1
|
Abstract
Bacterial microcompartments (BMCs) confine a diverse array of metabolic reactions within a selectively permeable protein shell, allowing for specialized biochemistry that would be less efficient or altogether impossible without compartmentalization. BMCs play critical roles in carbon fixation, carbon source utilization, and pathogenesis. Despite their prevalence and importance in bacterial metabolism, little is known about BMC “homeostasis,” a term we use here to encompass BMC assembly, composition, size, copy-number, maintenance, turnover, positioning, and ultimately, function in the cell. The carbon-fixing carboxysome is one of the most well-studied BMCs with regard to mechanisms of self-assembly and subcellular organization. In this minireview, we focus on the only known BMC positioning system to date—the maintenance of carboxysome distribution (Mcd) system, which spatially organizes carboxysomes. We describe the two-component McdAB system and its proposed diffusion-ratchet mechanism for carboxysome positioning. We then discuss the prevalence of McdAB systems among carboxysome-containing bacteria and highlight recent evidence suggesting how liquid-liquid phase separation (LLPS) may play critical roles in carboxysome homeostasis. We end with an outline of future work on the carboxysome distribution system and a perspective on how other BMCs may be spatially regulated. We anticipate that a deeper understanding of BMC organization, including nontraditional homeostasis mechanisms involving LLPS and ATP-driven organization, is on the horizon.
Collapse
|
2
|
Zhang Y, Zhou J, Zhang Y, Liu T, Lu X, Men D, Zhang XE. Auxiliary Module Promotes the Synthesis of Carboxysomes in E. coli to Achieve High-Efficiency CO 2 Assimilation. ACS Synth Biol 2021; 10:707-715. [PMID: 33723997 DOI: 10.1021/acssynbio.0c00436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carboxysomes (CBs) are protein organelles in cyanobacteria, and they play a central role in assimilation of CO2. Heterologous synthesis of CBs in E. coli provides an opportunity for CO2-organic compound conversion under controlled conditions but remains challenging; specifically, the CO2 assimilation efficiency is insufficient. In this study, an auxiliary module was designed to assist self-assembly of CBs derived from a model species cyanobacteria Prochlorococcus marinus (P. marinus) MED4 for synthesizing in E. coli. The results indicated that the structural integrity of synthetic CBs is improved through the transmission electron microscope images and that the CBs have highly efficient CO2-concentrating ability as revealed by enzyme kinetic analysis. Furthermore, the bacterial growth curve and 13C-metabolic flux analysis not only consolidated the fact of CO2 assimilation by synthetic CBs in E. coli but also proved that the engineered strain could efficiently convert external CO2 to some metabolic intermediates (acetyl-CoA, malate, fumarate, tyrosine, etc.) of the central metabolic pathway. The synthesis of CBs of P. marinus MED4 in E. coli provides prospects for understanding their CO2 assimilation mechanism and realizing their modular application in synthetic biology.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuchen Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Xiaoyun Lu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Kobayashi A, Takayama Y, Hirakawa T, Okajima K, Oide M, Oroguchi T, Inui Y, Yamamoto M, Matsunaga S, Nakasako M. Common architectures in cyanobacteria Prochlorococcus cells visualized by X-ray diffraction imaging using X-ray free electron laser. Sci Rep 2021; 11:3877. [PMID: 33594220 PMCID: PMC7886902 DOI: 10.1038/s41598-021-83401-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/02/2021] [Indexed: 11/24/2022] Open
Abstract
Visualization of intracellular structures and their spatial organization inside cells without any modification is essential to understand the mechanisms underlying the biological functions of cells. Here, we investigated the intracellular structure of cyanobacteria Prochlorococcus in the interphase by X-ray diffraction imaging using X-ray free-electron laser. A number of diffraction patterns from single cells smaller than 1 µm in size were collected with high signal-to-noise ratio with a resolution of up to 30 nm. From diffraction patterns, a set of electron density maps projected along the direction of the incident X-ray were retrieved with high reliability. The most characteristic structure found to be common among the cells was a C-shaped arrangement of 100-nm sized high-density spots, which surrounded a low-density area of 100 nm. Furthermore, a three-dimensional map reconstructed from the projection maps of individual cells was non-uniform, indicating the presence of common structures among cyanobacteria cells in the interphase. By referring to the fluorescent images for distributions of thylakoid membranes, nucleoids, and carboxysomes, we inferred and represented their spatial arrangements in the three-dimensional map. The arrangement allowed us to discuss the relevance of the intracellular organization to the biological functions of cyanobacteria.
Collapse
Affiliation(s)
- Amane Kobayashi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yuki Takayama
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Takeshi Hirakawa
- Department of Applied Biological Science Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Koji Okajima
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Tomotaka Oroguchi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yayoi Inui
- Department of Applied Biological Science Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| |
Collapse
|
4
|
Groaz A, Moghimianavval H, Tavella F, Giessen TW, Vecchiarelli AG, Yang Q, Liu AP. Engineering spatiotemporal organization and dynamics in synthetic cells. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1685. [PMID: 33219745 DOI: 10.1002/wnan.1685] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell-sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells-compartmentalization and self-organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self-organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Yang
- University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Li YY, Chen XH, Xue C, Zhang H, Sun G, Xie ZX, Lin L, Wang DZ. Proteomic Response to Rising Temperature in the Marine Cyanobacterium Synechococcus Grown in Different Nitrogen Sources. Front Microbiol 2019; 10:1976. [PMID: 31507578 PMCID: PMC6716455 DOI: 10.3389/fmicb.2019.01976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022] Open
Abstract
Synechococcus is one of the most important contributors to global primary productivity, and ocean warming is predicted to increase abundance and distribution of Synechococcus in the ocean. Here, we investigated molecular response of an oceanic Synechococcus strain WH8102 grown in two nitrogen sources (nitrate and urea) under present (25°C) and predicted future (28°C) temperature conditions using an isobaric tag (IBT)-based quantitative proteomic approach. Rising temperature decreased growth rate, contents of chlorophyll a, protein and sugar in the nitrate-grown cells, but only decreased protein content and significantly increased zeaxanthin content of the urea-grown cells. Expressions of CsoS2 protein involved in carboxysome formation and ribosomal subunits in both nitrate- and urea-grown cells were significantly decreased in rising temperature, whereas carbohydrate selective porin and sucrose-phosphate synthase (SPS) were remarkably up-regulated, and carbohydrate degradation associated proteins, i.e., glycogen phosphorylase kinase, fructokinase and glucose-6-phosphate dehydrogenase, were down-regulated in the urea-grown cells. Rising temperature also increased expressions of three redox-sensitive enzymes (peroxiredoxin, thioredoxin, and CP12) in both nitrate- and urea-grown cells. Our results indicated that rising temperature did not enhance cell growth of Synechococcus; on the contrary, it impaired cell functions, and this might influence cell abundance and distribution of Synechococcus in a future ocean.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xiao-Huang Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Cheng Xue
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Geng Sun
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Key Laboratory of Marine Ecology and Environmental Sciences, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
6
|
Hennon GM, Morris JJ, Haley ST, Zinser ER, Durrant AR, Entwistle E, Dokland T, Dyhrman ST. The impact of elevated CO 2 on Prochlorococcus and microbial interactions with 'helper' bacterium Alteromonas. THE ISME JOURNAL 2018; 12:520-531. [PMID: 29087378 PMCID: PMC5776468 DOI: 10.1038/ismej.2017.189] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/12/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023]
Abstract
Prochlorococcus is a globally important marine cyanobacterium that lacks the gene catalase and relies on 'helper' bacteria such as Alteromonas to remove reactive oxygen species. Increasing atmospheric CO2 decreases the need for carbon concentrating mechanisms and photorespiration in phytoplankton, potentially altering their metabolism and microbial interactions even when carbon is not limiting growth. Here, Prochlorococcus (VOL4, MIT9312) was co-cultured with Alteromonas (strain EZ55) under ambient (400 p.p.m.) and elevated CO2 (800 p.p.m.). Under elevated CO2, Prochlorococcus had a significantly longer lag phase and greater apparent die-offs after transfers suggesting an increase in oxidative stress. Whole-transcriptome analysis of Prochlorococcus revealed decreased expression of the carbon fixation operon, including carboxysome subunits, corresponding with significantly fewer carboxysome structures observed by electron microscopy. Prochlorococcus co-culture responsive gene 1 had significantly increased expression in elevated CO2, potentially indicating a shift in the microbial interaction. Transcriptome analysis of Alteromonas in co-culture with Prochlorococcus revealed decreased expression of the catalase gene, known to be critical in relieving oxidative stress in Prochlorococcus by removing hydrogen peroxide. The decrease in catalase gene expression was corroborated by a significant ~6-fold decrease in removal rates of hydrogen peroxide from co-cultures. These data suggest Prochlorococcus may be more vulnerable to oxidative stress under elevated CO2 in part from a decrease in ecosystem services provided by heterotrophs like Alteromonas. This work highlights the importance of considering microbial interactions in the context of a changing ocean.
Collapse
Affiliation(s)
- Gwenn Mm Hennon
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Columbia University, Palisades,, NY, USA
| | - J Jeffrey Morris
- Department of Biology, University of Alabama at Birmingham, Birmingham,, AL, USA
| | - Sheean T Haley
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Columbia University, Palisades,, NY, USA
| | - Erik R Zinser
- Department of Microbiology, University of Tennessee, Knoxville,, TN, USA
| | - Alexander R Durrant
- Department of Biology, University of Alabama at Birmingham, Birmingham,, AL, USA
| | - Elizabeth Entwistle
- Department of Biology, University of Alabama at Birmingham, Birmingham,, AL, USA
| | - Terje Dokland
- Department of Biology, University of Alabama at Birmingham, Birmingham,, AL, USA
| | - Sonya T Dyhrman
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Columbia University, Palisades,, NY, USA.
- Department of Earth and Environmental Science, Columbia University, Palisades, NY, USA.
| |
Collapse
|
7
|
Cai F, Dou Z, Bernstein SL, Leverenz R, Williams EB, Heinhorst S, Shively J, Cannon GC, Kerfeld CA. Advances in Understanding Carboxysome Assembly in Prochlorococcus and Synechococcus Implicate CsoS2 as a Critical Component. Life (Basel) 2015; 5:1141-71. [PMID: 25826651 PMCID: PMC4499774 DOI: 10.3390/life5021141] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 11/16/2022] Open
Abstract
The marine Synechococcus and Prochlorococcus are the numerically dominant cyanobacteria in the ocean and important in global carbon fixation. They have evolved a CO2-concentrating-mechanism, of which the central component is the carboxysome, a self-assembling proteinaceous organelle. Two types of carboxysome, α and β, encapsulating form IA and form IB d-ribulose-1,5-bisphosphate carboxylase/oxygenase, respectively, differ in gene organization and associated proteins. In contrast to the β-carboxysome, the assembly process of the α-carboxysome is enigmatic. Moreover, an absolutely conserved α-carboxysome protein, CsoS2, is of unknown function and has proven recalcitrant to crystallization. Here, we present studies on the CsoS2 protein in three model organisms and show that CsoS2 is vital for α-carboxysome biogenesis. The primary structure of CsoS2 appears tripartite, composed of an N-terminal, middle (M)-, and C-terminal region. Repetitive motifs can be identified in the N- and M-regions. Multiple lines of evidence suggest CsoS2 is highly flexible, possibly an intrinsically disordered protein. Based on our results from bioinformatic, biophysical, genetic and biochemical approaches, including peptide array scanning for protein-protein interactions, we propose a model for CsoS2 function and its spatial location in the α-carboxysome. Analogies between the pathway for β-carboxysome biogenesis and our model for α-carboxysome assembly are discussed.
Collapse
Affiliation(s)
- Fei Cai
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Zhicheng Dou
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406-5043, USA.
| | - Susan L Bernstein
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Ryan Leverenz
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Eric B Williams
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406-5043, USA.
| | - Sabine Heinhorst
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406-5043, USA.
| | - Jessup Shively
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
| | - Gordon C Cannon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406-5043, USA.
| | - Cheryl A Kerfeld
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|