1
|
Chen JH, Wang W, Wang C, Kuang T, Shen JR, Zhang X. Cryo-electron microscopy structure of the intact photosynthetic light-harvesting antenna-reaction center complex from a green sulfur bacterium. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:223-234. [PMID: 36125941 DOI: 10.1111/jipb.13367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/19/2022] [Indexed: 06/15/2023]
Abstract
The photosynthetic reaction center complex (RCC) of green sulfur bacteria (GSB) consists of the membrane-imbedded RC core and the peripheric energy transmitting proteins called Fenna-Matthews-Olson (FMO). Functionally, FMO transfers the absorbed energy from a huge peripheral light-harvesting antenna named chlorosome to the RC core where charge separation occurs. In vivo, one RC was found to bind two FMOs, however, the intact structure of RCC as well as the energy transfer mechanism within RCC remain to be clarified. Here we report a structure of intact RCC which contains a RC core and two FMO trimers from a thermophilic green sulfur bacterium Chlorobaculum tepidum at 2.9 Å resolution by cryo-electron microscopy. The second FMO trimer is attached at the cytoplasmic side asymmetrically relative to the first FMO trimer reported previously. We also observed two new subunits (PscE and PscF) and the N-terminal transmembrane domain of a cytochrome-containing subunit (PscC) in the structure. These two novel subunits possibly function to facilitate the binding of FMOs to RC core and to stabilize the whole complex. A new bacteriochlorophyll (numbered as 816) was identified at the interspace between PscF and PscA-1, causing an asymmetrical energy transfer from the two FMO trimers to RC core. Based on the structure, we propose an energy transfer network within this photosynthetic apparatus.
Collapse
Affiliation(s)
- Jing-Hua Chen
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Weiwei Wang
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Chen Wang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Institute of Botany, Photosynthesis Research Center, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Jian-Ren Shen
- Key Laboratory of Photobiology, Institute of Botany, Photosynthesis Research Center, the Chinese Academy of Sciences, Beijing, 100093, China
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Xing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
2
|
Puskar R, Du Truong C, Swain K, Chowdhury S, Chan KY, Li S, Cheng KW, Wang TY, Poh YP, Mazor Y, Liu H, Chou TF, Nannenga BL, Chiu PL. Molecular asymmetry of a photosynthetic supercomplex from green sulfur bacteria. Nat Commun 2022; 13:5824. [PMID: 36192412 PMCID: PMC9529944 DOI: 10.1038/s41467-022-33505-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
The photochemical reaction center (RC) features a dimeric architecture for charge separation across the membrane. In green sulfur bacteria (GSB), the trimeric Fenna-Matthews-Olson (FMO) complex mediates the transfer of light energy from the chlorosome antenna complex to the RC. Here we determine the structure of the photosynthetic supercomplex from the GSB Chlorobaculum tepidum using single-particle cryogenic electron microscopy (cryo-EM) and identify the cytochrome c subunit (PscC), two accessory protein subunits (PscE and PscF), a second FMO trimeric complex, and a linker pigment between FMO and the RC core. The protein subunits that are assembled with the symmetric RC core generate an asymmetric photosynthetic supercomplex. One linker bacteriochlorophyll (BChl) is located in one of the two FMO-PscA interfaces, leading to differential efficiencies of the two energy transfer branches. The two FMO trimeric complexes establish two different binding interfaces with the RC cytoplasmic surface, driven by the associated accessory subunits. This structure of the GSB photosynthetic supercomplex provides mechanistic insight into the light excitation energy transfer routes and a possible evolutionary transition intermediate of the bacterial photosynthetic supercomplex from the primitive homodimeric RC.
Collapse
Affiliation(s)
- Ryan Puskar
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Chloe Du Truong
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- Rampart Bioscience, Monrovia, CA, 91016, USA
| | - Kyle Swain
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Saborni Chowdhury
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Ka-Yi Chan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ting Yu Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yu-Ping Poh
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Yuval Mazor
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Haijun Liu
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Brent L Nannenga
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Po-Lin Chiu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
3
|
Gisriel CJ, Azai C, Cardona T. Recent advances in the structural diversity of reaction centers. PHOTOSYNTHESIS RESEARCH 2021; 149:329-343. [PMID: 34173168 PMCID: PMC8452559 DOI: 10.1007/s11120-021-00857-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic reaction centers (RC) catalyze the conversion of light to chemical energy that supports life on Earth, but they exhibit substantial diversity among different phyla. This is exemplified in a recent structure of the RC from an anoxygenic green sulfur bacterium (GsbRC) which has characteristics that may challenge the canonical view of RC classification. The GsbRC structure is analyzed and compared with other RCs, and the observations reveal important but unstudied research directions that are vital for disentangling RC evolution and diversity. Namely, (1) common themes of electron donation implicate a Ca2+ site whose role is unknown; (2) a previously unidentified lipid molecule with unclear functional significance is involved in the axial ligation of a cofactor in the electron transfer chain; (3) the GsbRC features surprising structural similarities with the distantly-related photosystem II; and (4) a structural basis for energy quenching in the GsbRC can be gleaned that exemplifies the importance of how exposure to oxygen has shaped the evolution of RCs. The analysis highlights these novel avenues of research that are critical for revealing evolutionary relationships that underpin the great diversity observed in extant RCs.
Collapse
Affiliation(s)
| | - Chihiro Azai
- College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
4
|
Chen JH, Wu H, Xu C, Liu XC, Huang Z, Chang S, Wang W, Han G, Kuang T, Shen JR, Zhang X. Architecture of the photosynthetic complex from a green sulfur bacterium. Science 2021; 370:370/6519/eabb6350. [PMID: 33214250 DOI: 10.1126/science.abb6350] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/09/2020] [Indexed: 01/09/2023]
Abstract
The photosynthetic apparatus of green sulfur bacteria (GSB) contains a peripheral antenna chlorosome, light-harvesting Fenna-Matthews-Olson proteins (FMO), and a reaction center (GsbRC). We used cryo-electron microscopy to determine a 2.7-angstrom structure of the FMO-GsbRC supercomplex from Chlorobaculum tepidum The GsbRC binds considerably fewer (bacterio)chlorophylls [(B)Chls] than other known type I RCs do, and the organization of (B)Chls is similar to that in photosystem II. Two BChl layers in GsbRC are not connected by Chls, as seen in other RCs, but associate with two carotenoid derivatives. Relatively long distances of 22 to 33 angstroms were observed between BChls of FMO and GsbRC, consistent with the inefficient energy transfer between these entities. The structure contains common features of both type I and type II RCs and provides insight into the evolution of photosynthetic RCs.
Collapse
Affiliation(s)
- Jing-Hua Chen
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Hangjun Wu
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Caihuang Xu
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Xiao-Chi Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Zihui Huang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Shenghai Chang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China. .,Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
| | - Xing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China. .,Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, 310058 Zhejiang, China.,Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 Zhejiang, China
| |
Collapse
|
5
|
Azai C, Harada J, Fujimoto S, Masuda S, Kosumi D. Anaerobic energy dissipation by glycosylated carotenoids in the green sulfur bacterium Chlorobaculum tepidum. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Analysis of Photosynthetic Systems and Their Applications with Mathematical and Computational Models. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In biological and life science applications, photosynthesis is an important process that involves the absorption and transformation of sunlight into chemical energy. During the photosynthesis process, the light photons are captured by the green chlorophyll pigments in their photosynthetic antennae and further funneled to the reaction center. One of the most important light harvesting complexes that are highly important in the study of photosynthesis is the membrane-attached Fenna–Matthews–Olson (FMO) complex found in the green sulfur bacteria. In this review, we discuss the mathematical formulations and computational modeling of some of the light harvesting complexes including FMO. The most recent research developments in the photosynthetic light harvesting complexes are thoroughly discussed. The theoretical background related to the spectral density, quantum coherence and density functional theory has been elaborated. Furthermore, details about the transfer and excitation of energy in different sites of the FMO complex along with other vital photosynthetic light harvesting complexes have also been provided. Finally, we conclude this review by providing the current and potential applications in environmental science, energy, health and medicine, where such mathematical and computational studies of the photosynthesis and the light harvesting complexes can be readily integrated.
Collapse
|
7
|
Greening C, Lithgow T. Formation and function of bacterial organelles. Nat Rev Microbiol 2020; 18:677-689. [PMID: 32710089 DOI: 10.1038/s41579-020-0413-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 01/28/2023]
Abstract
Advances in imaging technologies have revealed that many bacteria possess organelles with a proteomically defined lumen and a macromolecular boundary. Some are bound by a lipid bilayer (such as thylakoids, magnetosomes and anammoxosomes), whereas others are defined by a lipid monolayer (such as lipid bodies), a proteinaceous coat (such as carboxysomes) or have a phase-defined boundary (such as nucleolus-like compartments). These diverse organelles have various metabolic and physiological functions, facilitating adaptation to different environments and driving the evolution of cellular complexity. This Review highlights that, despite the diversity of reported organelles, some unifying concepts underlie their formation, structure and function. Bacteria have fundamental mechanisms of organelle formation, through which conserved processes can form distinct organelles in different species depending on the proteins recruited to the luminal space and the boundary of the organelle. These complex subcellular compartments provide evolutionary advantages as well as enabling metabolic specialization, biogeochemical processes and biotechnological advances. Growing evidence suggests that the presence of organelles is the rule, rather than the exception, in bacterial cells.
Collapse
Affiliation(s)
- Chris Greening
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
8
|
Kramer T, Rodríguez M. Effect of disorder and polarization sequences on two-dimensional spectra of light-harvesting complexes. PHOTOSYNTHESIS RESEARCH 2020; 144:147-154. [PMID: 31872335 DOI: 10.1007/s11120-019-00699-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Two-dimensional electronic spectra (2DES) provide unique ways to track the energy transfer dynamics in light-harvesting complexes. The interpretation of the peaks and structures found in experimentally recorded 2DES is often not straightforward, since several processes are imaged simultaneously. The choice of specific pulse polarization sequences helps to disentangle the sometimes convoluted spectra, but brings along other disturbances. We show by detailed theoretical calculations how 2DES of the Fenna-Matthews-Olson complex are affected by rotational and conformational disorder of the chromophores.
Collapse
|
9
|
Kaliakin DS, Nakata H, Kim Y, Chen Q, Fedorov DG, Slipchenko LV. FMOxFMO: Elucidating Excitonic Interactions in the Fenna-Matthews-Olson Complex with the Fragment Molecular Orbital Method. J Chem Theory Comput 2020; 16:1175-1187. [PMID: 31841349 DOI: 10.1021/acs.jctc.9b00621] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to study Förster resonance energy transfer (FRET), the fragment molecular orbital (FMO) method is extended to compute electronic couplings between local excitations via the excited state transition density model, enabling efficient calculations of nonlocal excitations in a large molecular system and overcoming the previous limitation of being able to compute only local excitations. The results of these simple but accurate models are validated against full quantum calculations without fragmentation. The developed method is applied to a very important photosynthetic pigment-protein complex, the Fenna-Matthews-Olson complex (FMOc), that is responsible for the energy transfer from a chlorosome to the reaction center in the green sulfur bacteria. Absorption and circular dichroism spectra of FMOc are simulated, and the role of the molecular environment on the excitations is revealed.
Collapse
Affiliation(s)
- Danil S Kaliakin
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Hiroya Nakata
- Research Institute for Advanced Materials and Devices , Kyocera , 5-3 Hikaridai-3 , Seika-cho Soraku-gun, Kyoto 619-0237 , Japan
| | - Yongbin Kim
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Qifeng Chen
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat) , National Institute of Advanced Industrial Science and Technology (AIST) , Central 2, Umezono 1-1-1 , Tsukuba 305-8568 , Japan
| | - Lyudmila V Slipchenko
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
10
|
Fujiwara Y, Tamiaki H. Stereoselective self-aggregation of synthetic zinc 3 1-epimeric bacteriochlorophyll-d analogs possessing a methylene group at the 13 2-position as models of green photosynthetic bacterial chlorosomes. Photochem Photobiol Sci 2019; 18:1218-1227. [PMID: 30839974 DOI: 10.1039/c8pp00535d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Zinc bacteriochlorophyll-d analogs possessing a methylene group at the 132-position were prepared by chemical modification of naturally occurring chlorophyll-a. The synthetic 31-epimers were successfully separated by reverse phase HPLC to give diastereomerically pure samples. The stereochemistry of the chiral C31-center in the separated bacteriochlorophyll-d analogs was determined by HPLC analysis of the authentic stereoisomers prepared stereospecifically. Both the epimers were monomeric in tetrahydrofuran to give sharp absorption bands, while they self-aggregated to form chlorosomal oligomers with red-shifted bands in an aqueous Triton X-100 micelle solution. The resulting large oligomers deaggregated by addition of Triton X-100 to give monomeric species. Their aggregation and deaggregation were dependent on the 31-stereochemistry, indicating that each epimer produced self-aggregates that were supramolecularly different. The substitution with the 132-methylene group enhanced their self-aggregation abilities and the stability of their resulting self-aggregates.
Collapse
Affiliation(s)
- Yoshiki Fujiwara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | | |
Collapse
|
11
|
Magdaong NCM, Niedzwiedzki DM, Saer RG, Goodson C, Blankenship RE. Excitation energy transfer kinetics and efficiency in phototrophic green sulfur bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1180-1190. [DOI: 10.1016/j.bbabio.2018.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 01/16/2023]
|
12
|
Shoji S, Ogawa T, Hashishin T, Tamiaki H. Self-Assemblies of Zinc Bacteriochlorophyll-d Analogues Having Amide, Ester, and Urea Groups as Substituents at 17-Position and Observation of Lamellar Supramolecular Nanostructures. Chemphyschem 2018; 19:913-920. [PMID: 29231276 DOI: 10.1002/cphc.201701044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/07/2017] [Indexed: 11/05/2022]
Abstract
Chlorosomes are unique light-harvesting apparatuses in photosynthetic green bacteria. Single chlorosomes contain a large number of bacteriochlorophyll (BChl)-c, -d, -e, and -f molecules, which self-assemble without protein assistance. These BChl self-assemblies involving specific intermolecular interactions (Mg⋅⋅⋅O32 -H⋅⋅⋅O=C131 and π-π stacks of chlorin skeletons) in a chlorosome have been reported to be round-shaped rods (or tubes) with diameters of 5 or 10 nm, or lamellae with a layer spacing of approximately 2 nm. Herein, the self-assembly of synthetic zinc BChl-d analogues having ester, amide, and urea groups in the 17-substituent is reported. Spectroscopic analyses indicate that the zinc BChl-d analogues self-assemble in a nonpolar organic solvent in a similar manner to natural chlorosomal BChls with additional assistance by hydrogen-bonding of secondary amide (or urea) groups (CON-H⋅⋅⋅O=CNH). Microscopic analyses of the supramolecules of a zinc BChl-d analogue bearing amide and urea groups show round- or square-shaped rods with widths of about 65 nm. Cryogenic TEM shows a lamellar arrangement of the zinc chlorin with a layer spacing of 1.5 nm inside the rod. Similar thick rods are also visible in the micrographs of self-assemblies of zinc BChl-d analogues with one or two secondary amide moieties in the 17-substituent.
Collapse
Affiliation(s)
- Sunao Shoji
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tetsuya Ogawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Takeshi Hashishin
- Faculty of Engineering, Kumamoto University, Kumamoto, Kumamoto, 860-8555, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
13
|
Two-dimensional electronic spectra of the photosynthetic apparatus of green sulfur bacteria. Sci Rep 2017; 7:45245. [PMID: 28345621 PMCID: PMC5366913 DOI: 10.1038/srep45245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/21/2017] [Indexed: 12/25/2022] Open
Abstract
Advances in time resolved spectroscopy have provided new insight into the energy transmission in natural photosynthetic complexes. Novel theoretical tools and models are being developed in order to explain the experimental results. We provide a model calculation for the two-dimensional electronic spectra of Cholorobaculum tepidum which correctly describes the main features and transfer time scales found in recent experiments. From our calculation one can infer the coupling of the antenna chlorosome with the environment and the coupling between the chlorosome and the Fenna-Matthews-Olson complex. We show that environment assisted transport between the subunits is the required mechanism to reproduce the experimental two-dimensional electronic spectra.
Collapse
|
14
|
In situ mapping of the energy flow through the entire photosynthetic apparatus. Nat Chem 2016; 8:705-10. [PMID: 27325098 DOI: 10.1038/nchem.2525] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Absorption of sunlight is the first step in photosynthesis, which provides energy for the vast majority of organisms on Earth. The primary processes of photosynthesis have been studied extensively in isolated light-harvesting complexes and reaction centres, however, to understand fully the way in which organisms capture light it is crucial to also reveal the functional relationships between the individual complexes. Here we report the use of two-dimensional electronic spectroscopy to track directly the excitation-energy flow through the entire photosynthetic system of green sulfur bacteria. We unravel the functional organization of individual complexes in the photosynthetic unit and show that, whereas energy is transferred within subunits on a timescale of subpicoseconds to a few picoseconds, across the complexes the energy flows at a timescale of tens of picoseconds. Thus, we demonstrate that the bottleneck of energy transfer is between the constituents.
Collapse
|