10.1021/acs.jpcb.5b02176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Junlei Sun
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| |
Collapse
|
19
|
Abstract
Chlorophylls are magnesium-tetrapyrrole molecules that play essential roles in photosynthesis. All chlorophylls have similar five-membered ring structures, with variations in the side chains and/or reduction states. Formyl group substitutions on the side chains of chlorophyll a result in the different absorption properties of chlorophyll b, chlorophyll d, and chlorophyll f. These formyl substitution derivatives exhibit different spectral shifts according to the formyl substitution position. Not only does the presence of various types of chlorophylls allow the photosynthetic organism to harvest sunlight at different wavelengths to enhance light energy input, but the pigment composition of oxygenic photosynthetic organisms also reflects the spectral properties on the surface of the Earth. Two major environmental influencing factors are light and oxygen levels, which may play central roles in the regulatory pathways leading to the different chlorophylls. I review the biochemical processes of chlorophyll biosynthesis and their regulatory mechanisms.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia;
| |
Collapse
|
20
|
Excitation energy transfer and electron-vibrational coupling in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by site-selective spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1490-9. [PMID: 24560813 DOI: 10.1016/j.bbabio.2014.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/26/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
In adaption to its specific environmental conditions, the cyanobacterium Acaryochloris marina developed two different types of light-harvesting complexes: chlorophyll-d-containing membrane-intrinsic complexes and phycocyanobilin (PCB) - containing phycobiliprotein (PBP) complexes. The latter complexes are believed to form a rod-shaped structure comprising three homo-hexamers of phycocyanin (PC), one hetero-hexamer of phycocyanin and allophycocyanin (APC) and probably a linker protein connecting the PBPs to the reaction centre. Excitation energy transfer and electron-vibrational coupling in PBPs have been investigated by selectively excited fluorescence spectra. The data reveal a rich spectral substructure with a total of five low-energy electronic states with fluorescence bands at 635nm, 645nm, 654nm, 659nm and a terminal emitter at about 673 nm. The electronic states at ~635 and 645 nm are tentatively attributed to PC and APC, respectively, while an apparent heterogeneity among PC subunits may also play a role. The other fluorescence bands may be associated with three different isoforms of the linker protein. Furthermore, a large number of vibrational features can be identified for each electronic state with intense phonon sidebands peaking at about 31 to 37cm⁻¹, which are among the highest phonon frequencies observed for photosynthetic antenna complexes. The corresponding Huang-Rhys factors S fall in the range between 0.98 (terminal emitter), 1.15 (APC), and 1.42 (PC). Two characteristic vibronic lines at about 1580 and 1634cm⁻¹ appear to reflect CNH⁺ and CC stretching modes of the PCB chromophore, respectively. The exact phonon and vibrational frequencies vary with electronic state implying that the respective PCB chromophores are bound to different protein environments. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
|
21
|
Watanabe M, Ikeuchi M. Phycobilisome: architecture of a light-harvesting supercomplex. PHOTOSYNTHESIS RESEARCH 2013; 116:265-76. [PMID: 24081814 DOI: 10.1007/s11120-013-9905-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/26/2013] [Indexed: 05/09/2023]
Abstract
The phycobilisome (PBS) is an extra-membrane supramolecular complex composed of many chromophore (bilin)-binding proteins (phycobiliproteins) and linker proteins, which generally are colorless. PBS collects light energy of a wide range of wavelengths, funnels it to the central core, and then transfers it to photosystems. Although phycobiliproteins are evolutionarily related to each other, the binding of different bilin pigments ensures the ability to collect energy over a wide range of wavelengths. Spatial arrangement and functional tuning of the different phycobiliproteins, which are mediated primarily by linker proteins, yield PBS that is efficient and versatile light-harvesting systems. In this review, we discuss the functional and spatial tuning of phycobiliproteins with a focus on linker proteins.
Collapse
Affiliation(s)
- Mai Watanabe
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan
| | | |
Collapse
|
22
|
Ryan-Keogh TJ, Macey AI, Cockshutt AM, Moore CM, Bibby TS. THE CYANOBACTERIAL CHLOROPHYLL-BINDING-PROTEIN ISIA ACTS TO INCREASE THE IN VIVO EFFECTIVE ABSORPTION CROSS-SECTION OF PSI UNDER IRON LIMITATION(1). JOURNAL OF PHYCOLOGY 2012; 48:145-54. [PMID: 27009659 DOI: 10.1111/j.1529-8817.2011.01092.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Iron availability limits primary production in >30% of the world's oceans; hence phytoplankton have developed acclimation strategies. In particular, cyanobacteria express IsiA (iron-stress-induced) under iron stress, which can become the most abundant chl-binding protein in the cell. Within iron-limited oceanic regions with significant cyanobacterial biomass, IsiA may represent a significant fraction of the total chl. We spectroscopically measured the effective cross-section of the photosynthetic reaction center PSI (σPSI ) in vivo and biochemically quantified the absolute abundance of PSI, PSII, and IsiA in the model cyanobacterium Synechocystis sp. PCC 6803. We demonstrate that accumulation of IsiA results in a ∼60% increase in σPSI , in agreement with the theoretical increase in cross-section based on the structure of the biochemically isolated IsiA-PSI supercomplex from cyanobacteria. Deriving a chl budget, we suggest that IsiA plays a primary role as a light-harvesting antenna for PSI. On progressive iron-stress in culture, IsiA continues to accumulate without a concomitant increase in σPSI , suggesting that there may be a secondary role for IsiA. In natural populations, the potential physiological significance of the uncoupled pool of IsiA remains to be established. However, the functional role as a PSI antenna suggests that a large fraction of IsiA-bound chl is directly involved in photosynthetic electron transport.
Collapse
Affiliation(s)
- Thomas J Ryan-Keogh
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, UKDepartment of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G7, CanadaSchool of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Anna I Macey
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, UKDepartment of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G7, CanadaSchool of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Amanda M Cockshutt
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, UKDepartment of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G7, CanadaSchool of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, UK
| | - C Mark Moore
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, UKDepartment of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G7, CanadaSchool of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Thomas S Bibby
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, UKDepartment of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G7, CanadaSchool of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, UK
| |
Collapse
|
23
|
Watanabe M, Sato M, Kondo K, Narikawa R, Ikeuchi M. Phycobilisome model with novel skeleton-like structures in a glaucocystophyte Cyanophora paradoxa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:1428-35. [PMID: 22172737 DOI: 10.1016/j.bbabio.2011.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 11/12/2011] [Accepted: 11/16/2011] [Indexed: 11/24/2022]
Abstract
Phycobilisome (PBS) is a photosynthetic antenna supercomplex consisting of a central core subcomplex with several peripheral rods radiating from the core. Subunit structure of PBS was studied in a glaucocystophyte Cyanophora paradoxa strain NIES 547. Subunit composition of PBS was identified by N-terminal sequencing and genes for the subunits were determined by homology search of databases. They included rod linker proteins CpcK1 and CpcK2, rod-core linker proteins CpcG1 and CpcG2, and core linker proteins ApcC1 and ApcC2. Subfractionation by native polyacrylamide gel electrophoresis provided evidence for novel subcomplexes (ApcE/CpcK1/CpcG2/ApcA/ApcB/CpcD and ApcE/CpcK2/CpcG1/ApcA/ApcB), which connect rod and core subcomplexes. These skeleton-like structures may serve as a scaffold of the whole PBS assembly. Different roles of ApcC1 and ApcC2 were also suggested. Based on these findings, structural models for PBS were proposed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Mai Watanabe
- Department of Life Sciences, University of Tokyo, Komaba, Tokyo, Japan
| | | | | | | | | |
Collapse
|
24
|
Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS. Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 2011; 29:615-23. [DOI: 10.1016/j.tibtech.2011.06.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/30/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
|
25
|
Feng X, Neupane B, Acharya K, Zazubovich V, Picorel R, Seibert M, Jankowiak R. Spectroscopic Study of the CP43′ Complex and the PSI–CP43′ Supercomplex of the Cyanobacterium Synechocystis PCC 6803. J Phys Chem B 2011; 115:13339-49. [DOI: 10.1021/jp206054b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ximao Feng
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Bhanu Neupane
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Khem Acharya
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Valter Zazubovich
- Department of Physics, Concordia University, Montreal, Quebec, Canada
| | - Rafael Picorel
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Estación Experimental de Aula Dei (CSIC), Zaragoza, Spain
| | - Michael Seibert
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
26
|
Theiss C, Schmitt FJ, Pieper J, Nganou C, Grehn M, Vitali M, Olliges R, Eichler HJ, Eckert HJ. Excitation energy transfer in intact cells and in the phycobiliprotein antennae of the chlorophyll d containing cyanobacterium Acaryochloris marina. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1473-1487. [PMID: 21396735 DOI: 10.1016/j.jplph.2011.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 05/30/2023]
Abstract
The cyanobacterium Acaryochloris marina is unique because it mainly contains Chlorophyll d (Chl d) in the core complexes of PS I and PS II instead of the usually dominant Chl a. Furthermore, its light harvesting system has a structure also different from other cyanobacteria. It has both, a membrane-internal chlorophyll containing antenna and a membrane-external phycobiliprotein (PBP) complex. The first one binds Chl d and is structurally analogous to CP43. The latter one has a rod-like structure consisting of three phycocyanin (PC) homohexamers and one heterohexamer containing PC and allophycocyanin (APC). In this paper, we give an overview on the investigations of excitation energy transfer (EET) in this PBP-light-harvesting system and of charge separation in the photosystem II (PS II) reaction center of A. marina performed at the Technische Universität Berlin. Due to the unique structure of the PBP antenna in A. marina, this EET occurs on a much shorter overall time scale than in other cyanobacteria. We also briefly discuss the question of the pigment composition in the reaction center (RC) of PS II and the nature of the primary donor of the PS II RC.
Collapse
Affiliation(s)
- Christoph Theiss
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Strasse des 17. Juni 135, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Molecular environments of divinyl chlorophylls in Prochlorococcus and Synechocystis: Differences in fluorescence properties with chlorophyll replacement. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:471-81. [DOI: 10.1016/j.bbabio.2011.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 02/22/2011] [Accepted: 02/28/2011] [Indexed: 11/21/2022]
|
28
|
Durchan M, Herbstová M, Fuciman M, Gardian Z, Vácha F, Polívka T. Carotenoids in energy transfer and quenching processes in Pcb and Pcb-PS I complexes from Prochlorothrix hollandica. J Phys Chem B 2010; 114:9275-82. [PMID: 20583762 DOI: 10.1021/jp1026724] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlorophyll (Chl) a/b-binding proteins from Prochlorothrix hollandica known as Pcb antennae were studied by femtosecond transient absorption technique to identify energy transfer rates and pathways in Pcb and Pcb-PS I complexes. Carotenoids transfer energy to Chl with low efficiency of approximately 25% in Pcb complexes. Interestingly, analysis of transient absorption spectra identified a pathway from the hot S(1) state of zeaxanthin and/or beta-carotene as the major energy transfer channel between carotenoids and chlorophylls in Pcb whereas the S(2) state contributes only marginally to energy transfer. Due to energetic reasons, no energy transfer is possible via the relaxed S(1) state of carotenoids. The low overall energy transfer efficiency of carotenoids recognizes chlorophylls as the main light-harvesting pigments. Besides Chl a, presence of Chl b, which transfers energy to Chl a with nearly 100% efficiency, significantly broadens the spectral range accessible for light-harvesting and improves cross section of Pcb complexes. The major role of carotenoids in Pcb is photoprotection.
Collapse
Affiliation(s)
- Milan Durchan
- Institute of Physical Biology, University of South Bohemia, 373 33 Nové Hrady, Czech Republic
| | | | | | | | | | | |
Collapse
|
29
|
Zhang Y, Chen M, Church WB, Lau KW, Larkum AWD, Jermiin LS. The molecular structure of the IsiA–Photosystem I supercomplex, modelled from high-resolution, crystal structures of Photosystem I and the CP43 protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:457-65. [PMID: 20064486 DOI: 10.1016/j.bbabio.2010.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/31/2009] [Accepted: 01/05/2010] [Indexed: 11/30/2022]
Affiliation(s)
- Yinan Zhang
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Yang D, Qing Y, Min C. Incorporation of the chlorophyll d-binding light-harvesting protein from Acaryochloris marina and its localization within the photosynthetic apparatus of Synechocystis sp. PCC6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:204-11. [DOI: 10.1016/j.bbabio.2009.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 10/11/2009] [Accepted: 10/14/2009] [Indexed: 11/30/2022]
|
31
|
Partensky F, Garczarek L. Prochlorococcus: advantages and limits of minimalism. ANNUAL REVIEW OF MARINE SCIENCE 2010; 2:305-331. [PMID: 21141667 DOI: 10.1146/annurev-marine-120308-081034] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Prochlorococcus is the key phytoplanktonic organism of tropical gyres, large ocean regions that are depleted of the essential macronutrients needed for photosynthesis and cell growth. This cyanobacterium has adapted itself to oligotrophy by minimizing the resources necessary for life through a drastic reduction of cell and genome sizes. This rarely observed strategy in free-living organisms has conferred on Prochlorococcus a considerable advantage over other phototrophs, including its closest relative Synechococcus, for life in this vast yet little variable ecosystem. However, this strategy seems to reach its limits in the upper layer of the S Pacific gyre, the most oligotrophic region of the world ocean. By losing some important genes and/or functions during evolution, Prochlorococcus has seemingly become dependent on co-occurring microorganisms. In this review, we present some of the recent advances in the ecology, biology, and evolution of Prochlorococcus, which because of its ecological importance and tiny genome is rapidly imposing itself as a model organism in environmental microbiology.
Collapse
Affiliation(s)
- Frédéric Partensky
- UPMC-Université Paris 06, Station Biologique, 29682 Roscoff cedex, France.
| | | |
Collapse
|
32
|
Chen M, Floetenmeyer M, Bibby TS. Supramolecular organization of phycobiliproteins in the chlorophyll d
-containing cyanobacterium Acaryochloris marina. FEBS Lett 2009; 583:2535-9. [DOI: 10.1016/j.febslet.2009.07.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Revised: 07/02/2009] [Accepted: 07/02/2009] [Indexed: 12/21/2022]
|
33
|
Ting CS, Ramsey ME, Wang YL, Frost AM, Jun E, Durham T. Minimal genomes, maximal productivity: comparative genomics of the photosystem and light-harvesting complexes in the marine cyanobacterium, Prochlorococcus. PHOTOSYNTHESIS RESEARCH 2009; 101:1-19. [PMID: 19557544 DOI: 10.1007/s11120-009-9455-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 06/04/2009] [Indexed: 05/28/2023]
Abstract
Although Prochlorococcus isolates possess the smallest genomes of any extant photosynthetic organism, this genus numerically dominates vast regions of the world's subtropical and tropical open oceans and has evolved to become an important contributor to global biogeochemical cycles. The sequencing of 12 Prochlorococcus genomes provides a glimpse of the extensive genetic heterogeneity and, thus, physiological potential of the lineage. In this study, we present an up-to-date comparative analysis of major proteins of the photosynthetic apparatus in 12 Prochlorococcus genomes. Our analyses reveal a striking diversity within the Prochlorococcus lineage in the major protein complexes of the photosynthetic apparatus. The heterogeneity that has evolved in the photosynthetic apparatus suggests versatility in strategies for optimizing photosynthesis under conditions of environmental variability and stress. This diversity could be particularly important in ensuring the survival of a lineage whose individuals have evolved minimal genomes and, thus, relatively limited repertoires for responding to environmental challenges.
Collapse
Affiliation(s)
- Claire S Ting
- Thompson Biology Lab, Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Bibby TS, Zhang Y, Chen M. Biogeography of photosynthetic light-harvesting genes in marine phytoplankton. PLoS One 2009; 4:e4601. [PMID: 19240807 PMCID: PMC2644788 DOI: 10.1371/journal.pone.0004601] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/03/2009] [Indexed: 01/05/2023] Open
Abstract
Background Photosynthetic light-harvesting proteins are the mechanism by which energy enters the marine ecosystem. The dominant prokaryotic photoautotrophs are the cyanobacterial genera Prochlorococcus and Synechococcus that are defined by two distinct light-harvesting systems, chlorophyll-bound protein complexes or phycobilin-bound protein complexes, respectively. Here, we use the Global Ocean Sampling (GOS) Project as a unique and powerful tool to analyze the environmental diversity of photosynthetic light-harvesting genes in relation to available metadata including geographical location and physical and chemical environmental parameters. Methods All light-harvesting gene fragments and their metadata were obtained from the GOS database, aligned using ClustalX and classified phylogenetically. Each sequence has a name indicative of its geographic location; subsequent biogeographical analysis was performed by correlating light-harvesting gene budgets for each GOS station with surface chlorophyll concentration. Conclusion/Significance Using the GOS data, we have mapped the biogeography of light-harvesting genes in marine cyanobacteria on ocean-basin scales and show that an environmental gradient exists in which chlorophyll concentration is correlated to diversity of light-harvesting systems. Three functionally distinct types of light-harvesting genes are defined: (1) the phycobilisome (PBS) genes of Synechococcus; (2) the pcb genes of Prochlorococcus; and (3) the iron-stress-induced (isiA) genes present in some marine Synechococcus. At low chlorophyll concentrations, where nutrients are limited, the Pcb-type light-harvesting system shows greater genetic diversity; whereas at high chlorophyll concentrations, where nutrients are abundant, the PBS-type light-harvesting system shows higher genetic diversity. We interpret this as an environmental selection of specific photosynthetic strategy. Importantly, the unique light-harvesting system isiA is found in the iron-limited, high-nutrient low-chlorophyll region of the equatorial Pacific. This observation demonstrates the ecological importance of isiA genes in enabling marine Synechococcus to acclimate to iron limitation and suggests that the presence of this gene can be a natural biomarker for iron limitation in oceanic environments.
Collapse
Affiliation(s)
- Thomas S. Bibby
- School of Ocean and Earth Sciences, National Oceanography Centre, Southampton, United Kingdom
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Yinan Zhang
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Min Chen
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
35
|
Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci U S A 2008; 105:2005-10. [PMID: 18252824 DOI: 10.1073/pnas.0709772105] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acaryochloris marina is a unique cyanobacterium that is able to produce chlorophyll d as its primary photosynthetic pigment and thus efficiently use far-red light for photosynthesis. Acaryochloris species have been isolated from marine environments in association with other oxygenic phototrophs, which may have driven the niche-filling introduction of chlorophyll d. To investigate these unique adaptations, we have sequenced the complete genome of A. marina. The DNA content of A. marina is composed of 8.3 million base pairs, which is among the largest bacterial genomes sequenced thus far. This large array of genomic data is distributed into nine single-copy plasmids that code for >25% of the putative ORFs. Heavy duplication of genes related to DNA repair and recombination (primarily recA) and transposable elements could account for genetic mobility and genome expansion. We discuss points of interest for the biosynthesis of the unusual pigments chlorophyll d and alpha-carotene and genes responsible for previously studied phycobilin aggregates. Our analysis also reveals that A. marina carries a unique complement of genes for these phycobiliproteins in relation to those coding for antenna proteins related to those in Prochlorococcus species. The global replacement of major photosynthetic pigments appears to have incurred only minimal specializations in reaction center proteins to accommodate these alternate pigments. These features clearly show that the genus Acaryochloris is a fitting candidate for understanding genome expansion, gene acquisition, ecological adaptation, and photosystem modification in the cyanobacteria.
Collapse
|
36
|
Chen M, Zhang Y, Blankenship RE. Nomenclature for membrane-bound light-harvesting complexes of cyanobacteria. PHOTOSYNTHESIS RESEARCH 2008; 95:147-54. [PMID: 17912604 DOI: 10.1007/s11120-007-9255-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 09/10/2007] [Indexed: 05/17/2023]
Abstract
Accessory chlorophyll-binding proteins (CBP) in cyanobacteria have six transmembrane helices and about 11 conserved His residues that might participate in chlorophyll binding. In various species of cyanobacteria, the CBP proteins bind different types of chlorophylls, including chlorophylls a, b, d and divinyl-chlorophyll a, b. The CBP proteins do not belong to the light-harvesting complexes (LHC) superfamily of plant and algae. The proposed new name of CBP for this class of proteins, which is a unique accessory light-harvesting superfamily in cyanobacteria, clarifies the confusion of names of prochlorophytes chlorophyll binding protein (Pcb), PSII-like light-harvesting proteins and iron-stress-induced protein A (IsiA). The CBP complexes are a member of a larger family that includes the chlorophyll a-binding proteins CP43 and CP47 that function as core antennas of photosystem II.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | | | | |
Collapse
|
37
|
Zhang Y, Chen M, Zhou BB, Jermiin LS, Larkum AWD. Evolution of the Inner Light-Harvesting Antenna Protein Family of Cyanobacteria, Algae, and Plants. J Mol Evol 2007; 64:321-31. [PMID: 17273917 DOI: 10.1007/s00239-006-0058-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
Two hypotheses account for the evolution of the inner antenna light-harvesting proteins of oxygenic photosynthesis in cyanobacteria, algae, and plants: one in which the CP43 protein of photosytem II gave rise to the extrinsic CP43-like antennas of cyanobacteria (i.e. IsiA and Pcb proteins), as a late development, and the other in which CP43 and CP43-like proteins derive from an ancestral protein. In order to determine which of these hypotheses is most likely, we analyzed the family of antenna proteins by a variety of phylogenetic techniques, using alignments of the six common membrane-spanning helices, constructed using information on the antenna proteins' three-dimensional structure, and surveyed for evidence of factors that might confound inference of a correct phylogeny. The first hypothesis was strongly supported. As a consequence, we conclude that the ancestral photosynthetic apparatus, with 11 membrane-spanning helices, split at an early stage during evolution to form, on the one hand, the reaction center of photosystem II and, on the other hand, the ancestor of inner antenna proteins, CP43 (PsbC) and CP47 (PsbB). Only much later in evolution did the CP43 lineage give rise to the CP43' proteins (IsiA and Pcb) of cyanobacteria.
Collapse
Affiliation(s)
- Yinan Zhang
- School of Biological Sciences, Heydon-Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|