1
|
Battistuzzi M, Morlino MS, Cocola L, Trainotti L, Treu L, Campanaro S, Claudi R, Poletto L, La Rocca N. Transcriptomic and photosynthetic analyses of Synechocystis sp. PCC6803 and Chlorogloeopsis fritschii sp. PCC6912 exposed to an M-dwarf spectrum under an anoxic atmosphere. FRONTIERS IN PLANT SCIENCE 2024; 14:1322052. [PMID: 38304456 PMCID: PMC10830646 DOI: 10.3389/fpls.2023.1322052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Introduction Cyanobacteria appeared in the anoxic Archean Earth, evolving for the first time oxygenic photosynthesis and deeply changing the atmosphere by introducing oxygen. Starting possibly from UV-protected environments, characterized by low visible and far-red enriched light spectra, cyanobacteria spread everywhere on Earth thanks to their adaptation capabilities in light harvesting. In the last decade, few cyanobacteria species which can acclimate to far-red light through Far-Red Light Photoacclimation (FaRLiP) have been isolated. FaRLiP cyanobacteria were thus proposed as model organisms to study the origin of oxygenic photosynthesis as well as its possible functionality around stars with high far-red emission, the M-dwarfs. These stars are astrobiological targets, as their longevity could sustain life evolution and they demonstrated to host rocky terrestrial-like exoplanets within their Habitable Zone. Methods We studied the acclimation responses of the FaRLiP strain Chlorogloeopsis fritschii sp. PCC6912 and the non-FaRLiP strain Synechocystis sp. PCC6803 to the combination of three simulated light spectra (M-dwarf, solar and far-red) and two atmospheric compositions (oxic, anoxic). We first checked their growth, O2 production and pigment composition, then we studied their transcriptional responses by RNA sequencing under each combination of light spectrum and atmosphere conditions. Results and discussion PCC6803 did not show relevant differences in gene expression when comparing the responses to M-dwarf and solar-simulated lights, while far-red caused a variation in the transcriptional level of many genes. PCC6912 showed, on the contrary, different transcriptional responses to each light condition and activated the FaRLiP response under the M-dwarf simulated light. Surprisingly, the anoxic atmosphere did not impact the transcriptional profile of the 2 strains significantly. Results show that both cyanobacteria seem inherently prepared for anoxia and to harvest the photons emitted by a simulated M-dwarf star, whether they are only visible (PCC6803) or also far-red photons (PCC6912). They also show that visible photons in the simulated M-dwarf are sufficient to keep a similar metabolism with respect to solar-simulated light. Conclusion Results prove the adaptability of the cyanobacterial metabolism and enhance the plausibility of finding oxygenic biospheres on exoplanets orbiting M-dwarf stars.
Collapse
Affiliation(s)
- Mariano Battistuzzi
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
- Center for Space Studies and Activities (CISAS), University of Padua, Padua, Italy
| | | | - Lorenzo Cocola
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
| | | | - Laura Treu
- Department of Biology, University of Padua, Padua, Italy
| | | | - Riccardo Claudi
- National Institute for Astrophysics, Astronomical Observatory of Padua (INAF-OAPD), Padua, Italy
- Department of Mathematics and Physics, University Roma Tre, Rome, Italy
| | - Luca Poletto
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
| | - Nicoletta La Rocca
- Department of Biology, University of Padua, Padua, Italy
- Center for Space Studies and Activities (CISAS), University of Padua, Padua, Italy
| |
Collapse
|
2
|
Madhu S, Sengupta A, Sarnaik AP, Sahasrabuddhe D, Wangikar PP. Global Transcriptome-Guided Identification of Neutral Sites for Engineering Synechococcus elongatus PCC 11801. ACS Synth Biol 2023; 12:1677-1685. [PMID: 37252895 DOI: 10.1021/acssynbio.3c00019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Engineered cyanobacteria are attractive hosts for the phototrophic conversion of CO2 to chemicals. Synechococcus elongatus PCC11801, a novel, fast-growing, and stress-tolerant cyanobacterium, has the potential to be a platform cell factory, and hence, it necessitates the development of a synthetic biology toolbox. Considering the widely followed cyanobacterial engineering strategy of chromosomal integration of heterologous DNA, it is of interest to discover and validate new chromosomal neutral sites (NSs) in this strain. To that end, global transcriptome analysis was performed using RNA Seq under the conditions of high temperature (HT), carbon (HC), and salt (HS) and ambient growth conditions. We found upregulation of 445, 138, and 87 genes and downregulation of 333, 125, and 132 genes, under HC, HT, and HS, respectively. Following nonhierarchical clustering, gene enrichment, and bioinformatics analysis, 27 putative NSs were predicted. Six of them were experimentally tested, and five showed confirmed neutrality, based on unaltered cell growth. Thus, global transcriptomic analysis was effectively exploited for NS annotation and would be advantageous for multiplexed genome editing.
Collapse
Affiliation(s)
- Swati Madhu
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| | - Annesha Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| | - Aditya P Sarnaik
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| | - Deepti Sahasrabuddhe
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| |
Collapse
|
3
|
Pinevich AV, Averina SG. On the Edge of the Rainbow: Red-Shifted Chlorophylls and Far-Red Light Photoadaptation in Cyanobacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
Genomic and Functional Variation of the Chlorophyll d-Producing Cyanobacterium Acaryochloris marina. Microorganisms 2022; 10:microorganisms10030569. [PMID: 35336144 PMCID: PMC8949462 DOI: 10.3390/microorganisms10030569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
The Chlorophyll d-producing cyanobacterium Acaryochloris marina is widely distributed in marine environments enriched in far-red light, but our understanding of its genomic and functional diversity is limited. Here, we take an integrative approach to investigate A. marina diversity for 37 strains, which includes twelve newly isolated strains from previously unsampled locations in Europe and the Pacific Northwest of North America. A genome-wide phylogeny revealed both that closely related A. marina have migrated within geographic regions and that distantly related A. marina lineages can co-occur. The distribution of traits mapped onto the phylogeny provided evidence of a dynamic evolutionary history of gene gain and loss during A. marina diversification. Ancestral genes that were differentially retained or lost by strains include plasmid-encoded sodium-transporting ATPase and bidirectional NiFe-hydrogenase genes that may be involved in salt tolerance and redox balance under fermentative conditions, respectively. The acquisition of genes by horizontal transfer has also played an important role in the evolution of new functions, such as nitrogen fixation. Together, our results resolve examples in which genome content and ecotypic variation for nutrient metabolism and environmental tolerance have diversified during the evolutionary history of this unusual photosynthetic bacterium.
Collapse
|
5
|
Suehiro H, Tanaka R, Ito H. Distribution and functional analysis of the two types of 8-vinyl reductase involved in chlorophyll biosynthesis in marine cyanobacteria. Arch Microbiol 2021; 203:3565-3575. [PMID: 33956163 DOI: 10.1007/s00203-021-02348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
In the chlorophyll biosynthesis pathway, the 8-vinyl group of the chlorophyll precursor is reduced to an ethyl group by 8-vinyl reductase. Two isozymes of 8-vinyl reductase have been described in oxygenic photosynthetic organisms: one encoded by BciA and another by BciB. Only BciB contains an [Fe-S] cluster and most cyanobacteria harbor this form; whereas a few contain BciA. Given this disparity in distribution, cyanobacterial BciA has remained largely overlooked, which has limited understanding of chlorophyll biosynthesis in these microorganisms. Here, we reveal that cyanobacterial BciA encodes a functional 8-vinyl reductase, as evidenced by measuring the in vitro activity of recombinant Synechococcus and Acaryochloris BciA. Genomic comparison revealed that BciB had been replaced by BciA during evolution of the marine cyanobacterium Synechococcus, and coincided with replacement of Fe-superoxide dismutase (SOD) with Ni-SOD. These findings imply that the acquisition of BciA confers an adaptive advantage to cyanobacteria living in low-iron oceanic environments.
Collapse
Affiliation(s)
- Haruka Suehiro
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
6
|
Crook N, Ferreiro A, Condiotte Z, Dantas G. Transcript Barcoding Illuminates the Expression Level of Synthetic Constructs in E. coli Nissle Residing in the Mammalian Gut. ACS Synth Biol 2020; 9:1010-1021. [PMID: 32324995 PMCID: PMC7293544 DOI: 10.1021/acssynbio.0c00040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of robust engineered probiotic therapies demands accurate knowledge of genetic construct expression in the gut. However, the monetary and ethical costs of testing engineered strains in vertebrate hosts are incompatible with current high-throughput design-build-test cycles. To enable parallel measurement of multiple construct designs, we placed unique DNA barcodes in engineered transcripts and measured barcode abundances via sequencing. In standard curve experiments, the barcode sequences exhibited consistent relationships between input and measured abundances, which allowed us to use transcript barcoding to measure expression levels of 30 GFP-expressing strains of E. coli Nissle in parallel. Applying this technology in culture and in the mouse gut, we found that GFP expression in the gut could often be predicted from expression levels in culture, but several strains exhibited gut-specific expression. This work establishes the experimental design parameters and advantages of transcript barcoding to measure the performance of many engineered probiotic designs in mammalian hosts.
Collapse
Affiliation(s)
- Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Aura Ferreiro
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Zevin Condiotte
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
7
|
Zhang F, Chi J. Influences of nutritional conditions on degradation of dibutyl phthalate in coastal sediments with Cylindrotheca closterium. MARINE POLLUTION BULLETIN 2020; 153:111021. [PMID: 32275567 DOI: 10.1016/j.marpolbul.2020.111021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 06/11/2023]
Abstract
In this work, microphytobenthos Cylindrotheca closterium was planted on the surface of coastal sediments to investigate its influence on dibutyl phthalate (DBP) degradation in sediments under different nutritional conditions. The results indicated that C. closterium largely utilized nutrients from the overlying water. Addition of nitrogen, phosphorus or silicon increased algal biomass (as chlorophyll a) by 0.97-3.16, 1.75-2.36 and 1.61-3.09 times, respectively, meanwhile it changed bacterial community structure in sediments with C. closterium. Growth of C. closterium was more sensitive to nitrogen content in the overlying water. Inoculation of C. closterium increased the relative abundances of dominant aerobic bacteria by 10-67%. Compared with treatments without C. closterium, inoculation of C. closterium increased DBP degradation percentage in sediments (8.5-18.9% increment), which was positively correlated with chlorophyll a content. Thus, microphytobenthos showed the potential for improving the cleansing of polluted coastal sediments, which was obviously related to nutritional conditions in the overlying water.
Collapse
Affiliation(s)
- Fan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
8
|
Miyake K, Fushimi K, Kashimoto T, Maeda K, Ni-Ni-Win, Kimura H, Sugishima M, Ikeuchi M, Narikawa R. Functional diversification of two bilin reductases for light perception and harvesting in unique cyanobacterium Acaryochloris marina MBIC 11017. FEBS J 2020; 287:4016-4031. [PMID: 31995844 DOI: 10.1111/febs.15230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Bilin pigments play important roles for both light perception and harvesting in cyanobacteria by binding to cyanobacteriochromes (CBCRs) and phycobilisomes (PBS), respectively. Among various cyanobacteria, Acaryochloris marina MBIC 11017 (A. marina 11017) exceptionally uses chlorophyll d as the main photosynthetic pigment absorbing longer wavelength light than the canonical pigment, chlorophyll a, indicating existence of a system to sense longer wavelength light than others. On the other hand, A. marina 11017 has the PBS apparatus to harvest short-wavelength orange light, similar to most cyanobacteria. Thus, A. marina 11017 might sense longer wavelength light and harvest shorter wavelength light by using bilin pigments. Phycocyanobilin (PCB) is the main bilin pigment of both systems. Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes PCB synthesis from biliverdin via the intermediate 181 ,182 -dihydrobiliverdin (181 ,182 -DHBV), resulting in the stepwise shortening of the absorbing wavelengths. In this study, we found that A. marina 11017 exceptionally encodes two PcyA homologs, AmPcyAc and AmPcyAp. AmPcyAc is encoded on the main chromosome with most photoreceptor genes, whereas AmPcyAp is encoded on a plasmid with PBS-related genes. High accumulation of 181 ,182 -DHBV for extended periods was observed during the reaction catalyzed by AmPcyAc, whereas 181 ,182 -DHBV was transiently accumulated for a short period during the reaction catalyzed by AmPcyAp. CBCRs could sense longer wavelength far-red light through 181 ,182 -DHBV incorporation, whereas PBS could only harvest orange light through PCB incorporation, suggesting functional diversification of PcyA as AmPcyAc and AmPcyAp to provide 181 ,182 -DHBV and PCB to the light perception and harvesting systems, respectively.
Collapse
Affiliation(s)
- Keita Miyake
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Tomonori Kashimoto
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Kaisei Maeda
- Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Ni-Ni-Win
- Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Hiroyuki Kimura
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Japan
| | - Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Japan
| | - Masahiko Ikeuchi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.,Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Japan
| |
Collapse
|
9
|
Bryant DA, Shen G, Turner GM, Soulier N, Laremore TN, Ho MY. Far-red light allophycocyanin subunits play a role in chlorophyll d accumulation in far-red light. PHOTOSYNTHESIS RESEARCH 2020; 143:81-95. [PMID: 31760552 DOI: 10.1007/s11120-019-00689-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Some terrestrial cyanobacteria acclimate to and utilize far-red light (FRL; λ = 700-800 nm) for oxygenic photosynthesis, a process known as far-red light photoacclimation (FaRLiP). A conserved, 20-gene FaRLiP cluster encodes core subunits of Photosystem I (PSI) and Photosystem II (PSII), five phycobiliprotein subunits of FRL-bicylindrical cores, and enzymes for synthesis of chlorophyll (Chl) f and possibly Chl d. Deletion mutants for each of the five apc genes of the FaRLiP cluster were constructed in Synechococcus sp. PCC 7335, and all had similar phenotypes. When the mutants were grown in white (WL) or red (RL) light, the cells closely resembled the wild-type (WT) strain grown under the same conditions. However, the WT and mutant strains were very different when grown under FRL. Mutants grown in FRL were unable to assemble FRL-bicylindrical cores, were essentially devoid of FRL-specific phycobiliproteins, but retained RL-type phycobilisomes and WL-PSII. The transcript levels for genes of the FaRLiP cluster in the mutants were similar to those in WT. Surprisingly, the Chl d contents of the mutant strains were greatly reduced (~ 60-99%) compared to WT and so were the levels of FRL-PSII. We infer that Chl d may be essential for the assembly of FRL-PSII, which does not accumulate to normal levels in the mutants. We further infer that the cysteine-rich subunits of FRL allophycocyanin may either directly participate in the synthesis of Chl d or that FRL bicylindrical cores stabilize FRL-PSII to prevent loss of Chl d.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gavin M Turner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nathan Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tatiana N Laremore
- Proteomics and Mass Spectrometry Core Facility, Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
10
|
Shen G, Canniffe DP, Ho MY, Kurashov V, van der Est A, Golbeck JH, Bryant DA. Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2019; 140:77-92. [PMID: 30607859 DOI: 10.1007/s11120-018-00610-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/17/2018] [Indexed: 05/19/2023]
Abstract
In diverse terrestrial cyanobacteria, Far-Red Light Photoacclimation (FaRLiP) promotes extensive remodeling of the photosynthetic apparatus, including photosystems (PS)I and PSII and the cores of phycobilisomes, and is accompanied by the concomitant biosynthesis of chlorophyll (Chl) d and Chl f. Chl f synthase, encoded by chlF, is a highly divergent paralog of psbA; heterologous expression of chlF from Chlorogloeopsis fritscii PCC 9212 led to the light-dependent production of Chl f in Synechococcus sp. PCC 7002 (Ho et al., Science 353, aaf9178 (2016)). In the studies reported here, expression of the chlF gene from Fischerella thermalis PCC 7521 in the heterologous system led to enhanced synthesis of Chl f. N-terminally [His]10-tagged ChlF7521 was purified and identified by immunoblotting and tryptic-peptide mass fingerprinting. As predicted from its sequence similarity to PsbA, ChlF bound Chl a and pheophytin a at a ratio of ~ 3-4:1, bound β-carotene and zeaxanthin, and was inhibited in vivo by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Cross-linking studies and the absence of copurifying proteins indicated that ChlF forms homodimers. Flash photolysis of ChlF produced a Chl a triplet that decayed with a lifetime (1/e) of ~ 817 µs and that could be attributed to intersystem crossing by EPR spectroscopy at 90 K. When the chlF7521 gene was expressed in a strain in which the psbD1 and psbD2 genes had been deleted, significantly more Chl f was produced, and Chl f levels could be further enhanced by specific growth-light conditions. Chl f synthesized in Synechococcus sp. PCC 7002 was inserted into trimeric PSI complexes.
Collapse
Affiliation(s)
- Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel P Canniffe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Art van der Est
- Department of Chemistry, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
- S-002 Frear Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
11
|
Ho MY, Bryant DA. Global Transcriptional Profiling of the Cyanobacterium Chlorogloeopsis fritschii PCC 9212 in Far-Red Light: Insights Into the Regulation of Chlorophyll d Synthesis. Front Microbiol 2019; 10:465. [PMID: 30918500 PMCID: PMC6424891 DOI: 10.3389/fmicb.2019.00465] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/21/2019] [Indexed: 12/02/2022] Open
Abstract
Some terrestrial cyanobacteria can acclimate to and then utilize far-red light (FRL; λ = 700–800 nm) to perform oxygenic photosynthesis through a process called Far-Red Light Photoacclimation (FaRLiP). During FaRLiP, cells synthesize chlorophylls (Chl) d and Chl f and extensively remodel their photosynthetic apparatus by modifying core subunits of photosystem (PS)I, PSII, and the phycobilisome (PBS). Three regulatory proteins, RfpA, RfpB, and RfpC, are encoded in the FaRLiP gene cluster; they sense FRL and control the synthesis of Chl f and expression of the FaRLiP gene cluster. It was previously uncertain if Chl d synthesis and other physiological and metabolic changes to FRL are regulated by RfpABC. In this study we show that Chl d synthesis is regulated by RfpABC; however, most other transcriptional changes leading to the FRL physiological state are not regulated by RfpABC. Surprisingly, we show that erythromycin induces Chl d synthesis in vivo. Transcriptomic and pigment analyses indicate that thiol compounds and/or cysteine proteases could be involved in Chl d synthesis in FRL. We conclude that the protein(s) responsible for Chl d synthesis is/are probably encoded within the FaRLiP gene cluster. Transcriptional responses to FRL help cells to conserve and produce energy and reducing power to overcome implicit light limitation of photosynthesis during the initial acclimation process to FRL.
Collapse
Affiliation(s)
- Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States.,Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States.,Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, United States.,Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| |
Collapse
|
12
|
Shang C, Wang W, Zhu S, Wang Z, Qin L, Alam MA, Xie J, Yuan Z. The responses of two genes encoding phytoene synthase (Psy) and phytoene desaturase (Pds) to nitrogen limitation and salinity up-shock with special emphasis on carotenogenesis in Dunaliella parva. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Crofts TS, Wang B, Spivak A, Gianoulis TA, Forsberg KJ, Gibson MK, Johnsky LA, Broomall SM, Rosenzweig CN, Skowronski EW, Gibbons HS, Sommer MOA, Dantas G. Shared strategies for β-lactam catabolism in the soil microbiome. Nat Chem Biol 2018; 14:556-564. [PMID: 29713061 PMCID: PMC5964007 DOI: 10.1038/s41589-018-0052-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/08/2018] [Indexed: 11/10/2022]
Abstract
The soil microbiome can produce, resist, or degrade antibiotics and even catabolize them. While resistance genes are widely distributed in the soil, there is a dearth of knowledge concerning antibiotic catabolism. Here we describe a pathway for penicillin catabolism in four isolates. Genomic and transcriptomic sequencing revealed β-lactamase, amidase, and phenylacetic acid catabolon upregulation. Knocking out part of the phenylacetic acid catabolon or an apparent penicillin utilization operon (put) resulted in loss of penicillin catabolism in one isolate. A hydrolase from the put operon was found to degrade in vitro benzylpenicilloic acid, the β-lactamase penicillin product. To test the generality of this strategy, an Escherichia coli strain was engineered to co-express a β-lactamase and a penicillin amidase or the put operon, enabling it to grow using penicillin or benzylpenicilloic acid, respectively. Elucidation of additional pathways may allow bioremediation of antibiotic-contaminated soils and discovery of antibiotic-remodeling enzymes with industrial utility.
Collapse
Affiliation(s)
- Terence S Crofts
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, Saint Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, Saint Louis, MO, USA
| | - Bin Wang
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, Saint Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, Saint Louis, MO, USA
| | - Aaron Spivak
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, Saint Louis, MO, USA
| | - Tara A Gianoulis
- Wyss Institute for Biologically Inspired Engineering, Harvard, Cambridge, MA, USA
| | - Kevin J Forsberg
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, Saint Louis, MO, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Molly K Gibson
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, Saint Louis, MO, USA
| | - Lauren A Johnsky
- US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - Stacey M Broomall
- US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - C Nicole Rosenzweig
- US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - Evan W Skowronski
- US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Aberdeen, MD, USA
- TMG Biosciences, LLC, Austin, TX, USA
| | - Henry S Gibbons
- US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Gautam Dantas
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, Saint Louis, MO, USA.
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, Saint Louis, MO, USA.
- Department of Molecular Microbiology, Washington University in St Louis School of Medicine, Saint Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St Louis, Saint Louis, MO, USA.
| |
Collapse
|
14
|
Behrendt L, Raina JB, Lutz A, Kot W, Albertsen M, Halkjær-Nielsen P, Sørensen SJ, Larkum AW, Kühl M. In situ metabolomic- and transcriptomic-profiling of the host-associated cyanobacteria Prochloron and Acaryochloris marina. THE ISME JOURNAL 2018; 12:556-567. [PMID: 29087375 PMCID: PMC5776471 DOI: 10.1038/ismej.2017.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 01/20/2023]
Abstract
The tropical ascidian Lissoclinum patella hosts two enigmatic cyanobacteria: (1) the photoendosymbiont Prochloron spp., a producer of valuable bioactive compounds and (2) the chlorophyll-d containing Acaryochloris spp., residing in the near-infrared enriched underside of the animal. Despite numerous efforts, Prochloron remains uncultivable, restricting the investigation of its biochemical potential to cultivation-independent techniques. Likewise, in both cyanobacteria, universally important parameters on light-niche adaptation and in situ photosynthetic regulation are unknown. Here we used genome sequencing, transcriptomics and metabolomics to investigate the symbiotic linkage between host and photoendosymbiont and simultaneously probed the transcriptional response of Acaryochloris in situ. During high light, both cyanobacteria downregulate CO2 fixing pathways, likely a result of O2 photorespiration on the functioning of RuBisCO, and employ a variety of stress-quenching mechanisms, even under less stressful far-red light (Acaryochloris). Metabolomics reveals a distinct biochemical modulation between Prochloron and L. patella, including noon/midnight-dependent signatures of amino acids, nitrogenous waste products and primary photosynthates. Surprisingly, Prochloron constitutively expressed genes coding for patellamides, that is, cyclic peptides of great pharmaceutical value, with yet unknown ecological significance. Together these findings shed further light on far-red-driven photosynthesis in natural consortia, the interplay of Prochloron and its ascidian partner in a model chordate photosymbiosis and the uncultivability of Prochloron.
Collapse
Affiliation(s)
- Lars Behrendt
- Department of Civil, Environmental and Geomatic Engineering, Swiss Federal Institute of Technology, Zürich, Switzerland.
- Department of Biology, Marine Biological Section, University of Copenhagen, Helsingør, Denmark.
- Department of Biology, Microbiology Section, University of Copenhagen, Copenhagen, Denmark.
| | - Jean-Baptiste Raina
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney, New South Wales, Australia
| | - Adrian Lutz
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Witold Kot
- Department of Environmental Science-Enviromental Microbiology and Biotechnology, Aarhus University, Roskilde, Denmark
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Per Halkjær-Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Søren J Sørensen
- Department of Biology, Microbiology Section, University of Copenhagen, Copenhagen, Denmark
| | - Anthony Wd Larkum
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney, New South Wales, Australia
| | - Michael Kühl
- Department of Biology, Marine Biological Section, University of Copenhagen, Helsingør, Denmark
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Ho MY, Soulier NT, Canniffe DP, Shen G, Bryant DA. Light regulation of pigment and photosystem biosynthesis in cyanobacteria. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:24-33. [PMID: 28391049 DOI: 10.1016/j.pbi.2017.03.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 05/28/2023]
Abstract
Most cyanobacteria are obligate oxygenic photoautotrophs, and thus their growth and survival is highly dependent on effective utilization of incident light. Cyanobacteria have evolved a diverse set of phytochromes and cyanobacteriochromes (CBCRs) that allow cells to respond to light in the range from ∼300nm to ∼750nm. Together with associated response regulators, these photosensory proteins control many aspects of cyanobacterial physiology and metabolism. These include far-red light photoacclimation (FaRLiP), complementary chromatic acclimation (CCA), low-light photoacclimation (LoLiP), photosystem content and stoichiometry (long-term adaptation), short-term acclimation (state transitions), circadian rhythm, phototaxis, photomorphogenesis/development, and cellular aggregation. This minireview highlights some discoveries concerning phytochromes and CBCRs as well as two acclimation processes that improve light harvesting and energy conversion under specific irradiance conditions: FaRLiP and CCA.
Collapse
Affiliation(s)
- Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathan T Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel P Canniffe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
16
|
The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels. G3-GENES GENOMES GENETICS 2017; 7:517-532. [PMID: 27974439 PMCID: PMC5295598 DOI: 10.1534/g3.116.036855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina, multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA, we detected a similar transcriptional pattern for psbJ and psbU, which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels.
Collapse
|