1
|
Zhao W, Liu J, Li T, Song H, Chen B, Chen B, Li G. Contrasting effects of temperature rise in different seasons on larger and smaller phytoplankton assemblages in a temperate coastal water, Laoshan Bay, northern Yellow Sea, China. MARINE ENVIRONMENTAL RESEARCH 2025; 206:107034. [PMID: 40024172 DOI: 10.1016/j.marenvres.2025.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Anthropogenic influences and climate change are leading to more frequent and intense heatwaves, which are known to affect marine ecosystems. However, the effects of rising temperatures on in-situ phytoplankton size classes have not yet been adequately studied. In this study, two cell-sized phytoplankton assemblages (>20 μm, <20 μm) were cultured at a range of temperatures [i.e., ambient temperature (AT), AT+3 °C, AT+6 °C and AT+9 °C] in Laoshan Bay, Yellow Sea, China, at half-month intervals between June 2022 and July 2023. Total chlorophyll a concentration fluctuated between 0.84 and 7.76 μg L-1 throughout the year, with the highest value presented in winter with the lowest proportion of smaller cells. Photosynthetic efficiency (FV/FM) of larger cells, which varied between 0.15 in winter and 0.52 in summer, was 22% higher than their smaller counterparts, while their growth rate (μ, -0.21 to 0.91 d-1) was 60% higher. The slope derived from the linear fit of FV/FM or μ to temperature, an indicator of temperature sensitivity, was positive in winter but negative in summer, depending mainly on ambient temperature. The μ of larger cells was increased more than that of smaller cells by an increase in temperature in winter, but inhibited more in summer, indicating their greater sensitivity to temperature. Our results also showed that the integrated inhibition of a 1 °C temperature increase over one year is 5.45% and 3.68% on the growth of larger and smaller cells, respectively, suggesting a negative effect of temperature increase on phytoplankton community in Laoshan Bay.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China; Joint Laboratory for Ocean Research and Education of Dalhousie University, Shandong University and Xiamen University, Qingdao, 266237, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China; Joint Laboratory for Ocean Research and Education of Dalhousie University, Shandong University and Xiamen University, Qingdao, 266237, China; Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, 266237, China.
| | - Tingting Li
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Hui Song
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China; Joint Laboratory for Ocean Research and Education of Dalhousie University, Shandong University and Xiamen University, Qingdao, 266237, China
| | - Bokun Chen
- Joint Laboratory for Ocean Research and Education of Dalhousie University, Shandong University and Xiamen University, Qingdao, 266237, China
| | - Bingzhang Chen
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, UK
| | - Gang Li
- Daya Bay Marine Biology Research Station & Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
2
|
Ma X, Qin Z, Johnson KB, Sweat LH, Dai S, Li G, Li C. Transcriptomic responses to shifts in light and nitrogen in two congeneric diatom species. Front Microbiol 2024; 15:1437274. [PMID: 39206371 PMCID: PMC11349689 DOI: 10.3389/fmicb.2024.1437274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Light and nitrogen availability are basic requirements for photosynthesis. Changing in light intensity and nitrogen concentration may require adaptive physiological and life process changes in phytoplankton cells. Our previous study demonstrated that two Thalassiosira species exhibited, respectively, distinctive physiological responses to light and nitrogen stresses. Transcriptomic analyses were employed to investigate the mechanisms behind the different physiological responses observed in two diatom species of the genus Thalassiosira. The results indicate that the congeneric species are different in their cellular responses to the same shifting light and nitrogen conditions. When conditions changed to high light with low nitrate (HLLN), the large-celled T. punctigera was photodamaged. Thus, the photosynthesis pathway and carbon fixation related genes were significantly down-regulated. In contrast, the small-celled T. pseudonana sacrificed cellular processes, especially amino acid metabolisms, to overcome the photodamage. When changing to high light with high nitrate (HLHN) conditions, the additional nitrogen appeared to compensate for the photodamage in the large-celled T. punctigera, with the tricarboxylic acid cycle (TCA cycle) and carbon fixation significantly boosted. Consequently, the growth rate of T. punctigera increased, which suggest that the larger-celled species is adapted for forming post-storm algal blooms. The impact of high light stress on the small-celled T. pseudonana was not mitigated by elevated nitrate levels, and photodamage persisted.
Collapse
Affiliation(s)
- Xiao Ma
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Applied Marine Biology, Guangzhou, China
| | - Zhen Qin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Kevin B. Johnson
- Department of Biological Sciences, College of Science and Mathematics, Tarleton State University, Stephenville, TX, United States
| | - L. Holly Sweat
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Sheng Dai
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Applied Marine Biology, Guangzhou, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Applied Marine Biology, Guangzhou, China
- Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, China
| | - Chaolun Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Applied Marine Biology, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Cai T, Feng Y, Wang Y, Li T, Wang J, Li W, Zhou W. The Differential Responses of Coastal Diatoms to Ocean Acidification and Warming: A Comparison Between Thalassiosira sp. and Nitzschia closterium f.minutissima. Front Microbiol 2022; 13:851149. [PMID: 35801105 PMCID: PMC9253669 DOI: 10.3389/fmicb.2022.851149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/06/2022] [Indexed: 11/20/2022] Open
Abstract
Marine diatoms are one of the marine phytoplankton functional groups, with high species diversity, playing important roles in the marine food web and carbon sequestration. In order to evaluate the species-specific responses of coastal diatoms to the combined effects of future ocean acidification (OA) and warming on the coastal diatoms, we conducted a semi-continuous incubation on the large centric diatom Thalassiosira sp. (~30 μm) and small pennate diatom Nitzschia closterium f.minutissima (~15 μm). A full factorial combination of two temperature levels (15 and 20°C) and pCO2 (400 and 1,000 ppm) was examined. The results suggest that changes in temperature played a more important role in regulating the physiology of Thalassiosira sp. and N. closterium f.minutissima than CO2. For Thalassiosira sp., elevated temperature significantly reduced the cellular particulate organic carbon (POC), particulate organic nitrogen (PON), particulate organic phosphate (POP), biogenic silica (BSi), chlorophyll a (Chl a), and protein contents, and the C:N ratio. CO2 only had significant effects on the growth rate and the protein content. However, for the smaller pennate diatom N. closterium f.minutissima, the growth rate, POC production rate, and the C:P ratio significantly increased with an elevated temperature, whereas the cellular POP and BSi contents significantly decreased. CO2 had significant effects on the POC production rate, cellular BSi, POC, and PON contents, the C:P, Si:C, N:P, and Si:P ratios, and sinking rate. The interaction between OA and warming showed mostly antagonistic effects on the physiology of both species. Overall, by comparison between the two species, CO2 played a more significant role in regulating the growth rate and sinking rate of the large centric diatom Thalassiosira sp., whereas had more significant effects on the elemental compositions of the smaller pennate diatom N. closterium f.minutissima. These results suggest differential sensitivities of different diatom species with different sizes and morphology to the changes in CO2/temperature regimes and their interactions.
Collapse
Affiliation(s)
- Ting Cai
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Hangzhou, China
| | - Yuanyuan Feng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Frontiers Science Center of Polar Science, Shanghai, China
| | - Yanan Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Tongtong Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Jiancai Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Wei Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Weihua Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China
- Sanya National Marine Ecosystem Research Station and Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
4
|
Opposite Growth Responses of Alexandrium minutum and Alexandrium catenella to Photoperiods and Temperatures. PLANTS 2021; 10:plants10061056. [PMID: 34070469 PMCID: PMC8229041 DOI: 10.3390/plants10061056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/01/2022]
Abstract
Shift of phytoplankton niches from low to high latitudes has altered their experienced light exposure durations and temperatures. To explore this interactive effect, the growth, physiology, and cell compositions of smaller Alexandrium minutum and larger A. catenella, globally distributed toxic red tide dinoflagellates, were studied under a matrix of photoperiods (light:dark cycles of 8:16, 16:8, and 24:0) and temperatures (18 °C, 22 °C, 25 °C, and 28 °C). Under continuous growth light condition (L:D 24:0), the growth rate (µ) of small A. minutum increased from low to medium temperature, then decreased to high temperature, while the µ of large A. catenella continuously decreased with increasing temperatures. Shortened photoperiods reduced the µ of A. minutum, but enhanced that of A. catenella. As temperature increased, cellular Chl a content increased in both A. minutum and A. catenella, while the temperature-induced effect on RubisCO content was limited. Shortened photoperiods enhanced the Chl a but reduced RubisCO contents across temperatures. Moreover, shortened photoperiods enhanced photosynthetic capacities of both A. minutum and A. catenella, i.e., promoting the PSII photochemical quantum yield (FV/FM, ΦPSII), saturation irradiance (EK), and maximum relative electron transfer rate (rETRmax). Shortened photoperiods also enhanced dark respiration of A. minutum across temperatures, but reduced that of A. catenella, as well as the antioxidant activities of both species. Overall, A. minutum and A. catenella showed differential growth responses to photoperiods across temperatures, probably with cell size.
Collapse
|
5
|
Penta WB, Fox J, Halsey KH. Rapid photoacclimation during episodic deep mixing augments the biological carbon pump. LIMNOLOGY AND OCEANOGRAPHY 2021; 66:1850-1866. [PMID: 34248203 PMCID: PMC8252461 DOI: 10.1002/lno.11728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/25/2020] [Accepted: 01/18/2021] [Indexed: 05/25/2023]
Abstract
Episodic deep mixing events are one component of the biological carbon pump that physically transports organic carbon into the mesopelagic. Episodic deep mixing also disrupts summertime thermal stratification thereby changing the light field and nutrient concentrations available for phytoplankton growth. Phytoplankton survival and growth below the mixed layer following restratification depends on how rapidly cells can employ a variety of photoacclimation processes in response to the environmental changes. To compare the relative timescales of summertime episodic deep mixing events with the timescales of phytoplankton photoacclimation processes, we first analyzed autonomous float data to survey the frequency and magnitude of deep mixing events in the western North Atlantic Ocean. Next, we simulated a sustained deep mixing event in the laboratory and measured rates of acclimation processes ranging from light harvesting to growth in a model diatom and green alga. In both algae increases in chlorophyll (Chl) were coupled to growth, but growth of the green alga lagged the diatom by about a day. In float profiles, significant increases in Chl and phytoplankton carbon (C phyto) were detected below the mixed layer following episodic deep mixing events. These events pose a previously unrecognized source of new production below the mixed layer that can significantly boost the amount of carbon available for export to the deep ocean.
Collapse
Affiliation(s)
- W Bryce Penta
- Department of Microbiology Oregon State University Corvallis Oregon USA
| | - James Fox
- Department of Microbiology Oregon State University Corvallis Oregon USA
| | - Kimberly H Halsey
- Department of Microbiology Oregon State University Corvallis Oregon USA
| |
Collapse
|
6
|
Qiao H, Zang S, Yan F, Xu Z, Wang L, Wu H. Physiological responses of the diatoms Thalassiosira weissflogii and Thalassiosira pseudonana to nitrogen starvation and high light. MARINE ENVIRONMENTAL RESEARCH 2021; 166:105276. [PMID: 33578138 DOI: 10.1016/j.marenvres.2021.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
As oceans warm, the depth of the upper mixed layer is predicted to decrease, resulting in insufficient nutrient supply and higher solar radiation for phytoplankton. In order to understand the photophysiological responses of the key eukaryotic phytoplankton diatoms to high light and nutrient limitation, we grew two diatoms, Thalassiosira weissflogii and Thalassiosira pseudonana under N starvation conditions and exposed them to high visible light. It showed that the large-sized diatom T. weissflogii can maintain photosynthetic activity for a longer period of time under nitrogen starvation as compared with the small-sized diatom T. pseudonana. The electron transfer reaction was inhibited in both diatoms and the fast closing of reaction centers promoted the development of QB non-reducing PSII centers, thus facilitated the rapid induction of NPQ, however, the induction of NPQ depended on the degree of N starvation. N starvation exacerbated the photoinhibition caused by high light. The smaller-sized T. pseudonana had a higher σi value and was more sensitive to high-light, but its PSII repair rate was also higher. In contrast, T. weissflogii was more tolerant to high light with a lower σi value, but the tolerance was severely reduced under N-starvation. This study provides helpful insight into how climate change variables impact diatom's photosynthetic physiology.
Collapse
Affiliation(s)
- Hongjin Qiao
- School of Life Science, Ludong University, Yantai, 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University,Yantai, 264025, China
| | - Shasha Zang
- School of Life Science, Ludong University, Yantai, 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University,Yantai, 264025, China
| | - Fang Yan
- School of Life Science, Ludong University, Yantai, 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University,Yantai, 264025, China
| | - Zhiguang Xu
- School of Life Science, Ludong University, Yantai, 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University,Yantai, 264025, China
| | - Lei Wang
- School of Life Science, Ludong University, Yantai, 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University,Yantai, 264025, China
| | - Hongyan Wu
- School of Life Science, Ludong University, Yantai, 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University,Yantai, 264025, China.
| |
Collapse
|
7
|
Li Z, Li W, Zhang Y, Hu Y, Sheward R, Irwin AJ, Finkel ZV. Dynamic Photophysiological Stress Response of a Model Diatom to Ten Environmental Stresses. JOURNAL OF PHYCOLOGY 2021; 57:484-495. [PMID: 32945529 DOI: 10.1111/jpy.13072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Stressful environmental conditions can induce many different acclimation mechanisms in marine phytoplankton, resulting in a range of changes in their photophysiology. Here we characterize the common photophysiological stress response of the model diatom Thalassiosira pseudonana to ten environmental stressors and identify diagnostic responses to particular stressors. We quantify the magnitude and temporal trajectory of physiological parameters including the functional absorption cross-section of PSII (σPSII ), quantum efficiency of PSII, non-photochemical quenching (NPQ), cell volume, Chl a, and carotenoid (Car) content in response to nutrient starvation (nitrogen (N), phosphorus (P), silicon (Si), and iron (Fe)), changes in temperature, irradiance, pH, and reactive oxygen species (ROS) over 5 time points (0, 2, 6, 24, 72 h). We find changes in conditions: temperature, irradiance, and ROS, often result in the most rapid changes in photophysiological parameters (<2 h), and in some cases are followed by recovery. In contrast, nutrient starvation (N, P, Si, Fe) often has slower (6-72 h) but ultimately larger magnitude effects on many photophysiological parameters. Diagnostic changes include large increases in cell volume under Si-starvation, very large increases in NPQ under P-starvation, and large decreases in the σPSII under high light. The ultimate goal of this analysis is to facilitate and enhance the interpretation of fluorescence data and our understanding of phytoplankton photophysiology from laboratory and field studies.
Collapse
Affiliation(s)
- Zhengke Li
- Department of Oceanography, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Wei Li
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China
| | - Yong Zhang
- College of Environmental Science and Engineering, Fujian Normal University, Fujian, 350007, China
| | - Yingyu Hu
- Department of Oceanography, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Rosie Sheward
- Institute of Geosciences, Goethe-University Frankfurt, Frankfurt am Main, 60438, Germany
| | - Andrew J Irwin
- Department of Mathematics & Statistics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
8
|
Li Z, Lan T, Zhang J, Gao K, Beardall J, Wu Y. Nitrogen Limitation Decreases the Repair Capacity and Enhances Photoinhibition of Photosystem II in a Diatom. Photochem Photobiol 2021; 97:745-752. [PMID: 33496343 DOI: 10.1111/php.13386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/30/2023]
Abstract
Macronutrient limitation and increased solar exposure coincide with ocean warming-enhanced stratification, with consequences for phytoplankton within the upper mixing layer. In this study, we grew a diatom, Thalassiosira punctigera, under nitrogen-limited and replete conditions for more than 14 generations and investigated both the biochemical composition of treated cells and their photochemical responses to high light and UV exposure. The photosynthetic pigment and the particulate organic nitrogen (PON) content significantly decreased in the low nitrate grown cells, with drastic decline of the absorption of UV absorbing compounds. Under an acute exposure to high light or UV radiation, we observed a significant decline in the photochemical yield along with an increase of nonphotosynthetic quenching (NPQ), with the former lowered and the latter raised in the low-nitrogen grown cells. The results reveal a decreased repair rate and enhanced photoinhibition of the diatom under nitrogen limitation when exposed to increased levels of light and UV radiation, suggesting a higher vulnerability of the diatom phytoplankton under influences of oceanic global change.
Collapse
Affiliation(s)
- Zhenzhen Li
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China.,The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ting Lan
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Jiaojiao Zhang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Yaping Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
9
|
Fernández-González C, Pérez-Lorenzo M, Pratt N, Moore CM, Bibby TS, Marañón E. Effects of Temperature and Nutrient Supply on Resource Allocation, Photosynthetic Strategy, and Metabolic Rates of Synechococcus sp. JOURNAL OF PHYCOLOGY 2020; 56:818-829. [PMID: 32130730 DOI: 10.1111/jpy.12983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Temperature and nutrient supply are key factors that control phytoplankton ecophysiology, but their role is commonly investigated in isolation. Their combined effect on resource allocation, photosynthetic strategy, and metabolism remains poorly understood. To characterize the photosynthetic strategy and resource allocation under different conditions, we analyzed the responses of a marine cyanobacterium (Synechococcus PCC 7002) to multiple combinations of temperature and nutrient supply. We measured the abundance of proteins involved in the dark (RuBisCO, rbcL) and light (Photosystem II, psbA) photosynthetic reactions, the content of chlorophyll a, carbon and nitrogen, and the rates of photosynthesis, respiration, and growth. We found that rbcL and psbA abundance increased with nutrient supply, whereas a temperature-induced increase in psbA occurred only in nutrient-replete treatments. Low temperature and abundant nutrients caused increased RuBisCO abundance, a pattern we observed also in natural phytoplankton assemblages across a wide latitudinal range. Photosynthesis and respiration increased with temperature only under nutrient-sufficient conditions. These results suggest that nutrient supply exerts a stronger effect than temperature upon both photosynthetic protein abundance and metabolic rates in Synechococcus sp. and that the temperature effect on photosynthetic physiology and metabolism is nutrient dependent. The preferential resource allocation into the light instead of the dark reactions of photosynthesis as temperature rises is likely related to the different temperature dependence of dark-reaction enzymatic rates versus photochemistry. These findings contribute to our understanding of the strategies for photosynthetic energy allocation in phytoplankton inhabiting contrasting environments.
Collapse
Affiliation(s)
| | - María Pérez-Lorenzo
- Department of Ecology and Animal Biology, Universidade de Vigo, 36310, Vigo, Spain
| | - Nicola Pratt
- Ocean and Earth Science, University of Southampton, SO14 3ZH, Southampton, UK
| | - C Mark Moore
- Ocean and Earth Science, University of Southampton, SO14 3ZH, Southampton, UK
| | - Thomas S Bibby
- Ocean and Earth Science, University of Southampton, SO14 3ZH, Southampton, UK
| | - Emilio Marañón
- Department of Ecology and Animal Biology, Universidade de Vigo, 36310, Vigo, Spain
| |
Collapse
|
10
|
Song X, Tan M, Xu G, Su X, Liu J, Ni G, Li Y, Tan Y, Huang L, Shen P, Li G. Is phosphorus a limiting factor to regulate the growth of phytoplankton in Daya Bay, northern South China Sea: a mesocosm experiment. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:559-568. [PMID: 31123966 DOI: 10.1007/s10646-019-02049-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Previous field investigations implied a potential phosphorus (P)-limitation on the growth of phytoplankton in Daya Bay, a mesotrophic bay in the northern South China Sea. Using a total of 15 mesocosms (3 × 3 × 1.5 m, with ~10.8 m3 natural seawater containing phytoplankton assemblages for each), we found P-enrichment caused no obvious effect on phytoplankton (Chl a) growth across 8-day's cultivation in neither winter nor summer, while nitrogen (N)-enrichment greatly increased Chl a in both seasons. N plus P-enrichment further increased Chl a content. The N- or N plus P-enrichments increased the allocation of nano-Chl a but decreased micro-Chl a in most cases, with no obvious effect by P-alone. Coincided with nutrients effect on Chl a content, N- or N plus P-enrichments significantly enhanced the maximum photochemical quantum yield of Photosystem II (FV/FM) and maximum relative electron transport rate (rETRmax), but declined the non-photochemical quenching (NPQ), as well as the threshold for light saturation of electron transport (EK); again, P-enrichment had no significant effect. Moreover, the absorption cross section for PSII photochemistry (σPSII) and electron transport efficiency (α) increased due to N- or N plus P-enrichments, indicating the increased nutrients enhance the light utilization efficiency through promoting PSII light harvesting ability, and thus to enhance phytoplankton growth. Our findings indicate that N- or N plus P-enrichments rigorously fuel phytoplankton blooms regardless of N:P ratios, making a note of caution on the expected P-deficiency or P-limitation on the basis of Redfield N:P ratios in Daya Bay.
Collapse
Affiliation(s)
- Xingyu Song
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China
| | - Meiting Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ge Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Xinying Su
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Gaungyan Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 510160, Guangzhou, China
| | - Yao Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yehui Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Liangmin Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Pingping Shen
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China.
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China.
| |
Collapse
|
11
|
Wang H, Zhang B, Song X, Jian X, Tang C, Campbell DA, Lin Q, Li G. High antioxidant capability interacts with respiration to mediate two Alexandrium species growth exploitation of photoperiods and light intensities. HARMFUL ALGAE 2019; 82:26-34. [PMID: 30928008 DOI: 10.1016/j.hal.2018.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Light drives phytoplankton photosynthesis, so phytoplankton in their living habitats must exploit variable light levels and exposure durations, depending upon seasons, latitudes, depths and mixing events. Comparative growth, physiology and biochemical compositions were explored for the small Alexnadrium minutum (˜40 μm3 biovolume) and large Alexandrium catenella (˜9300 μm3 biovolume), globally wide spread coastal toxic red tide dinoflagellates, responding to a matrix of photoperiods (Light:Dark, 8:16, 16:8 and 24:0) and growth light irradiances. Smaller A. minutum grew faster under shorter photoperiods across growth light levels, while larger A. catenella grew fastest under longer photoperiods at the lowest applied light level. Photosystem II function responded largely to the instantaneous growth light level across photoperiod lengths, while the cell biovolume-based respiration, antioxidant capacity as well as cell composition responded more to photoperiod duration than to light level. These complex photophysiological responses resolved into linear correlations between growth rate versus cellular antioxidant activity and versus dark respiration, indicating that respiration energizes cellular antioxidant systems to benefit the growth of the cells. These results show the growth responses of Alexandrium species to light levels across photoperiods vary with species, and possibly with cell size. Together with previous results this puts a note of caution on meta-analytical extrapolations of physiological responses to light intensity derived from studies applying different photoperiods to different taxa, because different taxa show differential, even opposite growth responses to photoperiods and light intensities.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biology, College of Sciences, Shantou University, Shantou 515063, Guangdong, China; STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Bowen Zhang
- Department of Biology, College of Sciences, Shantou University, Shantou 515063, Guangdong, China; STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Xingyu Song
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaohui Jian
- Department of Biology, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Chengxi Tang
- Department of Biology, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville NB, E4L 1G7, Canada
| | - Qiang Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|