1
|
Abrha GT, Makaranga A, Jutur PP. Enhanced lipid accumulation in microalgae Scenedesmus sp. under nitrogen limitation. Enzyme Microb Technol 2024; 182:110546. [PMID: 39531895 DOI: 10.1016/j.enzmictec.2024.110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Microalgae-based biofuel production is cost-effective only in a biorefinery, where valuable co-products offset high costs. Fatty acids produced by photosynthetic microalgae can serve as raw materials for bioenergy and pharmaceuticals. This study aims to understand the metabolic imprints of Scenedesmus sp. CABeR52, to decipher the physiological mechanisms behind lipid accumulation under nitrogen deprivation. Metabolomics profiles were generated using gas chromatography-mass spectrometry (GC-MS) of Scenedesmus sp. CABeR52 subjected to nutrient deprivation. Our initial data sets indicate that deprived cells have an increased accumulation of lipids (278.31 mg.g-1 dcw), 2.0 times higher than the control. The metabolomic profiling unveils a metabolic reprogramming, highlighting the upregulation of key metabolites involved in fatty acid biosynthesis, such as citric acid, succinic acid, and 2-ketoglutaric acid. The accumulation of trehalose, a stress-responsive metabolite, further underscores the microalga's adaptability. Interestingly, we found that a new fatty acid, nervonic acid, was identified in the complex, which has a significant role in brain development. These findings provide valuable insights into the metabolic pathways governing lipid accumulation in Scenedesmus sp., paving the way for its exploitation as a sustainable biofuel feedstock.
Collapse
Affiliation(s)
- Getachew Tafere Abrha
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA; Department of Biotechnology, CoDANR, Mekelle University, Mekelle, Ethiopia
| | - Abdalah Makaranga
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA.
| |
Collapse
|
2
|
Du J, Izquierdo D, Xu HF, Beisner B, Lavaud J, Ohlund L, Sleno L, Juneau P. Responses to herbicides of Arctic and temperate microalgae grown under different light intensities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121985. [PMID: 37301455 DOI: 10.1016/j.envpol.2023.121985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
In aquatic ecosystems, microalgae are exposed to light fluctuations at different frequencies due to daily and seasonal changes. Although concentrations of herbicides are lower in Arctic than in temperate regions, atrazine and simazine, are increasingly found in northern aquatic systems because of long-distance aerial dispersal of widespread applications in the south and antifouling biocides used on ships. The toxic effects of atrazine on temperate microalgae are well documented, but very little is known about their effects on Arctic marine microalgae in relation to their temperate counterparts after light adaptation to variable light intensities. We therefore investigated the impacts of atrazine and simazine on photosynthetic activity, PSII energy fluxes, pigment content, photoprotective ability (NPQ), and reactive oxygen species (ROS) content under three light intensities. The goal was to better understand differences in physiological responses to light fluctuations between Arctic and temperate microalgae and to determine how these different characteristics affect their responses to herbicides. The Arctic diatom Chaetoceros showed stronger light adaptation capacity than the Arctic green algae Micromonas. Atrazine and simazine inhibited the growth and photosynthetic electron transport, affected the pigment content, and disturbed the energy balance between light absorption and utilization. As a result, during high light adaptation and in the presence of herbicides, photoprotective pigments were synthesized and NPQ was highly activated. Nevertheless, these protective responses were insufficient to prevent oxidative damage caused by herbicides in both species from both regions, but at different extent depending on the species. Our study demonstrates that light is important in regulating herbicide toxicity in both Arctic and temperate microalgal strains. Moreover, eco-physiological differences in light responses are likely to support changes in the algal community, especially as the Arctic ocean becomes more polluted and bright with continued human impacts.
Collapse
Affiliation(s)
- Juan Du
- Department of Biological Sciences, Université du Québec à Montréal-GRIL-TOXEN, Succ Centre-Ville, Montréal, Canada
| | - Disney Izquierdo
- Department of Biological Sciences, Université du Québec à Montréal-GRIL-EcotoQ-TOXEN, Succ Centre-Ville, Montréal, Canada
| | - Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Beatrix Beisner
- Department of Biological Sciences, Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Université du Québec à Montréal, Canada
| | - Johann Lavaud
- TAKUVIK International Research Laboratory IRL3376, Université Laval (Canada) - CNRS (France), Pavillon Alexandre-Vachon, 1045 Av. de la Médecine, Local 2064, G1V 0A6, Québec, Canada; LEMAR-Laboratory of Environmental Marine Sciences, UMR6539, CNRS/Univ Brest/Ifremer/IRD, Institut Universitaire Européen de La Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Leanne Ohlund
- Chemistry Department, Université du Québec à Montréal-EcotoQ-TOXEN, Succ Centre-Ville, Montreal, Quebec, H3C 3P8, Canada
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal-EcotoQ-TOXEN, Succ Centre-Ville, Montreal, Quebec, H3C 3P8, Canada
| | - Philippe Juneau
- Department of Biological Sciences, Université du Québec à Montréal-GRIL-EcotoQ-TOXEN, Succ Centre-Ville, Montréal, Canada.
| |
Collapse
|
3
|
Kumari S, Lali AM, Prakash G. Development of chloroplast engineering tools for Asterarcys sp.: A resilient scenedesmaceae microalga. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
4
|
Wang Y, Jiang Z, Lai Z, Yuan H, Zhang X, Jia Y, Zhang X. The self-adaption capability of microalgal biofilm under different light intensities: Photosynthetic parameters and biofilm microstructures. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Strategies for enhancing terpenoids accumulation in microalgae. Appl Microbiol Biotechnol 2021; 105:4919-4930. [PMID: 34125275 DOI: 10.1007/s00253-021-11368-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Terpenoids represent one of the largest class of chemicals in nature, which play important roles in food and pharmaceutical fields due to diverse biological and pharmacological activities. Microorganisms are recognized as a promising source of terpenoids due to its short growth cycle and sustainability. Importantly, microalgae can fix inorganic carbon through photosynthesis for the growth of themselves and the biosynthesis of various terpenoids. Moreover, microalgae possess effective biosynthesis pathways of terpenoids, both the eukaryotic mevalonic acid (MVA) pathway and the prokaryotic methyl-D-erythritol 4-phosphate (MEP) pathway. In recent years, various genetic engineering strategies have been applied to increase target terpenoid yields, including overexpression of the rate-limited enzymes and inhibition of the competing pathways. However, since gene-editing tools are only built in some model microalgae, fermentation strategies that are easier to be operated have been widely successful in promoting the production of terpenoids, such as changing culture conditions and addition of chemical additives. In addition, an economical and effective downstream process is also an important consideration for the industrial production of terpenoids, and the solvent extraction and the supercritical fluid extraction method are the most commonly used strategies, especially in the industrial production of β-carotene and astaxanthin from microalgae. In this review, recent advancements and novel strategies used for terpenoid production are concluded and discussed, and new insights to move the field forward are proposed. KEY POINTS: • The MEP pathway is more stoichiometrically efficient than the MVA pathway. • Advanced genetic engineering and fermentation strategies can increase terpene yield. • SFE has a higher recovery of carotenoids than solvent extraction.
Collapse
|
6
|
Kumari S, Nesamma AA, Lali AM, Jutur PP, Prakash G. The chloroplast genome of a resilient chlorophycean microalga Asterarcys sp. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Kareya MS, Mariam I, Shaikh KM, Nesamma AA, Jutur PP. Photosynthetic Carbon Partitioning and Metabolic Regulation in Response to Very-Low and High CO 2 in Microchloropsis gaditana NIES 2587. FRONTIERS IN PLANT SCIENCE 2020; 11:981. [PMID: 32719702 PMCID: PMC7348049 DOI: 10.3389/fpls.2020.00981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/16/2020] [Indexed: 05/06/2023]
Abstract
Photosynthetic organisms fix inorganic carbon through carbon capture machinery (CCM) that regulates the assimilation and accumulation of carbon around ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, few constraints that govern the central carbon metabolism are regulated by the carbon capture and partitioning machinery. In order to divert the cellular metabolism toward lipids and/or biorenewables it is important to investigate and understand the molecular mechanisms of the CO2-driven carbon partitioning. In this context, strategies for enhancement of CO2 fixation which will increase the overall biomass and lipid yields, can provide clues on understanding the carbon assimilation pathway, and may lead to new targets for genetic engineering in microalgae. In the present study, we have focused on the physiological and metabolomic response occurring within marine oleaginous microalgae Microchloropsis gaditana NIES 2587, under the influence of very-low CO2 (VLC; 300 ppm, or 0.03%) and high CO2 (HC; 30,000 ppm, or 3% v/v). Our results demonstrate that HC supplementation in M. gaditana channelizes the carbon flux toward the production of long chain polyunsaturated fatty acids (LC-PUFAs) and also increases the overall biomass productivities (up to 2.0 fold). Also, the qualitative metabolomics has identified nearly 31 essential metabolites, among which there is a significant fold change observed in accumulation of sugars and alcohols such as galactose and phytol in VLC as compared to HC. In conclusion, our focus is to understand the entire carbon partitioning and metabolic regulation within these photosynthetic cell factories, which will be further evaluated through multiomics approach for enhanced productivities of biomass, biofuels, and bioproducts (B3).
Collapse
Affiliation(s)
| | | | | | | | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
8
|
Behl K, SeshaCharan P, Joshi M, Sharma M, Mathur A, Kareya MS, Jutur PP, Bhatnagar A, Nigam S. Multifaceted applications of isolated microalgae Chlamydomonas sp. TRC-1 in wastewater remediation, lipid production and bioelectricity generation. BIORESOURCE TECHNOLOGY 2020; 304:122993. [PMID: 32078900 DOI: 10.1016/j.biortech.2020.122993] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Green microalga, Chlamydomonas sp. TRC-1 (C. TRC-1), isolated from the outlet of effluent treatment plant of textile dyeing mill, was investigated for its competence towards bioremediation. Algal biomass obtained after remediation (ABAR) was implied for bioelectricity and biofuel production. C. TRC-1 could completely decolorize the effluent in 7 days. Significant reduction in pollution-indicating parameters was observed. Chronoamperometric studies were carried out using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). Maximum current density, power and power density of 3.6 A m-2, 4.13 × 10-4 W and 1.83 W m-2, respectively were generated in ABAR. EIS studies showed a decrease in resistance of ABAR, supporting better electron transfer as compared to algal biomass before remediation (ABBR). Its candidature for biofuel production was assessed by estimating the total lipid content. Results revealed enhancement in lipid content from 46.85% (ABBR) to 79.1% (ABAR). Current study advocates versatile potential of isolated C. TRC-1 for bioremediation of wastewater, bioelectricity production and biofuel generation.
Collapse
Affiliation(s)
- Kannikka Behl
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | | | - Monika Joshi
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | - Mahima Sharma
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | - Ashish Mathur
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | - Mukul Suresh Kareya
- Omics of Algae Group, Integrative Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Integrative Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, FI-70211, Kuopio, Finland
| | - Subhasha Nigam
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India.
| |
Collapse
|
9
|
Agarwal A, Mhatre A, Pandit R, Lali AM. Synergistic biorefinery of Scenedesmus obliquus and Ulva lactuca in poultry manure towards sustainable bioproduct generation. BIORESOURCE TECHNOLOGY 2020; 297:122462. [PMID: 31791920 DOI: 10.1016/j.biortech.2019.122462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Exploiting solar energy for growing algal biomass in waters enriched with farm manures is a holistic method of waste management. The proposed cultivation strategy termed SAR'CENA ('Synergistic Algal Refinery for Circular Economy using Nutrient Analogues), involves integrated cultivation of microalga, Scenedesmus obliquus and marine macroalga, Ulva lactuca in litter to harness biorefinery products. From various litters tested, poultry litter manure (PLM) was most amenable for growth. The microalga yielded 410 ± 6.2 g·DW· m-2· d-1 of biomass with total nitrogen (TN) concentration of 70 mg·L-1 in the media, while the macroalgae yielded 334 ± 9.9 g DW m-2 d-1 of biomass with TN concentration of 17.5 mg·L-1. The nutrient uptake efficiency was observed to be >60% with uncompromised biomass composition. Thus, SAR'CENA is projected as an ideal farming solution incorporating efficient waste management and feedstock generation thereby establishing a circular economy towards clean energy.
Collapse
Affiliation(s)
- Akanksha Agarwal
- DBT-ICT-Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai 400019, India
| | - Akanksha Mhatre
- DBT-ICT-Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai 400019, India
| | - Reena Pandit
- DBT-ICT-Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai 400019, India.
| | - Arvind M Lali
- DBT-ICT-Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai 400019, India; Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
10
|
Agarwal A, Shaikh KM, Gharat K, Jutur PP, Pandit RA, Lali AM. Investigating the modulation of metabolites under high light in mixotrophic alga Asteracys sp. using a metabolomic approach. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Mhatre A, Patil S, Agarwal A, Pandit R, Lali AM. Influence of nitrogen source on photochemistry and antenna size of the photosystems in marine green macroalgae, Ulva lactuca. PHOTOSYNTHESIS RESEARCH 2019; 139:539-551. [PMID: 29987549 DOI: 10.1007/s11120-018-0554-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Ulva lactuca is regarded as a prospective energy crop for biorefinery owing to its affluent biochemical composition and high growth rate. In fast-growing macroalgae, biomass development strictly depends on external nitrogen pools. Additionally, nitrogen uptake rates and photosynthetic pigment content vary with type of nitrogen source and light conditions. However, the combined influence of nitrogen source and light intensity on photosynthesis is not widely studied. In present study, pale green phenotype of U. lactuca was obtained under high light (HL) condition when inorganic nitrogen (nitrate) in the media was substituted with organic nitrogen (urea). Further, pale green phenotype survived the saturating light intensities in contrast to the normal pigmented control which bleached in HL. Detailed analysis of biochemical composition and photosynthesis was performed to understand functional antenna size and photoprotection in pale green phenotype. Under HL, urea-grown cultures exhibited increased growth rate, carbohydrate and lipid content while substantial reduction in protein, chlorophyll content and PSII antenna size was observed. Further, in vivo slow and polyphasic chlorophyll a (Chl a) fluorescence studies revealed reduction in excitation pressure on PSII along with low non-photochemical quenching thus, transmitting most of the absorbed energy into photochemistry. The results obtained could be correlated to previous report on cultivation of U. lactuca through saturating summer intensities (1000 µmole photons m-2 s-1) in urea based: poultry litter extract (PLE). Having proved critical role of urea in conforming photoprotection, the application PLE was authenticated for futuristic, sustainable and year-round biomass cultivation.
Collapse
Affiliation(s)
- Akanksha Mhatre
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Smita Patil
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Akanksha Agarwal
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Reena Pandit
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Arvind M Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| |
Collapse
|