1
|
Yukawa H, Kono H, Ishiwata H, Igarashi R, Takakusagi Y, Arai S, Hirano Y, Suhara T, Baba Y. Quantum life science: biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, quantum biology, and quantum biotechnology. Chem Soc Rev 2025; 54:3293-3322. [PMID: 39874046 DOI: 10.1039/d4cs00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The emerging field of quantum life science combines principles from quantum physics and biology to study fundamental life processes at the molecular level. Quantum mechanics, which describes the properties of small particles, can help explain how quantum phenomena such as tunnelling, superposition, and entanglement may play a role in biological systems. However, capturing these effects in living systems is a formidable challenge, as it involves dealing with dissipation and decoherence caused by the surrounding environment. We overview the current status of the quantum life sciences from technologies and topics in quantum biology. Technologies such as biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, high-speed 2D electronic spectrometers, and computer simulations are being developed to address these challenges. These interdisciplinary fields have the potential to revolutionize our understanding of living organisms and lead to advancements in genetics, molecular biology, medicine, and bioengineering.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hitoshi Ishiwata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoichi Takakusagi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Shigeki Arai
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Tetsuya Suhara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoshinobu Baba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
2
|
Kunikubo T, Castañeda R, Murugesu M, Brusso JL, Yamauchi K, Ozawa H, Sakai K. Diplatinum Single-Molecular Photocatalyst Capable of Driving Hydrogen Production from Water via Singlet-to-Triplet Transitions. Angew Chem Int Ed Engl 2025; 64:e202418884. [PMID: 39907290 DOI: 10.1002/anie.202418884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Solar-driven hydrogen production is regarded as one of the most ideal methods to achieve a sustainable society. In order to artificially establish efficient photosynthetic systems, efforts have been made to develop single-molecular photocatalysts capable of serving both as a photosensitizer (PS) and a catalyst (Cat) in hydrogen evolution reaction (HER). Although examples of such hybrid molecular photocatalysts have been demonstrated in the literature, their solar energy conversion efficiencies still remain quite limited. Here we demonstrate that a new dinuclear platinum(II) complex Pt2(bpia)Cl3 (bpia=bis(2-pyridylimidoyl)amido) serves as a single-molecular photocatalyst for HER with its performance significantly higher than that of the PtCl(tpy)- and PtCl2(bpy)-type photocatalysts developed in our group (tpy=2,2':6',2''-terpyridine, bpy=2,2'-bipyridine). The outstanding feature is that Pt2(bpia)Cl3 can produce H2 even by irradiating the lower-energy light above 500 nm, which is rationalized due to the direct population of triplet states via singlet-to-triplet transitions (i.e., S-T transitions) accelerated by the diplatinum core. To the best of our knowledge, Pt2(bpia)Cl3 is the first example of a single-molecular photocatalyst enabling hydrogen production from water via the S-T transitions using lower-energy light (>580 nm).
Collapse
Affiliation(s)
- Toma Kunikubo
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Raúl Castañeda
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Jaclyn L Brusso
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Kosei Yamauchi
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hironobu Ozawa
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken Sakai
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
3
|
Zheng Z, Li X, Wei P, Zhang X, Zhang T, Zhang Z, Dong C, Zhao J. Molecular glue for phycobilisome attachment to photosystem II in Synechococcus sp. PCC 7002. Proc Natl Acad Sci U S A 2025; 122:e2415222122. [PMID: 39847327 PMCID: PMC11789067 DOI: 10.1073/pnas.2415222122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium Synechococcus sp. PCC 7002. We also report that the PB-loop of PBS, which is located within the α-APC domain of ApcE, is required for the attachment of PBS to PSII. Deletion of either PB-loop or the gene A0913 led to a decreased rate of photoautotrophic growth under illumination of green light, which is preferentially absorbed by PBS. A double mutant lacking the PB-loop and A0913 (ΔPBL-0913) showed a complete inhibition of O2 evolution under the 590 nm light and could not grow under green light illumination. While assembled PBS could be isolated from ΔPBL-0913, the energy transfer from its PBS to PSII was blocked as measured by fluorescence induction. Photobleaching with intact cells showed that the PBS movement speed in ΔPBL-0913 was 2.5 times as fast as that of the wild type, suggesting that association of its PBS with thylakoids was weakened significantly. The pull-down and coimmunoprecipitation results showed that the LcpA interacts with the CP47 subunit of PSII through its N-terminal region and interacts with ApcB of PBS through its C-terminal α-helix motif. Our results provide insights into the molecular mechanism of PBS-PSII association and shed light on excitation energy transfer from PBS to PSII.
Collapse
Affiliation(s)
- Zhenggao Zheng
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing100871, People’s Republic of China
| | - Xinrui Li
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing100871, People’s Republic of China
| | - Peijun Wei
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing100871, People’s Republic of China
| | - Xueang Zhang
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing100871, People’s Republic of China
| | - Tianyi Zhang
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing100871, People’s Republic of China
| | - Zhengdong Zhang
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing100871, People’s Republic of China
| | - Chunxia Dong
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing100871, People’s Republic of China
| | - Jindong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing100871, People’s Republic of China
- Key Laboratory of Phycology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, China
| |
Collapse
|
4
|
Gao RY, Zou JW, Shi YP, Li DH, Zheng J, Zhang JP. The Q-Band Energetics and Relaxation of Chlorophylls a and b as Revealed by Visible-to-Near Infrared Time-Resolved Absorption Spectroscopy. J Phys Chem Lett 2025; 16:789-794. [PMID: 39805070 DOI: 10.1021/acs.jpclett.4c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (fs-TA) absorption spectroscopy in 430-1,700 nm to Chls a and b in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the Bx,y ← Qy and Bx,y ← Qx transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Qx(0,0)-state energy that lies 1,000 ± 400 and 600 ± 400 cm-1 above the Qy(0,0)-state for Chls a and b, respectively. In addition, the Qx-to-Qy internal conversion time constants are estimated to be less than 80 fs for Chls a and b. These findings may shed light on understanding the roles of the Chls in the primary excitation energy transfer reactions of photosynthesis.
Collapse
Affiliation(s)
- Rong-Yao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Jian-Wei Zou
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yan-Ping Shi
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Dan-Hong Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
5
|
Bindra JK, Malavath T, Teferi MY, Kretzschmar M, Kern J, Niklas J, Utschig LM, Poluektov OG. Light-Induced Charge Separation in Photosystem I from Different Biological Species Characterized by Multifrequency Electron Paramagnetic Resonance Spectroscopy. Int J Mol Sci 2024; 25:8188. [PMID: 39125759 PMCID: PMC11311511 DOI: 10.3390/ijms25158188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Photosystem I (PSI) serves as a model system for studying fundamental processes such as electron transfer (ET) and energy conversion, which are not only central to photosynthesis but also have broader implications for bioenergy production and biomimetic device design. In this study, we employed electron paramagnetic resonance (EPR) spectroscopy to investigate key light-induced charge separation steps in PSI isolated from several green algal and cyanobacterial species. Following photoexcitation, rapid sequential ET occurs through either of two quasi-symmetric branches of donor/acceptor cofactors embedded within the protein core, termed the A and B branches. Using high-frequency (130 GHz) time-resolved EPR (TR-EPR) and deuteration techniques to enhance spectral resolution, we observed that at low temperatures prokaryotic PSI exhibits reversible ET in the A branch and irreversible ET in the B branch, while PSI from eukaryotic counterparts displays either reversible ET in both branches or exclusively in the B branch. Furthermore, we observed a notable correlation between low-temperature charge separation to the terminal [4Fe-4S] clusters of PSI, termed FA and FB, as reflected in the measured FA/FB ratio. These findings enhance our understanding of the mechanistic diversity of PSI's ET across different species and underscore the importance of experimental design in resolving these differences. Though further research is necessary to elucidate the underlying mechanisms and the evolutionary significance of these variations in PSI charge separation, this study sets the stage for future investigations into the complex interplay between protein structure, ET pathways, and the environmental adaptations of photosynthetic organisms.
Collapse
Affiliation(s)
- Jasleen K. Bindra
- Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 South Cass Avenue, Lemont, IL 60439, USA; (J.K.B.); (T.M.); (M.Y.T.); (J.N.)
| | - Tirupathi Malavath
- Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 South Cass Avenue, Lemont, IL 60439, USA; (J.K.B.); (T.M.); (M.Y.T.); (J.N.)
| | - Mandefro Y. Teferi
- Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 South Cass Avenue, Lemont, IL 60439, USA; (J.K.B.); (T.M.); (M.Y.T.); (J.N.)
| | - Moritz Kretzschmar
- Lawrence Berkeley National Laboratory, Molecular Biophysics and Integrated Bioimaging Division, Berkeley, CA 94720, USA; (M.K.); (J.K.)
| | - Jan Kern
- Lawrence Berkeley National Laboratory, Molecular Biophysics and Integrated Bioimaging Division, Berkeley, CA 94720, USA; (M.K.); (J.K.)
| | - Jens Niklas
- Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 South Cass Avenue, Lemont, IL 60439, USA; (J.K.B.); (T.M.); (M.Y.T.); (J.N.)
| | - Lisa M. Utschig
- Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 South Cass Avenue, Lemont, IL 60439, USA; (J.K.B.); (T.M.); (M.Y.T.); (J.N.)
| | - Oleg G. Poluektov
- Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 South Cass Avenue, Lemont, IL 60439, USA; (J.K.B.); (T.M.); (M.Y.T.); (J.N.)
| |
Collapse
|
6
|
Guo Z, He H, Liu K, Li Z, Xi Y, Liao Z, Dao G, Huang B, Pan X. Toxic mechanisms of the antiviral drug arbidol on microalgae in algal bloom water at transcriptomic level. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134678. [PMID: 38781856 DOI: 10.1016/j.jhazmat.2024.134678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Increasing antivirals in surface water caused by their excessive consumption pose serious threats to aquatic organisms. Our recent research found that the input of antiviral drug arbidol to algal bloom water can induce acute toxicity to the growth and metabolism of Microcystis aeruginosa, resulting in growth inhibition, as well as decrease in chlorophyll and ATP contents. However, the toxic mechanisms involved remained obscure, which were further investigated through transcriptomic analysis in this study. The results indicated that 885-1248 genes in algae were differentially expressed after exposure to 0.01-10.0 mg/L of arbidol, with the majority being down-regulated. Analysis of commonly down-regulated genes found that the cellular response to oxidative stress and damaged DNA bonding were affected, implying that the stress defense system and DNA repair function of algae might be damaged. The down-regulation of genes in porphyrin metabolism, photosynthesis, carbon fixation, glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation might inhibit chlorophyll synthesis, photosynthesis, and ATP supply, thereby hindering the growth and metabolism of algae. Moreover, the down-regulation of genes related to nucleotide metabolism and DNA replication might influence the reproduction of algae. These findings provided effective strategies to elucidate toxic mechanisms of contaminants on algae in algal bloom water.
Collapse
Affiliation(s)
- Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zihui Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanting Xi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
7
|
Schmitt FJ, Friedrich T. Adaptation processes in Halomicronema hongdechloris, an example of the light-induced optimization of the photosynthetic apparatus on hierarchical time scales. FRONTIERS IN PLANT SCIENCE 2024; 15:1359195. [PMID: 39049856 PMCID: PMC11266139 DOI: 10.3389/fpls.2024.1359195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Oxygenic photosynthesis in Halomicronema hongdechloris, one of a series of cyanobacteria producing red-shifted Chl f, is adapted to varying light conditions by a range of diverse processes acting over largely different time scales. Acclimation to far-red light (FRL) above 700 nm over several days is mirrored by reversible changes in the Chl f content. In several cyanobacteria that undergo FRL photoacclimation, Chl d and Chl f are directly involved in excitation energy transfer in the antenna system, form the primary donor in photosystem I (PSI), and are also involved in electron transfer within photosystem II (PSII), most probably at the ChlD1 position, with efficient charge transfer happening with comparable kinetics to reaction centers containing Chl a. In H. hongdechloris, the formation of Chl f under FRL comes along with slow adaptive proteomic shifts like the rebuilding of the D1 complex on the time scale of days. On shorter time scales, much faster adaptation mechanisms exist involving the phycobilisomes (PBSs), which mainly contain allophycocyanin upon adaptation to FRL. Short illumination with white, blue, or red light leads to reactive oxygen species-driven mobilization of the PBSs on the time scale of seconds, in effect recoupling the PBSs with Chl f-containing PSII to re-establish efficient excitation energy transfer within minutes. In summary, H. hongdechloris reorganizes PSII to act as a molecular heat pump lifting excited states from Chl f to Chl a on the picosecond time scale in combination with a light-driven PBS reorganization acting on the time scale of seconds to minutes depending on the actual light conditions. Thus, structure-function relationships in photosynthetic energy and electron transport in H. hongdechloris including long-term adaptation processes cover 10-12 to 106 seconds, i.e., 18 orders of magnitude in time.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Department of Physics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Thomas Friedrich
- Department of Bioenergetics, Technische Universität Berlin, Institute of Chemistry PC 14, Berlin, Germany
| |
Collapse
|
8
|
Yano J, Kern J, Yachandra VK. Structure Function Studies of Photosystem II Using X-Ray Free Electron Lasers. Annu Rev Biophys 2024; 53:343-365. [PMID: 39013027 PMCID: PMC11321711 DOI: 10.1146/annurev-biophys-071723-102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The structure and mechanism of the water-oxidation chemistry that occurs in photosystem II have been subjects of great interest. The advent of X-ray free electron lasers allowed the determination of structures of the stable intermediate states and of steps in the transitions between these intermediate states, bringing a new perspective to this field. The room-temperature structures collected as the photosynthetic water oxidation reaction proceeds in real time have provided important novel insights into the structural changes and the mechanism of the water oxidation reaction. The time-resolved measurements have also given us a view of how this reaction-which involves multielectron, multiproton processes-is facilitated by the interaction of the ligands and the protein residues in the oxygen-evolving complex. These structures have also provided a picture of the dynamics occurring in the channels within photosystem II that are involved in the transport of the substrate water to the catalytic center and protons to the bulk.
Collapse
Affiliation(s)
- Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| |
Collapse
|
9
|
Govindjee G, Stirbet A, Lindsey JS, Scheer H. On the Pelletier and Caventou (1817, 1818) papers on chlorophyll and beyond. PHOTOSYNTHESIS RESEARCH 2024; 160:55-60. [PMID: 38488941 DOI: 10.1007/s11120-024-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 03/17/2024]
Abstract
The first use of the word 'chlorophyll' (chlorophile or chlorophyle in the French original) appeared in two papers by Pierre-Joseph Pelletier and Joseph Bienaimé Caventou, pharmacists in Paris who isolated and studied the green pigment from plants. Here, we provide English translations of their 1818 note and the slightly longer 1817 paper. Historical context is provided including a timeline of key discoveries in chlorophyll chemistry pertaining to photosynthesis.
Collapse
Affiliation(s)
- Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | | | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Hugo Scheer
- Department of Biology 1-Botany, Ludwig-Maximilians-University, 80638, Munich, Germany
| |
Collapse
|
10
|
Schmitt FJ, Hüls A, Moldenhauer M, Friedrich T. How electron tunneling and uphill excitation energy transfer support photochemistry in Halomicronema hongdechloris. PHOTOSYNTHESIS RESEARCH 2024; 159:273-289. [PMID: 38198121 DOI: 10.1007/s11120-023-01064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
Halomicronema hongdechloris, the first cyanobacterium reported to produce the red-shifted chlorophyll f (Chl f) upon acclimation to far-red light, demonstrates remarkable adaptability to diverse light conditions. The photosystem II (PS II) of this organism undergoes reversible changes in its Chl f content, ranging from practically zero under white-light culture conditions to a Chl f: Chl a ratio of up to 1:8 when exposed to far-red light (FRL) of 720-730 nm for several days. Our ps time- and wavelength-resolved fluorescence data obtained after excitation of living H. hongdechloris cells indicate that the Soret band of a far-red (FR) chlorophyll involved in charge separation absorbs around 470 nm. At 10 K, the fluorescence decay at 715-720 nm is still fast with a time constant of 165 ps indicating an efficient electron tunneling process. There is efficient excitation energy transfer (EET) from 715-720 nm to 745 nm with the latter resulting from FR Chl f, which mainly functions as light-harvesting pigment upon adaptation to FRL. From there, excitation energy reaches the primary donor in the reaction center of PS II with an energetic uphill EET mechanism inducing charge transfer. The fluorescence data are well explained with a secondary donor PD1 represented by a red-shifted Chl a molecule with characteristic fluorescence around 715 nm and a more red-shifted FR Chl f with fluorescence around 725 nm as primary donor at the ChlD1 or PD2 position.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Department of Physics, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120, Halle (Saale), Germany.
| | - Anne Hüls
- Department of Bioenergetics, Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Marcus Moldenhauer
- Department of Bioenergetics, Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Thomas Friedrich
- Department of Bioenergetics, Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
11
|
Tikhonov AN. The cytochrome b 6f complex: plastoquinol oxidation and regulation of electron transport in chloroplasts. PHOTOSYNTHESIS RESEARCH 2024; 159:203-227. [PMID: 37369875 DOI: 10.1007/s11120-023-01034-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
In oxygenic photosynthetic systems, the cytochrome b6f (Cytb6f) complex (plastoquinol:plastocyanin oxidoreductase) is a heart of the hub that provides connectivity between photosystems (PS) II and I. In this review, the structure and function of the Cytb6f complex are briefly outlined, being focused on the mechanisms of a bifurcated (two-electron) oxidation of plastoquinol (PQH2). In plant chloroplasts, under a wide range of experimental conditions (pH and temperature), a diffusion of PQH2 from PSII to the Cytb6f does not limit the intersystem electron transport. The overall rate of PQH2 turnover is determined mainly by the first step of the bifurcated oxidation of PQH2 at the catalytic site Qo, i.e., the reaction of electron transfer from PQH2 to the Fe2S2 cluster of the high-potential Rieske iron-sulfur protein (ISP). This point has been supported by the quantum chemical analysis of PQH2 oxidation within the framework of a model system including the Fe2S2 cluster of the ISP and surrounding amino acids, the low-potential heme b6L, Glu78 and 2,3,5-trimethylbenzoquinol (the tail-less analog of PQH2). Other structure-function relationships and mechanisms of electron transport regulation of oxygenic photosynthesis associated with the Cytb6f complex are briefly outlined: pH-dependent control of the intersystem electron transport and the regulatory balance between the operation of linear and cyclic electron transfer chains.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119991.
| |
Collapse
|
12
|
Pudlak M. Impact of the unrelaxed vibrational modes on hot-electron transfer. J Chem Phys 2023; 159:244105. [PMID: 38146828 DOI: 10.1063/5.0174141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023] Open
Abstract
The ultrafast photoinduced electron or exciton transfer was investigated theoretically. The charge separation on the ultrafast time scale results in the unrelaxed vibrational modes that appear in the initial terms of the generalized master equations. Here, the impact of these initial terms on the electron transfer directionality in the open system was evaluated. Moreover, the role of unrelaxed vibrational modes in electron-hole separation was also examined. It was shown that the unrelaxed vibrational modes significantly increase the efficiency of electron-hole separation. This could play a crucial role in the remarkable efficiency of charge separation in biological systems.
Collapse
Affiliation(s)
- Michal Pudlak
- Institute of Experimental Physics, Slovak Academy of Sciences, 04001 Kosice, Slovak Republic
| |
Collapse
|
13
|
Ng PH, Cheng TH, Man KY, Huang L, Cheng KP, Lim KZ, Chan CH, Kam MHY, Zhang J, Marques ARP, St-Hilaire S. Hydrogen peroxide as a mitigation against Microcystis sp. bloom. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2023; 577:739932. [PMID: 38106988 PMCID: PMC10518459 DOI: 10.1016/j.aquaculture.2023.739932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 12/19/2023]
Abstract
Microcystis sp. is a harmful cyanobacterial species commonly seen in earthen ponds. The overgrowth of these algae can lead to fluctuations in water parameters, including DO and pH. Also, the microcystins produced by these algae are toxic to aquatic animals. This study applied hydrogen peroxide (7 mg/L) to treat Microcystis sp. in a laboratory setting and in three earthen pond trials. In the lab we observed a 64.7% decline in Microcystis sp. And in our earthen pond field experiments we measured, on average, 43% reductions in Microcystis sp. cell counts within one hour. The treatment was found to eliminate specifically Microcystis sp. and did not reduce the cell count of the other algae species in the pond. A shift of the algae community towards the beneficial algae was also found post-treatment. Lastly, during the pond trials, the gill status of Tilapia and Giant tiger prawn were not affected by the H2O2 treatment suggesting this may be a good mitigation strategy for reducing cyanobacteria in pond aquaculture.
Collapse
Affiliation(s)
- Pok Him Ng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Tzu Hsuan Cheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ka Yan Man
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Liqing Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ka Po Cheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Kwok Zu Lim
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Chi Ho Chan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Maximilian Ho Yat Kam
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ju Zhang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ana Rita Pinheiro Marques
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Sophie St-Hilaire
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Tikhonov AN. Electron Transport in Chloroplasts: Regulation and Alternative Pathways of Electron Transfer. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1438-1454. [PMID: 38105016 DOI: 10.1134/s0006297923100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/09/2023] [Accepted: 07/09/2023] [Indexed: 12/19/2023]
Abstract
This work represents an overview of electron transport regulation in chloroplasts as considered in the context of structure-function organization of photosynthetic apparatus in plants. Main focus of the article is on bifurcated oxidation of plastoquinol by the cytochrome b6f complex, which represents the rate-limiting step of electron transfer between photosystems II and I. Electron transport along the chains of non-cyclic, cyclic, and pseudocyclic electron flow, their relationships to generation of the trans-thylakoid difference in electrochemical potentials of protons in chloroplasts, and pH-dependent mechanisms of regulation of the cytochrome b6f complex are considered. Redox reactions with participation of molecular oxygen and ascorbate, alternative mediators of electron transport in chloroplasts, have also been discussed.
Collapse
|
15
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
16
|
Zaman S, Shen J, Wang S, Song D, Wang H, Ding S, Pang X, Wang M, Sabir IA, Wang Y, Ding Z. Effect of shading on physiological attributes and comparative transcriptome analysis of Camellia sinensis cultivar reveals tolerance mechanisms to low temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1114988. [PMID: 36818843 PMCID: PMC9931901 DOI: 10.3389/fpls.2023.1114988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Tea is a vital beverage crop all over the world, including in China. Low temperatures restrict its growth, development, and terrestrial distribution, and cold event variability worsens cold damage. However, the physiological and molecular mechanisms of Camellia sinensis under shade in winter remain unclear. In our study, tea leaves were utilized for physiological attributes and transcriptome analysis in November and December in three shading groups and no-shade control plants. When compared to the no-shade control plants, the shading group protected tea leaves from cold damage, increased photochemical efficiency (Fv/Fm) and soil plant analysis development (SPAD), and sustained chlorophyll a, chlorophyll b, chlorophyll, and carotenoid contents by physiological mean. Then, transcriptome analysis revealed 20,807 differentially expressed genes (DEGs) and transcription factors (TFs) in November and December. A comparative study of transcriptome resulted in 3,523 DEGs and many TFs under SD0% vs. SD30%, SD0% vs. SD60%, and SD0% vs. SD75% of shading in November and December. Statistically, 114 DEGs were downregulated and 72 were upregulated under SD0% vs. SD30%. SD0% vs. SD60% resulted in 154 DEGs, with 60 downregulated and 94 upregulated. Similarly, there were 505 DEGs of which 244 were downregulated and 263 were upregulated under SD0% vs. SD75% of shading throughout November. However, 279 DEGs were downregulated and 105 were upregulated under SD0% vs. SD30%. SD0% vs. SD60% resulted in 296 DEGs, with 172 downregulated and 124 upregulated. Finally, 2,173 DEGs were regulated in December, with 1,428 downregulated and 745 upregulated under SD0% vs. SD75%. These indicate that the number of downregulated DEGs in December was higher than the number of upregulated DEGs in November during low temperatures. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of differentially expressed genes were highly regulated in the photosynthesis, plant hormone signal transduction, and mitogen-activated protein kinase (MAPK) signaling pathways. However, qRT-PCR and RNA-seq relative expression of photosynthetic (DEGs) Lhcb2 in both November and December, plant hormone (DEGs) BRI1 and JAZ in November and IAA and ERF1 in December, and key DEGs of MAPK signal transduction FLS2, CHIB, and MPK4 in November and RBOH, MKK4_5, and MEKK1 in December in three shading groups and no-shade control plants responded to tea cold tolerance. The enhanced expression of light-harvesting photosystem I gene Lhca5, light-harvesting photosystem II gene Lhcb2, and mitogen-activated protein kinases MEKK1 and MPK4/6 enhance the cold-tolerance mechanism of C. sinensis. These comprehensive transcriptomic findings are significant for furthering our understanding of the genes and underlying regulatory mechanisms of shade-mediated low-temperature stress tolerance in horticultural crops.
Collapse
Affiliation(s)
- Shah Zaman
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuangshuang Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dapeng Song
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Hui Wang
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Shibo Ding
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Xu Pang
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Mengqi Wang
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Irfan Ali Sabir
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
17
|
Vasilieva LG, Kaminskaya OP, Yakovlev AG, Shkuropatov AY, Semenov AY, Nadtochenko VA, Krasnovsky AA, Parson WW, Allakhverdiev SI, Govindjee G. In memory of Vladimir Anatolievich Shuvalov (1943-2022): an outstanding biophysicist. PHOTOSYNTHESIS RESEARCH 2022; 154:207-223. [PMID: 36070062 DOI: 10.1007/s11120-022-00932-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
We present here a tribute to one of the foremost biophysicists of our time, Vladimir Anatolievich Shuvalov, who made important contributions in bioenergetics, especially on the primary steps of conversion of light energy into charge-separated states in both anoxygenic and oxygenic photosynthesis. For this, he and his research team exploited pico- and femtosecond transient absorption spectroscopy, photodichroism & circular dichroism spectroscopy, light-induced FTIR (Fourier-transform infrared) spectroscopy, and hole-burning spectroscopy. We remember him for his outstanding leadership and for being a wonderful mentor to many scientists in this area. Reminiscences by many [Suleyman Allakhverdiev (Russia); Robert Blankenship (USA); Richard Cogdell (UK); Arvi Freiberg (Estonia); Govindjee Govindjee (USA); Alexander Krasnovsky, jr, (Russia); William Parson (USA); Andrei Razjivin (Russia); Jian- Ren Shen (Japan); Sergei Shuvalov (Russia); Lyudmilla Vasilieva (Russia); and Andrei Yakovlev (Russia)] have included not only his wonderful personal character, but his outstanding scientific research.
Collapse
Affiliation(s)
- Lyudmila G Vasilieva
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation
| | - Olga P Kaminskaya
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation
| | - Andrei G Yakovlev
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119992, Russian Federation
| | - Anatoliy Ya Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119992, Russian Federation
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 117977, Russian Federation
| | - Alexander A Krasnovsky
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russian Federation
| | - William W Parson
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| | - Suleyman I Allakhverdiev
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation.
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology and Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 289 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
18
|
Ustynyuk LY, Tikhonov AN. Plastoquinol Oxidation: Rate-Limiting Stage in the Electron Transport Chain of Chloroplasts. BIOCHEMISTRY (MOSCOW) 2022; 87:1084-1097. [DOI: 10.1134/s0006297922100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Cherepanov DA, Petrova AA, Mamedov MD, Vishnevskaya AI, Gostev FE, Shelaev IV, Aybush AV, Nadtochenko VA. Comparative Absorption Dynamics of the Singlet Excited States of Chlorophylls a and d. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1179-1186. [PMID: 36273886 DOI: 10.1134/s000629792210011x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 06/16/2023]
Abstract
Transient absorption dynamics of chlorophylls a and d dissolved in tetrahydrofuran was measured by the broadband femtosecond laser pump-probe spectroscopy in a spectral range from 400 to 870 nm. The absorption spectra of the excited S1 singlet states of chlorophylls a and d were recorded, and the dynamics of the of the Qy band shift of the stimulated emission (Stokes shift of fluorescence) was determined in a time range from 60 fs to 4 ps. The kinetics of the intramolecular conversion Qx→Qy (electronic transition S2→S1) was measured; the characteristic relaxation time was 54 ± 3 and 45 ± 9 fs for chlorophylls a and d, respectively.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anastasia A Petrova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Mahir D Mamedov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anna I Vishnevskaya
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Fedor E Gostev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan V Shelaev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Arseniy V Aybush
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victor A Nadtochenko
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
20
|
The relationship between photosystem II regulation and light-dependent hydrogen production by microalgae. Biophys Rev 2022; 14:893-904. [DOI: 10.1007/s12551-022-00977-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023] Open
|
21
|
Shen W, Teo RD, Beratan DN, Warren JJ. Cofactor Dynamics Couples the Protein Surface to the Heme in Cytochrome c, Facilitating Electron Transfer. J Phys Chem B 2022; 126:3522-3529. [PMID: 35507916 PMCID: PMC9867876 DOI: 10.1021/acs.jpcb.2c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electron transport through biomolecules and in biological transport networks is of great importance to bioenergetics and biocatalysis. More generally, it is of crucial importance to understand how the pathways that connect buried metallocofactors to other cofactors, and to protein surfaces, affect the biological chemistry of metalloproteins. In terms of electron transfer (ET), the strongest coupling pathways usually comprise covalent and hydrogen bonded networks, with a limited number of through-space contacts. Herein, we set out to determine the relative roles of hydrogen bonds involved in ET via an established heme-to-surface tunneling pathway in cytochrome (cyt) c (i.e., heme-W59-D60-E61-N62). A series of cyt c variants were produced where a ruthenium tris(diimine) photooxidant was placed at position 62 via covalent modification of the N62C residue. Surprisingly, variants where the H-bonding residues W59 and D60 were replaced (i.e., W59F and D60A) showed no change in ET rate from the ferrous heme to Ru(III). In contrast, changing the composition of an alternative tunneling pathway (i.e., heme-M64-N63-C62) with the M64L substitution shows a factor of 2 decrease in the rate of heme-to-Ru ET. This pathway involves a through-space tunneling step between the heme and M64 residue, and such steps are usually disfavored. To rationalize why the heme-M64-N63-C62 is preferred, molecular dynamics (MD) simulations and Pathways analysis were employed. These simulations show that the change in heme-Ru ET rates is attributed to different conformations with compressed donor-acceptor distances, by ∼2 Å in pathway distance, in the M64-containing protein as compared to the M64L protein. The change in distance is correlated with changes in the electronic coupling that are in accord with the experimentally observed heme-Ru ET rates. Remarkably, the M64L variation at the core of the protein translates to changes in cofactor dynamics at the protein surface. The surface changes identified by MD simulations include dynamic anion-π and dipole-dipole interactions. These interactions influence the strength of tunneling pathways and ET rates by facilitating decreases in through-space tunneling distances in key coupling pathways.
Collapse
Affiliation(s)
- William Shen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby CA V5A 1S6, Canada
| | - Ruijie D. Teo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N. Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby CA V5A 1S6, Canada
| |
Collapse
|
22
|
Niklas J, Agostini A, Carbonera D, Di Valentin M, Lubitz W. Primary donor triplet states of Photosystem I and II studied by Q-band pulse ENDOR spectroscopy. PHOTOSYNTHESIS RESEARCH 2022; 152:213-234. [PMID: 35290567 PMCID: PMC9424170 DOI: 10.1007/s11120-022-00905-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 05/05/2023]
Abstract
The photoexcited triplet state of the "primary donors" in the two photosystems of oxygenic photosynthesis has been investigated by means of electron-nuclear double resonance (ENDOR) at Q-band (34 GHz). The data obtained represent the first set of 1H hyperfine coupling tensors of the 3P700 triplet state in PSI and expand the existing data set for 3P680. We achieved an extensive assignment of the observed electron-nuclear hyperfine coupling constants (hfcs) corresponding to the methine α-protons and the methyl group β-protons of the chlorophyll (Chl) macrocycle. The data clearly confirm that in both photosystems the primary donor triplet is located on one specific monomeric Chl at cryogenic temperature. In comparison to previous transient ENDOR and pulse ENDOR experiments at standard X-band (9-10 GHz), the pulse Q-band ENDOR spectra demonstrate both improved signal-to-noise ratio and increased resolution. The observed ENDOR spectra for 3P700 and 3P680 differ in terms of the intensity loss of lines from specific methyl group protons, which is explained by hindered methyl group rotation produced by binding site effects. Contact analysis of the methyl groups in the PSI crystal structure in combination with the ENDOR analysis of 3P700 suggests that the triplet is located on the Chl a' (PA) in PSI. The results also provide additional evidence for the localization of 3P680 on the accessory ChlD1 in PSII.
Collapse
Affiliation(s)
- Jens Niklas
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL, 60439, USA.
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| |
Collapse
|
23
|
Lazar D, Stirbet A, Björn L, Govindjee G. Light quality, oxygenic photosynthesis and more. PHOTOSYNTHETICA 2022; 60:25-28. [PMID: 39648998 PMCID: PMC11559484 DOI: 10.32615/ps.2021.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/10/2024]
Abstract
Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.
Collapse
Affiliation(s)
- D. Lazar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - A. Stirbet
- Anne Burras Lane, Newport News, 23606 Virginia, USA
| | - L.O. Björn
- Department of Biology, Molecular Cell Biology, Lund University, Sölvegatan 35, SE-22462 Lund, Sweden
| | - G. Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Protasova EA, Antal TK, Zlenko DV, Elanskaya IV, Lukashev EP, Friedrich T, Mironov KS, Sluchanko NN, Ge B, Qin S, Maksimov EG. State of the phycobilisome determines effective absorption cross-section of Photosystem II in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148494. [PMID: 34534546 DOI: 10.1016/j.bbabio.2021.148494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022]
Abstract
Quenching of excess excitation energy is necessary for the photoprotection of light-harvesting complexes. In cyanobacteria, quenching of phycobilisome (PBS) excitation energy is induced by the Orange Carotenoid Protein (OCP), which becomes photoactivated under high light conditions. A decrease in energy transfer efficiency from the PBSs to the reaction centers decreases photosystem II (PS II) activity. However, quantitative analysis of OCP-induced photoprotection in vivo is complicated by similar effects of both photochemical and non-photochemical quenching on the quantum yield of the PBS fluorescence overlapping with the emission of chlorophyll. In the present study, we have analyzed chlorophyll a fluorescence induction to estimate the effective cross-section of PS II and compared the effects of reversible OCP-dependent quenching of PBS fluorescence with reduction of PBS content upon nitrogen starvation or mutations of key PBS components. This approach allowed us to estimate the dependency of the rate constant of PS II primary electron acceptor reduction on the amount of PBSs in the cell. We found that OCP-dependent quenching triggered by blue light affects approximately half of PBSs coupled to PS II, indicating that under normal conditions, the concentration of OCP is not sufficient for quenching of all PBSs coupled to PS II.
Collapse
Affiliation(s)
- Elena A Protasova
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Taras K Antal
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry V Zlenko
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina V Elanskaya
- Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny P Lukashev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Thomas Friedrich
- Technical University of Berlin, Institute of Chemistry, D-10623 Berlin, Germany
| | - Kirill S Mironov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Baosheng Ge
- China University of Petroleum (Huadong), College of Chemical Engineering, Qingdao 266580, PR China
| | - Song Qin
- China University of Petroleum (Huadong), College of Chemical Engineering, Qingdao 266580, PR China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
25
|
Godin R, Durrant JR. Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chem Soc Rev 2021; 50:13372-13409. [PMID: 34786578 DOI: 10.1039/d1cs00577d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continued development of solar energy conversion technologies relies on an improved understanding of their limitations. In this review, we focus on a comparison of the charge carrier dynamics underlying the function of photovoltaic devices with those of both natural and artificial photosynthetic systems. The solar energy conversion efficiency is determined by the product of the rate of generation of high energy species (charges for solar cells, chemical fuels for photosynthesis) and the energy contained in these species. It is known that the underlying kinetics of the photophysical and charge transfer processes affect the production yield of high energy species. Comparatively little attention has been paid to how these kinetics are linked to the energy contained in the high energy species or the energy lost in driving the forward reactions. Here we review the operational parameters of both photovoltaic and photosynthetic systems to highlight the energy cost of extending the lifetime of charge carriers to levels that enable function. We show a strong correlation between the energy lost within the device and the necessary lifetime gain, even when considering natural photosynthesis alongside artificial systems. From consideration of experimental data across all these systems, the emprical energetic cost of each 10-fold increase in lifetime is 87 meV. This energetic cost of lifetime gain is approx. 50% greater than the 59 meV predicted from a simple kinetic model. Broadly speaking, photovoltaic devices show smaller energy losses compared to photosynthetic devices due to the smaller lifetime gains needed. This is because of faster charge extraction processes in photovoltaic devices compared to the complex multi-electron, multi-proton redox reactions that produce fuels in photosynthetic devices. The result is that in photosynthetic systems, larger energetic costs are paid to overcome unfavorable kinetic competition between the excited state lifetime and the rate of interfacial reactions. We apply this framework to leading examples of photovoltaic and photosynthetic devices to identify kinetic sources of energy loss and identify possible strategies to reduce this energy loss. The kinetic and energetic analyses undertaken are applicable to both photovoltaic and photosynthetic systems allowing for a holistic comparison of both types of solar energy conversion approaches.
Collapse
Affiliation(s)
- Robert Godin
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, British Columbia, V1V 1V7, Canada. .,Clean Energy Research Center, University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Kelowna, British Columbia, Canada
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
26
|
The Relationship between the Spatial Arrangement of Pigments and Exciton Transition Moments in Photosynthetic Light-Harvesting Complexes. Int J Mol Sci 2021; 22:ijms221810031. [PMID: 34576194 PMCID: PMC8470053 DOI: 10.3390/ijms221810031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Considering bacteriochlorophyll molecules embedded in the protein matrix of the light-harvesting complexes of purple bacteria (known as LH2 and LH1-RC) as examples of systems of interacting pigment molecules, we investigated the relationship between the spatial arrangement of the pigments and their exciton transition moments. Based on the recently reported crystal structures of LH2 and LH1-RC and the outcomes of previous theoretical studies, as well as adopting the Frenkel exciton Hamiltonian for two-level molecules, we performed visualizations of the LH2 and LH1 exciton transition moments. To make the electron transition moments in the exciton representation invariant with respect to the position of the system in space, a system of pigments must be translated to the center of mass before starting the calculations. As a result, the visualization of the transition moments for LH2 provided the following pattern: two strong transitions were outside of LH2 and the other two were perpendicular and at the center of LH2. The antenna of LH1-RC was characterized as having the same location of the strongest moments in the center of the complex, exactly as in the B850 ring, which actually coincides with the RC. Considering LH2 and LH1 as supermolecules, each of which has excitation energies and corresponding transition moments, we propose that the outer transitions of LH2 can be important for inter-complex energy exchange, while the inner transitions keep the energy in the complex; moreover, in the case of LH1, the inner transitions increased the rate of antenna-to-RC energy transfer.
Collapse
|
27
|
Transcriptome Analysis of Two Near-Isogenic Lines with Different NUE under Normal Nitrogen Conditions in Wheat. BIOLOGY 2021; 10:biology10080787. [PMID: 34440020 PMCID: PMC8389668 DOI: 10.3390/biology10080787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary High nitrogen use efficiency (NUE) in wheat (Triticum aestivum L.) is the key to ensure high yield and reduce pollution. Understanding the physiological and molecular changes that regulate NUE is important for the breeding of high-NUE wheat varieties. Carbon and nitrogen metabolism are the basic metabolic pathways in plants. It becomes important to reveal the underlying molecular mechanisms related to carbon and nitrogen metabolism, which may be helpful to improve NUE. In this paper, two wheat near-isogenic lines (NILs) with contrasting NUE were performed RNA-Sequencing (RNA-Seq) to identify candidate genes associated with carbon/nitrogen metabolism under normal nitrogen conditions. Our research may provide new insights into the comprehensive understanding of the molecular mechanism underlying NUE. Abstract Nitrogen (N) is an essential nutrient element for crop productivity. Unfortunately, the nitrogen use efficiency (NUE) of crop plants gradually decreases with the increase of the N application rate. Nevertheless, little has been known about the molecular mechanisms of differences in NUE among genotypes of wheat. In this study, we used RNA-Sequencing (RNA-Seq) to compare the transcriptome profiling of flag leaves at the stage of anthesis in wheat NILs (1Y, high-NUE, and 1W, low-NUE) under normal nitrogen conditions (300 kg N ha−1, corresponding to 1.6 g N pot−1). We identified 7023 DEGs (4738 upregulated and 2285 downregulated) in the comparison between lines 1Y and 1W. The responses of 1Y and 1W to normal N differed in the transcriptional regulatory mechanisms. Several genes belonging to the GS and GOGAT gene families were upregulated in 1Y compared with 1W, and the enhanced carbon metabolism might lead 1Y to produce more C skeletons, metabolic energy, and reductants for nitrogen metabolism. A subset of transcription factors (TFs) family members, such as ERF, WRKY, NAC, and MYB, were also identified. Collectively, these identified candidate genes provided new information for a further understanding of the genotypic difference in NUE.
Collapse
|
28
|
Vershubskii AV, Tikhonov AN. Structural and Functional Aspects of Electron Transport Thermoregulation and ATP Synthesis in Chloroplasts. BIOCHEMISTRY (MOSCOW) 2021; 86:92-104. [PMID: 33705285 DOI: 10.1134/s0006297921010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review is focused on analysis of the mechanisms of temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts of higher plants. Importance of photosynthesis thermoregulation is determined by the fact that plants are ectothermic organisms, whose own temperature depends on the ambient temperature. The review discusses the effects of temperature on the following processes in thylakoid membranes: (i) photosystem 2 activity and plastoquinone reduction; (ii) electron transfer from plastoquinol (via the cytochrome b6f complex and plastocyanin) to photosystem 1; (iii) transmembrane proton transfer; and (iv) ATP synthesis. The data on the relationship between the functional properties of chloroplasts (photosynthetic transfer of electrons and protons, functioning of ATP synthase) and structural characteristics of membrane lipids (fluidity) obtained by electron paramagnetic resonance studies are presented.
Collapse
|
29
|
Sirohiwal A, Neese F, Pantazis DA. How Can We Predict Accurate Electrochromic Shifts for Biochromophores? A Case Study on the Photosynthetic Reaction Center. J Chem Theory Comput 2021; 17:1858-1873. [PMID: 33566610 PMCID: PMC8023663 DOI: 10.1021/acs.jctc.0c01152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 01/28/2023]
Abstract
Protein-embedded chromophores are responsible for light harvesting, excitation energy transfer, and charge separation in photosynthesis. A critical part of the photosynthetic apparatus are reaction centers (RCs), which comprise groups of (bacterio)chlorophyll and (bacterio)pheophytin molecules that transform the excitation energy derived from light absorption into charge separation. The lowest excitation energies of individual pigments (site energies) are key for understanding photosynthetic systems, and form a prime target for quantum chemistry. A major theoretical challenge is to accurately describe the electrochromic (Stark) shifts in site energies produced by the inhomogeneous electric field of the protein matrix. Here, we present large-scale quantum mechanics/molecular mechanics calculations of electrochromic shifts for the RC chromophores of photosystem II (PSII) using various quantum chemical methods evaluated against the domain-based local pair natural orbital (DLPNO) implementation of the similarity-transformed equation of motion coupled cluster theory with single and double excitations (STEOM-CCSD). We show that certain range-separated density functionals (ωΒ97, ωΒ97X-V, ωΒ2PLYP, and LC-BLYP) correctly reproduce RC site energy shifts with time-dependent density functional theory (TD-DFT). The popular CAM-B3LYP functional underestimates the shifts and is not recommended. Global hybrid functionals are too insensitive to the environment and should be avoided, while nonhybrid functionals are strictly nonapplicable. Among the applicable approximate coupled cluster methods, the canonical versions of CC2 and ADC(2) were found to deviate significantly from the reference results both for the description of the lowest excited state and for the electrochromic shifts. By contrast, their spin-component-scaled (SCS) and particularly the scale-opposite-spin (SOS) variants compare well with the reference DLPNO-STEOM-CCSD and the best range-separated DFT methods. The emergence of RC excitation asymmetry is discussed in terms of intrinsic and protein electrostatic potentials. In addition, we evaluate a minimal structural scaffold of PSII, the D1-D2-CytB559 RC complex often employed in experimental studies, and show that it would have the same site energy distribution of RC chromophores as the full PSII supercomplex, but only under the unlikely conditions that the core protein organization and cofactor arrangement remain identical to those of the intact enzyme.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fakultät
für Chemie und Biochemie, Ruhr-Universität
Bochum, 44780 Bochum, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
30
|
Govindjee G, Shen YK, Zhu XG, Mi H, Ogawa T. Honoring Bacon Ke at 100: a legend among the many luminaries and a highly collaborative scientist in photosynthesis research. PHOTOSYNTHESIS RESEARCH 2021; 147:243-252. [PMID: 33582974 DOI: 10.1007/s11120-021-00820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Bacon Ke, who did pioneering research on the primary photochemistry of photosynthesis, was born in China on July 26, 1920, and currently, he is living in a senior home in San Francisco, California, and is a centenarian. To us, this is a very happy and unique occasion to honor him. After providing a brief account of his life, and a glimpse of his research in photosynthesis, we present here "messages" for Bacon Ke@ 100 from: Robert Alfano (USA), Charles Arntzen (USA), Sandor Demeter (Hungary), Richard A. Dilley (USA), John Golbeck (USA), Isamu Ikegami (Japan), Ting-Yun Kuang (China), Richard Malkin (USA), Hualing Mi (China), Teruo Ogawa (Japan), Yasusi Yamamoto (Japan), and Xin-Guang Zhu (China).
Collapse
Affiliation(s)
- Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana- Champaign, Urbana, IL, 61801, USA.
| | - Yun-Kang Shen
- National Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin-Guang Zhu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hualing Mi
- National Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Teruo Ogawa
- , Kamisaginomiya 3-17-11, Nakano-ku, Tokyo, 165-0031, Japan
| |
Collapse
|
31
|
Pfündel EE. Simultaneously measuring pulse-amplitude-modulated (PAM) chlorophyll fluorescence of leaves at wavelengths shorter and longer than 700 nm. PHOTOSYNTHESIS RESEARCH 2021; 147:345-358. [PMID: 33528756 DOI: 10.1007/s11120-021-00821-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
PAM fluorescence of leaves of cherry laurel (Prunus laurocerasus L.) was measured simultaneously in the spectral range below 700 nm (sw) and above 700 nm (lw). A high-sensitivity photodiode was employed to measure the low intensities of sw fluorescence. Photosystem II (PSII) performance was analyzed by the saturation pulse method during a light response curve with subsequent dark phase. The sw fluorescence was more variable, resulting in higher PSII photochemical yields compared to lw fluorescence. The variations between sw and lw data were explained by different levels of photosystem I (PSI) fluorescence: the contribution of PSI fluorescence to minimum fluorescence (F0) was calculated to be 14% at sw wavelengths and 45% at lw wavelengths. With the results obtained, the validity of an earlier method for the quantification of PSI fluorescence (Genty et al. in Photosynth Res 26:133-139, 1990, https://doi.org/10.1007/BF00047085 ) was reconsidered. After subtracting PSI fluorescence from all fluorescence levels, the maximum PSII photochemical yield (FV/FM) in the sw range was 0.862 and it was 0.883 in the lw range. The lower FV/FM at sw wavelengths was suggested to arise from inactive PSII reaction centers in the outermost leaf layers. Polyphasic fluorescence transients (OJIP or OI1I2P kinetics) were recorded simultaneously at sw and lw wavelengths: the slowest phase of the kinetics (IP or I2P) corresponded to 11% and 13% of total variable sw and lw fluorescence, respectively. The idea that this difference is due to variable PSI fluorescence is critically discussed. Potential future applications of simultaneously recording fluorescence in two spectral windows include studies of PSI non-photochemical quenching and state I-state II transitions, as well as measuring the fluorescence from pH-sensitive dyes simultaneously with chlorophyll fluorescence.
Collapse
|
32
|
Kalmatskaya OA, Trubitsin BV, Suslichenko IS, Karavaev VA, Tikhonov AN. Electron transport in Tradescantia leaves acclimated to high and low light: thermoluminescence, PAM-fluorometry, and EPR studies. PHOTOSYNTHESIS RESEARCH 2020; 146:123-141. [PMID: 32594291 DOI: 10.1007/s11120-020-00767-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Using thermoluminescence, PAM-fluorometry, and electron paramagnetic resonance (EPR) for assaying electron transport processes in chloroplasts in situ, we have compared photosynthetic characteristics in Tradescantia fluminensis leaves grown under low light (LL, 50-125 µmol photons m-2 s-1) or high light (HL, 875-1000 µmol photons m-2 s-1) condition. We found differences in the thermoluminescence (TL) spectra of LL- and HL-acclimated leaves. The LL and HL leaves show different proportions of the Q (~ 0 °C) and B (~ 25-30 °C) bands in their TL spectra; the ratios of the "light sums" of the Q and B bands being SQ/SB ≈ 1/1 (LL) and SQ/SB ≈ 1/3 (HL). This suggests the existence of different redox states of electron carriers on the acceptor side of PSII in LL and HL leaves, which may be affected, in particular, by different capacities of their photo-reducible PQ pools. Enhanced content of PQ in chloroplasts of LL leaves may be the reason for an efficient performance of photosynthesis at low irradiance. Kinetic studies of slow induction of Chl a fluorescence and measurements of P700 photooxidation by EPR demonstrate that HL leaves have faster (about 2 times) response to switching on actinic light as compared to LL leaves grown at moderate irradiation. HL leaves also show higher non-photochemical quenching (NPQ) of Chl a fluorescence. These properties of HL leaves (faster response to light and generation of enhanced NPQ) reflect the flexibility of their photosynthetic apparatus, providing sustainability and rapid response to fluctuations of environmental light intensity and solar stress resistance. Analysis of time-courses of the EPR signals of [Formula: see text] induced by far-red (λmax = 707 nm), exciting predominantly PSI, and white light, exciting both PSI and PSII, suggests that there is a contribution of cyclic electron flow around PSI to electron flow through PSI in HL leaves. The data obtained are discussed in terms of photosynthetic apparatus sustainability of HL and LL leaves under variable irradiation conditions.
Collapse
Affiliation(s)
| | - Boris V Trubitsin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Igor S Suslichenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
33
|
Razjivin AP, Kozlovsky VS. Unique features of the 'photo-energetics' of purple bacteria: a critical survey by the late Aleksandr Yuryevich Borisov (1930-2019). PHOTOSYNTHESIS RESEARCH 2020; 146:17-24. [PMID: 31655967 DOI: 10.1007/s11120-019-00683-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
We provide here an edited version of the "Farewell discussion" by the late Aleksandr (Alex) Yuryevich (Yu) Borisov (1930-2019) on several aspects related to the excitation energy transfer in photosynthetic bacteria. It is preceded by a prolog giving the events that led to our decision to publish it. Further, we include here a few photographs to give a personal glimpse of this unique biophysicist of our time. In addition, we provide here a reminiscence, by Andrei B. Rubin, on the scientific beginnings of Borisov. This article follows a Tribute to Borisov by Semenov et al. (2019, Photosynthesis Research, this issue).
Collapse
Affiliation(s)
- Andrei P Razjivin
- Department of Photosynthesis, A.N.Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir S Kozlovsky
- Department of Photosynthesis, A.N.Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
34
|
Kozlova MI, Bushmakin IM, Belyaeva JD, Shalaeva DN, Dibrova DV, Cherepanov DA, Mulkidjanian AY. Expansion of the "Sodium World" through Evolutionary Time and Taxonomic Space. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:1518-1542. [PMID: 33705291 DOI: 10.1134/s0006297920120056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 1986, Vladimir Skulachev and his colleagues coined the term "Sodium World" for the group of diverse organisms with sodium (Na)-based bioenergetics. Albeit only few such organisms had been discovered by that time, the authors insightfully noted that "the great taxonomic variety of organisms employing the Na-cycle points to the ubiquitous distribution of this novel type of membrane-linked energy transductions". Here we used tools of bioinformatics to follow expansion of the Sodium World through the evolutionary time and taxonomic space. We searched for those membrane protein families in prokaryotic genomes that correlate with the use of the Na-potential for ATP synthesis by different organisms. In addition to the known Na-translocators, we found a plethora of uncharacterized protein families; most of them show no homology with studied proteins. In addition, we traced the presence of Na-based energetics in many novel archaeal and bacterial clades, which were recently identified by metagenomic techniques. The data obtained support the view that the Na-based energetics preceded the proton-dependent energetics in evolution and prevailed during the first two billion years of the Earth history before the oxygenation of atmosphere. Hence, the full capacity of Na-based energetics in prokaryotes remains largely unexplored. The Sodium World expanded owing to the acquisition of new functions by Na-translocating systems. Specifically, most classes of G-protein-coupled receptors (GPCRs), which are targeted by almost half of the known drugs, appear to evolve from the Na-translocating microbial rhodopsins. Thereby the GPCRs of class A, with 700 representatives in human genome, retained the Na-binding site in the center of the transmembrane heptahelical bundle together with the capacity of Na-translocation. Mathematical modeling showed that the class A GPCRs could use the energy of transmembrane Na-potential for increasing both their sensitivity and selectivity. Thus, GPCRs, the largest protein family coded by human genome, stem from the Sodium World, which encourages exploration of other Na-dependent enzymes of eukaryotes.
Collapse
Affiliation(s)
- M I Kozlova
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - I M Bushmakin
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - J D Belyaeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D N Shalaeva
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany.
| | - D V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D A Cherepanov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - A Y Mulkidjanian
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
35
|
Tikhonov AN, Vershubskii AV. Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico. PHOTOSYNTHESIS RESEARCH 2020; 146:299-329. [PMID: 32780309 DOI: 10.1007/s11120-020-00777-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The significance of temperature-dependent regulation of photosynthetic apparatus (PSA) is determined by the fact that plant temperature changes with environmental temperature. In this work, we present a brief overview of temperature-dependent regulation of photosynthetic processes in class B chloroplasts (thylakoids) and analyze these processes using a computer model that takes into account the key stages of electron and proton transport coupled to ATP synthesis. The rate constants of partial reactions were parametrized on the basis of experimental temperature dependences of partial photosynthetic processes: (1) photosystem II (PSII) turnover and plastoquinone (PQ) reduction, (2) the plastoquinol (PQH2) oxidation by the cytochrome (Cyt) b6f complex, (3) the ATP synthase activity, and (4) the proton leak from the thylakoid lumen. We consider that PQH2 oxidation is the rate-limiting step in the intersystem electron transport. The parametrization of the rate constants of these processes is based on earlier experimental data demonstrating strong correlations between the functional and structural properties of thylakoid membranes that were probed with the lipid-soluble spin labels embedded into the membranes. Within the framework of our model, we could adequately describe a number of experimental temperature dependences of photosynthetic reactions in thylakoids. Computer modeling of electron and proton transport coupled to ATP synthesis supports the notion that PQH2 oxidation by the Cyt b6f complex and proton pumping into the lumen are the basic temperature-dependent processes that determine the overall electron flux from PSII to molecular oxygen and the net ATP synthesis upon variations of temperature. The model describes two branches of the temperature dependence of the post-illumination reduction of [Formula: see text] characterized by different activation energies (about 60 and ≤ 3.5 kJ mol-1). The model predicts the bell-like temperature dependence of ATP formation, which arises from the balance of several factors: (1) the thermo-induced acceleration of electron transport through the Cyt b6f complex, (2) deactivation of PSII photochemistry at sufficiently high temperatures, and (3) acceleration of the passive proton outflow from the thylakoid lumen bypassing the ATP synthase complex. The model describes the temperature dependence of experimentally measured parameter P/2e, determined as the ratio between the rates of ATP synthesis and pseudocyclic electron transport (H2O → PSII → PSI → O2).
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
36
|
Fu L, Govindjee G, Tan J, Guo Y. Development of a minimized model structure and a feedback control framework for regulating photosynthetic activities. PHOTOSYNTHESIS RESEARCH 2020; 146:213-225. [PMID: 31813097 DOI: 10.1007/s11120-019-00690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
In this work, the main activities of the plant photosynthesis process are discussed to yield a minimized mathematical model structure with photosystem II (PSII) chlorophyll a fluorescence (ChlF) as a measurable output. After experimental validation of the model structure, we demonstrate that the states of the photosynthetic process may be observed by using this model and the extended Kalman filter method. We then show a feedback control framework that can be used to alter a given photosynthetic activity. The control framework is demonstrated with an example in which PSII ChlF is used as the feedback signal and light intensity is used as a controllable process input to regulate plastoquinone reduction. Although there are caveats, and further research is needed, the results lay the groundwork for further research on novel methods for optimization and regulation of photosynthetic activities, with a goal for sustainability.
Collapse
Affiliation(s)
- Lijiang Fu
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, 214122, China
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Jinglu Tan
- University of Missouri, Columbia, MO, 65211, USA
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, 214122, China.
- University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
37
|
Semenov AY, Kotova EA, Razjivin AP. Tribute: a salute to Alexander Yurievich Borisov (1930-2019), an outstanding biophysicist. PHOTOSYNTHESIS RESEARCH 2020; 146:25-27. [PMID: 31617049 DOI: 10.1007/s11120-019-00674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Alexey Yu Semenov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena A Kotova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Andrei P Razjivin
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
38
|
Sirohiwal A, Neese F, Pantazis DA. Protein Matrix Control of Reaction Center Excitation in Photosystem II. J Am Chem Soc 2020; 142:18174-18190. [PMID: 33034453 PMCID: PMC7582616 DOI: 10.1021/jacs.0c08526] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Photosystem II (PSII) is a multisubunit pigment-protein complex that uses light-induced charge separation to power oxygenic photosynthesis. Its reaction center chromophores, where the charge transfer cascade is initiated, are arranged symmetrically along the D1 and D2 core polypeptides and comprise four chlorophyll (PD1, PD2, ChlD1, ChlD2) and two pheophytin molecules (PheoD1 and PheoD2). Evolution favored productive electron transfer only via the D1 branch, with the precise nature of primary excitation and the factors that control asymmetric charge transfer remaining under investigation. Here we present a detailed atomistic description for both. We combine large-scale simulations of membrane-embedded PSII with high-level quantum-mechanics/molecular-mechanics (QM/MM) calculations of individual and coupled reaction center chromophores to describe reaction center excited states. We employ both range-separated time-dependent density functional theory and the recently developed domain based local pair natural orbital (DLPNO) implementation of the similarity transformed equation of motion coupled cluster theory with single and double excitations (STEOM-CCSD), the first coupled cluster QM/MM calculations of the reaction center. We find that the protein matrix is exclusively responsible for both transverse (chlorophylls versus pheophytins) and lateral (D1 versus D2 branch) excitation asymmetry, making ChlD1 the chromophore with the lowest site energy. Multipigment calculations show that the protein matrix renders the ChlD1 → PheoD1 charge-transfer the lowest energy excitation globally within the reaction center, lower than any pigment-centered local excitation. Remarkably, no low-energy charge transfer states are located within the "special pair" PD1-PD2, which is therefore excluded as the site of initial charge separation in PSII. Finally, molecular dynamics simulations suggest that modulation of the electrostatic environment due to protein conformational flexibility enables direct excitation of low-lying charge transfer states by far-red light.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fakultät
für Chemie und Biochemie, Ruhr-Universität
Bochum, 44780 Bochum, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
39
|
Femtosecond visible transient absorption spectroscopy of chlorophyll- f-containing photosystem II. Proc Natl Acad Sci U S A 2020; 117:23158-23164. [PMID: 32868421 DOI: 10.1073/pnas.2006016117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recently discovered, chlorophyll-f-containing, far-red photosystem II (FR-PSII) supports far-red light photosynthesis. Participation and kinetics of spectrally shifted far-red pigments are directly observable and separated from that of bulk chlorophyll-a We present an ultrafast transient absorption study of FR-PSII, investigating energy transfer and charge separation processes. Results show a rapid subpicosecond energy transfer from chlorophyll-a to the long-wavelength chlorophylls-f/d The data demonstrate the decay of an ∼720-nm negative feature on the picosecond-to-nanosecond timescales, coinciding with charge separation, secondary electron transfer, and stimulated emission decay. An ∼675-nm bleach attributed to the loss of chl-a absorption due to the formation of a cation radical, PD1 +•, is only fully developed in the nanosecond spectra, indicating an unusually delayed formation. A major spectral feature on the nanosecond timescale at 725 nm is attributed to an electrochromic blue shift of a FR-chlorophyll among the reaction center pigments. These time-resolved observations provide direct experimental support for the model of Nürnberg et al. [D. J. Nürnberg et al., Science 360, 1210-1213 (2018)], in which the primary electron donor is a FR-chlorophyll and the secondary donor is chlorophyll-a (PD1 of the central chlorophyll pair). Efficient charge separation also occurs using selective excitation of long-wavelength chlorophylls-f/d, and the localization of the excited state on P720* points to a smaller (entropic) energy loss compared to conventional PSII, where the excited state is shared over all of the chlorin pigments. This has important repercussions on understanding the overall energetics of excitation energy transfer and charge separation reactions in FR-PSII.
Collapse
|
40
|
Wu M, Li Z, Wang J. Transcriptional analyses reveal the molecular mechanism governing shade tolerance in the invasive plant Solidago canadensis. Ecol Evol 2020; 10:4391-4406. [PMID: 32489605 PMCID: PMC7246212 DOI: 10.1002/ece3.6206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022] Open
Abstract
Solidago canadensis is an invasive plant that is capable of adapting to variable light conditions. To elucidate the shade tolerance mechanism in S. canadensis at the molecular level, transcriptome analyses were performed for leaves growing under natural light and three shade level conditions. Many differentially expressed genes (DEGs) were found in the comparative analysis, including those involved in photosynthesis, antioxidant, and secondary metabolism of phenol- and flavonoid-related pathways. Most genes encoding proteins involved in photosynthesis, such as photosystem I reaction center subunit (Psa), photosystem II core complex protein (Psb), and light-harvesting chlorophyll protein (Lhca and Lhcb), and reactive oxygen species (ROS) scavenging-related enzymes, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), were upregulated with the shade levels. Furthermore, most of the DEGs related to secondary metabolite synthesis were also upregulated in the shade conditions. Our study indicates that S. canadensis can respond to shade stress by modulating the expression of several photosynthesis-related, free radical scavenging-related, and secondary metabolism-related genes; thus, this species has the ability to adapt to different light conditions.
Collapse
Affiliation(s)
- Miao Wu
- College of Life SciencesWuhan UniversityWuhanChina
| | - Zeyu Li
- College of Life SciencesWuhan UniversityWuhanChina
| | - Jianbo Wang
- College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
41
|
Cherepanov DA, Gostev FE, Shelaev IV, Aibush AV, Semenov AY, Mamedov MD, Shuvalov VA, Nadtochenko VA. Visible and Near Infrared Absorption Spectrum of the Excited Singlet State of Chlorophyll a. HIGH ENERGY CHEMISTRY 2020. [DOI: 10.1134/s0018143920020058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Kalmatskaya OA, Karavaev VA, Tikhonov AN. Slow induction of chlorophyll a fluorescence excited by blue and red light in Tradescantia leaves acclimated to high and low light. PHOTOSYNTHESIS RESEARCH 2019; 142:265-282. [PMID: 31435864 DOI: 10.1007/s11120-019-00663-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/02/2019] [Indexed: 05/26/2023]
Abstract
Tradescantia is a good model for assaying induction events in higher plant leaves. Chlorophyll (Chl) fluorescence serves as a sensitive reporter of the functional state of photosynthetic apparatus in chloroplasts. The fluorescence time-course depends on the leaf growth conditions and actinic light quality. In this work, we investigated slow induction of Chl a fluorescence (SIF) excited by blue light (BL, λmax = 455 nm) or red light (RL, λmax = 630 nm) in dark-adapted leaves of Tradescantia fluminensis acclimated to high light (~ 1000 µmol photons m-2 s-1; HL) or low light (~ 100 µmol photons m-2 s-1; LL). Our special interest was focused on the contribution of the avoidance response to SIF kinetics. Bearing in mind that BL and RL have different impacts on photoreceptors that initiate chloroplast movements within the cell (accumulation/avoidance responses), we have compared the SIF patterns during the action of BL and RL. The time-courses of SIF and kinetics of non-photochemical quenching (NPQ) of Chl a fluorescence revealed a certain difference when leaves were illuminated by BL or RL. In both cases, the yield of fluorescence rose to the maximal level P and then, after the lag-phase P-S-M1, the fluorescence level decreased toward the steady state T (via the intermediate phases M1-M2 and M2-T). In LL-acclimated leaves, the duration of the P-S-M1 phase was almost two times longer that in HL-grown plants. In the case of BL, the fluorescence decay included the transient phase M1-M2. This phase was obscure during the RL illumination. Non-photochemical quenching of Chl a fluorescence has been quantified as [Formula: see text], where [Formula: see text] and [Formula: see text] stand for the fluorescence response to saturating pulses of light applied to dark-adapted and illuminated samples, respectively. The time-courses of such a formally determined NPQ value were markedly different during the action of RL and BL. In LL-grown leaves, BL induced higher NPQ as compared to the action of RL. In HL-grown plants, the difference between the NPQ responses to BL and RL illumination was insignificant. Comparing the peculiarities of Chl a fluorescence induced by BL and RL, we conclude that the avoidance response can provide a marked contribution to SIF and NPQ generation. The dependence of NPQ on the quality of actinic light suggests that chloroplast movements within the cell have a noticeable impact on the formally determined NPQ value. Analyzing kinetics of post-illumination decay of NPQ in the context of solar stress resistance, we have found that LL-acclimated Tradescantia leaves are more vulnerable to strong light than the HL-grown leaves.
Collapse
Affiliation(s)
| | | | - Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
43
|
Zhao W, Wang L, Pan L, Duan S, Tamai N, Sasaki SI, Tamiaki H, Sanehira Y, Wei Y, Chen G, Wang XF. Charge transfer dynamics in chlorophyll-based biosolar cells. Phys Chem Chem Phys 2019; 21:22563-22568. [PMID: 31588937 DOI: 10.1039/c9cp03387d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We fabricated a chlorophyll (Chl)-based biosolar cell with H2Chl-sensitized TiO2 as an acceptor and (ZnChl)n as a donor. This solar cell gives a relatively high quantum yield from the absorption spectral contribution from both the donor and acceptor species. We employed subpicosecond time-resolved absorption spectroscopy (TAS) to study the excited state dynamics at the Chl interface. A charge transfer (CT) state between TiO2-H2Chl and (ZnChl)n was observed at 640 nm after excitation at the Qy peaks, 680 nm and 720 nm. This CT state is entirely different from the CT states observed for either TiO2-H2Chl (TiO2-H2Chl/spiro-OMeTAD) or TiO2-(ZnChl)n systems. Due to the slower charge transfer process from H2Chl+ to TiO2 as compared to that from (ZnChl)n+ to H2Chl, the CT lifetimes of H2Chl--(ZnChl)n+ (τ1 = 0.1 ps, τ2 = 1.4 ps) excited at 720 nm are slightly shorter than that excited at 680 nm (τ1 = 0.2 ps, τ2 = 5.6 ps). The TAS results suggest that the interface of TiO2-H2Chl and (ZnChl)n not only transfers holes as spiro-OMeTAD does, but also provides a built-in field for charge dissociation between the two Chl species.
Collapse
Affiliation(s)
- Wenjie Zhao
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China. and Reserach Center for New Energy Technology, Shanghai Institute of Microsystem & Information Technology Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Li Wang
- Faculty of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, 669-1337, Hyogo, Japan
| | - Lingyun Pan
- College of Physics, Jilin University, Changchun, 130012, P. R. China.
| | - Shengnan Duan
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China.
| | - Naoto Tamai
- Faculty of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, 669-1337, Hyogo, Japan
| | - Shin-Ichi Sasaki
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan and Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yoshitaka Sanehira
- Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa 225-8503, Japan
| | - Yingjin Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China.
| | - Gang Chen
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China.
| | - Xiao-Feng Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
44
|
Campioli E, Sanyal S, Marcelli A, Di Donato M, Blanchard‐Desce M, Mongin O, Painelli A, Terenziani F. Addressing Charge‐Transfer and Locally‐Excited States in a Twisted Biphenyl Push‐Pull Chromophore. Chemphyschem 2019; 20:2860-2873. [DOI: 10.1002/cphc.201900703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/26/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Elisa Campioli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Somananda Sanyal
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | | | | | | | - Olivier Mongin
- Univ Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 35000 Rennes France
| | - Anna Painelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Francesca Terenziani
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
45
|
Hamdani S, Wang H, Zheng G, Perveen S, Qu M, Khan N, Khan W, Jiang J, Li M, Liu X, Zhu X, Chu C, Zhu XG. Genome-wide association study identifies variation of glucosidase being linked to natural variation of the maximal quantum yield of photosystem II. PHYSIOLOGIA PLANTARUM 2019; 166:105-119. [PMID: 30834537 DOI: 10.1111/ppl.12957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/06/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The maximum quantum yield of photosystem II (as reflected by variable to maximum chlorophyll a fluorescence, Fv /Fm ) is regarded as one of the most important photosynthetic parameters. The genetic basis underlying natural variation in Fv /Fm , which shows low level of variations in plants under non-stress conditions, is not easy to be exploited using the conventional gene cloning approaches. Thus, in order to answer this question, we have followed another strategy: we used genome-wide association study (GWAS) and transgenic analysis in a rice mini-core collection. We report here that four single-nucleotide polymorphisms, located in the promoter region of β-glucosidase 5 (BGlu-5), are associated with observed variation in Fv /Fm . Indeed, our transgenic analysis showed a good correlation between BGlu-5 and Fv /Fm . Thus, our work demonstrates the feasibility of using GWAS to study natural variation in Fv /Fm , suggesting that cis-element polymorphism, affecting the BGlu-5 expression level, may, indirectly, contribute to Fv /Fm variation in rice through the gibberellin signaling pathway. Further research is needed to understand the mechanism of our novel observation.
Collapse
Affiliation(s)
- Saber Hamdani
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongru Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangyong Zheng
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shahnaz Perveen
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingnan Qu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Naveed Khan
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Waqasuddin Khan
- Jamil-ur-Rahman Center for Genome Research, DR. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Jianjun Jiang
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming Li
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinyu Liu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaocen Zhu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin-Guang Zhu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
46
|
Kim W, Nowak-Król A, Hong Y, Schlosser F, Würthner F, Kim D. Solvent-Modulated Charge-Transfer Resonance Enhancement in the Excimer State of a Bay-Substituted Perylene Bisimide Cyclophane. J Phys Chem Lett 2019; 10:1919-1927. [PMID: 30892901 DOI: 10.1021/acs.jpclett.9b00357] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Excimer, a configurational mixing between Frenkel exciton and charge-transfer resonance states, is typically regarded as a trap state that hinders desired energy or charge-transfer processes in artificial molecular assemblies. However, in recent days, the excimer has received much attention as a functional intermediate in the excited-state dynamics such as singlet fission or charge-separation processes. In this work, we show that the relative contribution to charge-transfer resonance of the excimer state in a bay-substituted perylene bisimide dimer cyclophane can be modulated by dielectric properties of the solvents employed. Solvent-dependent time-resolved fluorescence and absorption measurements reveal that an enhancement of charge-transfer resonance in the excimer state is reflected by incomplete symmetry-breaking charge-separation processes from the structurally relaxed excimer state by means of dipolar solvation processes in the high dielectric environment.
Collapse
Affiliation(s)
- Woojae Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| | - Agnieszka Nowak-Król
- Institut für Organische Chemie and Center for Nanosystems Chemistry , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Yongseok Hong
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| | - Felix Schlosser
- Institut für Organische Chemie and Center for Nanosystems Chemistry , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| |
Collapse
|
47
|
Suslichenko IS, Tikhonov AN. Photo-reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light. FEBS Lett 2019; 593:788-798. [PMID: 30896038 DOI: 10.1002/1873-3468.13366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 11/09/2022]
Abstract
In photosynthetic systems of oxygenic type, plastoquinone (PQ) molecules are reduced by photosystem II (PSII). The turnover of PQ determines the rate of PSII operation. PQ molecules are present in surplus with respect to PSII. In this work, using the pulse amplitude modulation-fluorometry technique, we quantified photo-reducible PQ pools in chloroplasts of two contrasting ecotypes of Tradescantia, acclimated either to low light (~ 100 μmol photons·m-2 ·s-1 , LL) or to high light (~ 1000 μmol photons·m-2 ·s-1 , HL). The LL-grown plants are characterized by higher capacity of rapidly reducible PQ pool ([PQ]0 /[PSII] ≈ 8) as compared to HL-grown plants of both species ([PQ]0 /[PSII] ≈ 4). The elevated content of PQ in LL plants favours photosynthetic electron flow at low-solar irradiance.
Collapse
Affiliation(s)
| | - Alexander N Tikhonov
- Faculty of Physics, M.V.Lomonosov Moscow State University, Russia.,N.M.Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
48
|
Pham LV, Janna Olmos JD, Chernev P, Kargul J, Messinger J. Unequal misses during the flash-induced advancement of photosystem II: effects of the S state and acceptor side cycles. PHOTOSYNTHESIS RESEARCH 2019; 139:93-106. [PMID: 30191436 PMCID: PMC6373315 DOI: 10.1007/s11120-018-0574-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/03/2018] [Indexed: 05/17/2023]
Abstract
Photosynthetic water oxidation is catalyzed by the oxygen-evolving complex (OEC) in photosystem II (PSII). This process is energetically driven by light-induced charge separation in the reaction center of PSII, which leads to a stepwise accumulation of oxidizing equivalents in the OEC (Si states, i = 0-4) resulting in O2 evolution after each fourth flash, and to the reduction of plastoquinone to plastoquinol on the acceptor side of PSII. However, the Si-state advancement is not perfect, which according to the Kok model is described by miss-hits (misses). These may be caused by redox equilibria or kinetic limitations on the donor (OEC) or the acceptor side. In this study, we investigate the effects of individual S state transitions and of the quinone acceptor side on the miss parameter by analyzing the flash-induced oxygen evolution patterns and the S2, S3 and S0 state lifetimes in thylakoid samples of the extremophilic red alga Cyanidioschyzon merolae. The data are analyzed employing a global fit analysis and the results are compared to the data obtained previously for spinach thylakoids. These two organisms were selected, because the redox potential of QA/QA- in PSII is significantly less negative in C. merolae (Em = - 104 mV) than in spinach (Em = - 163 mV). This significant difference in redox potential was expected to allow the disentanglement of acceptor and donor side effects on the miss parameter. Our data indicate that, at slightly acidic and neutral pH values, the Em of QA-/QA plays only a minor role for the miss parameter. By contrast, the increased energy gap for the backward electron transfer from QA- to Pheo slows down the charge recombination reaction with the S3 and S2 states considerably. In addition, our data support the concept that the S2 → S3 transition is the least efficient step during the oxidation of water to molecular oxygen in the Kok cycle of PSII.
Collapse
Affiliation(s)
- Long Vo Pham
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Julian David Janna Olmos
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Petko Chernev
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Joanna Kargul
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland.
| | - Johannes Messinger
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden.
- Department of Chemistry, Chemistry Biology Center (KBC), Umeå University, Linnaeus väg 6, 901 87, Umeå, Sweden.
| |
Collapse
|
49
|
Benkov MA, Yatsenko AM, Tikhonov AN. Light acclimation of shade-tolerant and sun-resistant Tradescantia species: photochemical activity of PSII and its sensitivity to heat treatment. PHOTOSYNTHESIS RESEARCH 2019; 139:203-214. [PMID: 29926255 DOI: 10.1007/s11120-018-0535-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
In this work, we have compared photosynthetic characteristics of photosystem II (PSII) in Tradescantia leaves of two contrasting ecotypes grown under the low light (LL) and high light (HL) regimes during their entire growth period. Plants of the same genus, T. fluminensis (shade-tolerant) and T. sillamontana (sun-resistant), were cultivated at 50-125 µmol photons m-2 s-1 (LL) or at 875-1000 µmol photons m-2 s-1 (HL). Analyses of intrinsic PSII efficiency was based on measurements of fast chlorophyll (Chl) a fluorescence kinetics (the OJIP test). The fluorescence parameters Fv/Fm (variable fluorescence) and F0 (the initial level of fluorescence) in dark-adapted leaves were used to quantify the photochemical properties of PSII. Plants of different ecotypes showed different sustainability with respect to changes in the environmental light intensity and temperature treatment. The sun-resistant species T. sillamontana revealed the tolerance to variations in irradiation intensity, demonstrating constancy of maximum quantum efficiency of PSII upon variations of the growth light. In contrast to T. sillamontana, facultative shade species T. fluminensis demonstrated variability of PSII photochemical activity, depending on the growth light intensity. The susceptibility of T. fluminensis to solar stress was documented by a decrease in Fv/Fm and a rise of F0 during the long-term exposition of T. fluminensis to HL, indicating the loss of photochemical activity of PSII. The short-term (10 min) heat treatment of leaf cuttings caused inactivation of PSII. The temperature-dependent heating effects were different in T. fluminensis and T. sillamontana. Sun-resistant plants T. sillamontana acclimated to LL and HL displayed the same plots of Fv/Fm versus the treatment temperature (t), demonstrating a decrease in Fv/Fm at t ≥ 45 °C. The leaves of shadow-tolerant species T. fluminensis grown under the LL and HL conditions revealed different sensitivities to heat treatment. Plants grown under the solar stress conditions (HL) demonstrated a gradual decline of Fv/Fm at lower heating temperatures (t ≥ 25 °C), indicating the "fragility" of their PSII as compared to T. fluminensis grown at LL. Different responses of sun and shadow species of Tradescantia to growth light and heat treatment are discussed in the context of their biochemical and ecophysiological properties.
Collapse
Affiliation(s)
- Michael A Benkov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Anton M Yatsenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
50
|
Govindjee. A sixty-year tryst with photosynthesis and related processes: an informal personal perspective. PHOTOSYNTHESIS RESEARCH 2019; 139:15-43. [PMID: 30343396 DOI: 10.1007/s11120-018-0590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
After briefly describing my early collaborative work at the University of Allahabad, that had laid the foundation of my research life, I present here some of our research on photosynthesis at the University of Illinois at Urbana-Champaign, randomly selected from light absorption to NADP+ reduction in plants, algae, and cyanobacteria. These include the fact that (i) both the light reactions I and II are powered by light absorbed by chlorophyll (Chl) a of different spectral forms; (ii) light emission (fluorescence, delayed fluorescence, and thermoluminescence) by plants, algae, and cyanobacteria provides detailed information on these reactions and beyond; (iii) primary photochemistry in both the photosystems I (PS I) and II (PS II) occurs within a few picoseconds; and (iv) most importantly, bicarbonate plays a unique role on the electron acceptor side of PS II, specifically at the two-electron gate of PS II. Currently, the ongoing research around the world is, and should be, directed towards making photosynthesis better able to deal with the global issues (such as increasing population, dwindling resources, and rising temperature) particularly through genetic modification. However, basic research is necessary to continue to provide us with an understanding of the molecular mechanism of the process and to guide us in reaching our goals of increasing food production and other chemicals we need for our lives.
Collapse
|