1
|
Saito K, Kosugi M, Qiu L, Minagawa J, Ishikita H. Identification and design principles of far-red-absorbing chlorophyll in the light-harvesting complex. J Biol Chem 2025:108518. [PMID: 40254256 DOI: 10.1016/j.jbc.2025.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
Photosystem II (PSII) from Prasiola crispa employs a unique ring-shape undecameric light-harvesting complex (Pc-frLHC) in addition to the commonly observed minor monomeric and major trimeric LHCIIs. Each monomer of Pc-frLHC contains four transmembrane helices. In contrast to the typical three-helix LHCIIs that constitute for the peripheral light-harvesting antennas for PSII, Pc-frLHC carries chlorophylls capable of far-red absorption. Combining spectroscopic analyses with a quantum mechanical/molecular mechanical approach, we identified the far-red absorbing chlorophyll(s) in Pc-frLHC, as well as its counterpart in another Trebouxiophyceae alga Coccomyxa sp. Obi (Co-frLHC). Spectroscopic analysis reveals that both complexes exhibit far-red-shifted absorption of chlorophylls at ∼710 nm. In the Pc-frLHC structure, the Chla 603-609 dimer exhibits the strongest excitonic coupling among all apparent chlorophyll dimers. This dimer also exhibits the largest excitation-induced permanent dipole moment along the axis connecting the two chlorophylls, reflecting the most pronounced charge-transfer character. Furthermore, Chla 609 forms the second strongest excitonically coupled dimer with Chla 708, further extending the absorption into the far-red region. The conserved spatial arrangement and orientation of the chlorophyll trimer in Co-frLHC suggest that the Chla 603-609-708 trimer, located in the same frLHC monomer unit, which is predominantly characterized by the Chla 603-609 dimer, provides the structural basis for the far-red absorption in frLHCs.
Collapse
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8654, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8904, Tokyo, Japan.
| | - Makiko Kosugi
- Division of Environmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Aichi, Japan
| | - Linhao Qiu
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8654, Tokyo, Japan
| | - Jun Minagawa
- Division of Environmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Aichi, Japan; Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Aichi, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8654, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8904, Tokyo, Japan.
| |
Collapse
|
2
|
Arzac MI, Miranda-Apodaca J, de Los Ríos A, Castanyer-Mallol F, García-Plazaola JI, Fernández-Marín B. The outstanding capacity of Prasiola antarctica to thrive in contrasting harsh environments relies on the constitutive protection of thylakoids and on morphological plasticity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:65-83. [PMID: 38608130 DOI: 10.1111/tpj.16742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
The determination of physiological tolerance ranges of photosynthetic species and of the biochemical mechanisms underneath are fundamental to identify target processes and metabolites that will inspire enhanced plant management and production for the future. In this context, the terrestrial green algae within the genus Prasiola represent ideal models due to their success in harsh environments (polar tundras) and their extraordinary ecological plasticity. Here we focus on the outstanding Prasiola antarctica and compare two natural populations living in very contrasting microenvironments in Antarctica: the dry sandy substrate of a beach and the rocky bed of an ephemeral freshwater stream. Specifically, we assessed their photosynthetic performance at different temperatures, reporting for the first time gnsd values in algae and changes in thylakoid metabolites in response to extreme desiccation. Stream population showed lower α-tocopherol content and thicker cell walls and thus, lower gnsd and photosynthesis. Both populations had high temperatures for optimal photosynthesis (around +20°C) and strong constitutive tolerance to freezing and desiccation. This tolerance seems to be related to the high constitutive levels of xanthophylls and of the cylindrical lipids di- and tri-galactosyldiacylglycerol in thylakoids, very likely related to the effective protection and stability of membranes. Overall, P. antarctica shows a complex battery of constitutive and plastic protective mechanisms that enable it to thrive under harsh conditions and to acclimate to very contrasting microenvironments, respectively. Some of these anatomical and biochemical adaptations may partially limit photosynthesis, but this has a great potential to rise in a context of increasing temperature.
Collapse
Affiliation(s)
- Miren I Arzac
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Jon Miranda-Apodaca
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Asunción de Los Ríos
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Serrano 115 dpdo, 28006, Madrid, Spain
| | - Francesc Castanyer-Mallol
- Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears (UIB), INAGEA, Balearic Islands, Palma, Spain
| | - José I García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Canary Islands, 38200, La Laguna, Spain
| |
Collapse
|
3
|
Yin H, Perera-Castro AV, Randall KL, Turnbull JD, Waterman MJ, Dunn J, Robinson SA. Basking in the sun: how mosses photosynthesise and survive in Antarctica. PHOTOSYNTHESIS RESEARCH 2023; 158:151-169. [PMID: 37515652 PMCID: PMC10684656 DOI: 10.1007/s11120-023-01040-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
The Antarctic environment is extremely cold, windy and dry. Ozone depletion has resulted in increasing ultraviolet-B radiation, and increasing greenhouse gases and decreasing stratospheric ozone have altered Antarctica's climate. How do mosses thrive photosynthetically in this harsh environment? Antarctic mosses take advantage of microclimates where the combination of protection from wind, sufficient melt water, nutrients from seabirds and optimal sunlight provides both photosynthetic energy and sufficient warmth for efficient metabolism. The amount of sunlight presents a challenge: more light creates warmer canopies which are optimal for photosynthetic enzymes but can contain excess light energy that could damage the photochemical apparatus. Antarctic mosses thus exhibit strong photoprotective potential in the form of xanthophyll cycle pigments. Conversion to zeaxanthin is high when conditions are most extreme, especially when water content is low. Antarctic mosses also produce UV screening compounds which are maintained in cell walls in some species and appear to protect from DNA damage under elevated UV-B radiation. These plants thus survive in one of the harshest places on Earth by taking advantage of the best real estate to optimise their metabolism. But survival is precarious and it remains to be seen if these strategies will still work as the Antarctic climate changes.
Collapse
Affiliation(s)
- Hao Yin
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | - Krystal L Randall
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Johanna D Turnbull
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Melinda J Waterman
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jodie Dunn
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
4
|
Morales-Sánchez JÁ, Mark K, Talts E, Rasulov B, Niinemets Ü. Improved monitoring of cryptogam gas-exchange and volatile emissions during desiccation-rehydration cycles with a within-chamber hydration method. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111745. [PMID: 37244500 DOI: 10.1016/j.plantsci.2023.111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/10/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Desiccation-rehydration studies in cryptogams constitute an important tool to understand the relation of key physiological traits with species stress tolerance and environmental adaptability. Real-time monitoring of responses has been limited by the design of commercial or custom measuring cuvettes and difficulties in experimental manipulation. We developed a within-chamber rehydration method that allows to rewater the samples rapidly, without the need to open the chamber and take out the sample for manual rehydration by the investigator. Data is collected in real-time and simultaneously with an infrared gas-analyzer (LICOR-7000), a chlorophyll fluorometer (Maxi Imaging-PAM) and a proton transfer reaction time-of-flight mass-spectrometer (PTR-TOF-MS) for volatile organic compound emissions. The system was tested on four cryptogam species with contrasting ecological distributions. No major errors or kinetics disruptions were found during system testing and measurements. Our within-chamber rehydration method improved accuracy, as measurement periods were not lacking, and repeatability of the protocol by reducing error variance in sample manipulation. This method provides an improved technique to conduct desiccation-rehydration measurements, contributing to the standardization and accuracy of current existing methodologies. A close real-time and simultaneous monitoring of photosynthesis, chlorophyll fluorescence and volatile organic compound emission data, offers a novel perspective in the analysis of the cryptogam stress responses that is yet to be fully explored.
Collapse
Affiliation(s)
- José Ángel Morales-Sánchez
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia.
| | - Kristiina Mark
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - Eero Talts
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - Bakhtier Rasulov
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
5
|
Bokhorst S, Bjerke JW, Phoenix GK, Jaakola L, Maehre HK, Tømmervik H. Sub-arctic mosses and lichens show idiosyncratic responses to combinations of winter heatwaves, freezing and nitrogen deposition. PHYSIOLOGIA PLANTARUM 2023; 175:e13882. [PMID: 36840682 DOI: 10.1111/ppl.13882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Arctic ecosystems are increasingly exposed to extreme climatic events throughout the year, which can affect species performance. Cryptogams (bryophytes and lichens) provide important ecosystem services in polar ecosystems but may be physiologically affected or killed by extreme events. Through field and laboratory manipulations, we compared physiological responses of seven dominant sub-Arctic cryptogams (three bryophytes, four lichens) to single events and factorial combinations of mid-winter heatwave (6°C for 7 days), re-freezing, snow removal and summer nitrogen addition. We aimed to identify which mosses and lichens are vulnerable to these abiotic extremes and if combinations would exacerbate physiological responses. Combinations of extremes resulted in stronger species responses but included idiosyncratic species-specific responses. Species that remained dormant during winter (March), irrespective of extremes, showed little physiological response during summer (August). However, winter physiological activity, and response to winter extremes, was not consistently associated with summer physiological impacts. Winter extremes affect cryptogam physiology, but summer responses appear mild, and lichens affect the photobiont more than the mycobiont. Accounting for Arctic cryptogam response to multiple climatic extremes in ecosystem functioning and modelling will require a better understanding of their winter eco-physiology and repair capabilities.
Collapse
Affiliation(s)
- Stef Bokhorst
- Norwegian Institute for Nature Research (NINA), FRAM - High North Research Centre for Climate and the Environment, Tromsø, Norway
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jarle W Bjerke
- Norwegian Institute for Nature Research (NINA), FRAM - High North Research Centre for Climate and the Environment, Tromsø, Norway
| | - Gareth K Phoenix
- Plants Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Laura Jaakola
- Climate Laboratory Holt, Department of Arctic and Marine Biology, UIT The Arctic University of Norway, Tromsø, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Hanne K Maehre
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UIT The Arctic University of Norway, Tromsø, Norway
| | - Hans Tømmervik
- Norwegian Institute for Nature Research (NINA), FRAM - High North Research Centre for Climate and the Environment, Tromsø, Norway
| |
Collapse
|
6
|
Uphill energy transfer mechanism for photosynthesis in an Antarctic alga. Nat Commun 2023; 14:730. [PMID: 36792917 PMCID: PMC9931709 DOI: 10.1038/s41467-023-36245-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
Prasiola crispa, an aerial green alga, forms layered colonies under the severe terrestrial conditions of Antarctica. Since only far-red light is available at a deep layer of the colony, P. crispa has evolved a molecular system for photosystem II (PSII) excitation using far-red light with uphill energy transfer. However, the molecular basis underlying this system remains elusive. Here, we purified a light-harvesting chlorophyll (Chl)-binding protein complex from P. crispa (Pc-frLHC) that excites PSII with far-red light and revealed its ring-shaped structure with undecameric 11-fold symmetry at 3.13 Å resolution. The primary structure suggests that Pc-frLHC evolved from LHCI rather than LHCII. The circular arrangement of the Pc-frLHC subunits is unique among eukaryote LHCs and forms unprecedented Chl pentamers at every subunit‒subunit interface near the excitation energy exit sites. The Chl pentamers probably contribute to far-red light absorption. Pc-frLHC's unique Chl arrangement likely promotes PSII excitation with entropy-driven uphill excitation energy transfer.
Collapse
|
7
|
Gemal EL, Green TGA, Cary SC, Colesie C. High Resilience and Fast Acclimation Processes Allow the Antarctic Moss Bryum argenteum to Increase Its Carbon Gain in Warmer Growing Conditions. BIOLOGY 2022; 11:biology11121773. [PMID: 36552282 PMCID: PMC9775354 DOI: 10.3390/biology11121773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Climate warming in Antarctica involves major shifts in plant distribution and productivity. This study aims to unravel the plasticity and acclimation potential of Bryum argenteum var. muticum, a cosmopolitan moss species found in Antarctica. By comparing short-term, closed-top chamber warming experiments which mimic heatwaves, with in situ seasonal physiological rates from Cape Hallett, Northern Victoria Land, we provide insights into the general inherent resilience of this important Antarctic moss and into its adaptability to longer-term threats and stressors associated with climate change. Our findings show that B. argenteum can thermally acclimate to mitigate the effects of increased temperature under both seasonal changes and short-term pulse warming events. Following pulse warming, this species dramatically increased its carbon uptake, measured as net photosynthesis, while reductions in carbon losses, measured as dark respiration, were not observed. Rapid growth of new shoots may have confounded the effects on respiration. These results demonstrate the high physiological plasticity of this species, with acclimation occurring within only 7 days. We show that this Antarctic moss species appears to have a high level of resilience and that fast acclimation processes allow it to potentially benefit from both short-term and long-term climatic changes.
Collapse
Affiliation(s)
- Emma L. Gemal
- Global Change Research Institute, School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, UK
- Department of Physical Geography, Stockholm University, SE-106 91 Stockholm, Sweden
| | - T. G. Allan Green
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton 3240, New Zealand
- Unidad de Botánica, Facultad de Farmacia, Universidad Complutense, E-28040 Madrid, Spain
| | - S. Craig Cary
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton 3240, New Zealand
| | - Claudia Colesie
- Global Change Research Institute, School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, UK
- Correspondence:
| |
Collapse
|
8
|
Song Q, Wang X, Liu Y, Brestic M, Yang X. StLTO1, a lumen thiol oxidoreductase in Solanum tuberosum L., enhances the cold resistance of potato plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111481. [PMID: 36181944 DOI: 10.1016/j.plantsci.2022.111481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cold stress reduces plant photosynthesis and increases the accumulation of reactive oxygen species (ROS) in plants, thereby dramatically affecting plant growth, crop productivity and quality. Here, we report that lumen thiol oxidoreductase 1 (StLTO1), a vitamin K epoxide reductase (VKOR)-like protein in the thylakoid membrane of Solanum tuberosum L., enhances the cold tolerance of potato plants. Under normal conditions, overexpression of StLTO1 in plants promoted plant growth. In addition, potato plants overexpressing StLTO1 displayed enhanced photosynthetic capacity and increased capacity for scavenging ROS compared to StLTO1 knockdown and wild-type potato plants under cold conditions. Overexpression of StLTO1 in potato plants also improved cold-regulated (COR) gene expression after cold stress. Our results suggest that StLTO1 acts as a positive regulator of cold resistance in potato plants.
Collapse
Affiliation(s)
- Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Xipan Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
9
|
Liu S, Li T, Fang S, Zhang P, Yi D, Cong B, Zhang Z, Zhao L. Metabolic profiling and gene expression analyses provide insights into cold adaptation of an Antarctic moss Pohlia nutans. FRONTIERS IN PLANT SCIENCE 2022; 13:1006991. [PMID: 36176693 PMCID: PMC9514047 DOI: 10.3389/fpls.2022.1006991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Antarctica is the coldest, driest, and most windy continent on earth. The major terrestrial vegetation consists of cryptogams (mosses and lichens) and two vascular plant species. However, the molecular mechanism of cold tolerance and relevant regulatory networks were largely unknown in these Antarctic plants. Here, we investigated the global alterations in metabolites and regulatory pathways of an Antarctic moss (Pohlia nutans) under cold stress using an integrated multi-omics approach. We found that proline content and several antioxidant enzyme activities were significantly increased in P. nutans under cold stress, but the contents of chlorophyll and total flavonoids were markedly decreased. A total of 559 metabolites were detected using ultra high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). We observed 39 and 71 differentially changed metabolites (DCMs) after 24 h and 60 h cold stress, indicating that several major pathways were differentially activated for producing fatty acids, alkaloids, flavonoids, terpenoids, and phenolic acids. In addition, the quantitative transcriptome sequencing was conducted to uncover the global transcriptional profiles of P. nutans under cold stress. The representative differentially expressed genes (DEGs) were identified and summarized to the function including Ca2+ signaling, ABA signaling, jasmonate signaling, fatty acids biosynthesis, flavonoid biosynthesis, and other biological processes. The integrated dataset analyses of metabolome and transcriptome revealed that jasmonate signaling, auxin signaling, very-long-chain fatty acids and flavonoid biosynthesis pathways might contribute to P. nutans acclimating to cold stress. Overall, these observations provide insight into Antarctic moss adaptations to polar habitats and the impact of global climate change on Antarctic plants.
Collapse
Affiliation(s)
- Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Tingting Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Shuo Fang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, China
| | - Dan Yi
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Bailin Cong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Zhaohui Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| |
Collapse
|
10
|
Fang S, Li T, Zhang P, Liu C, Cong B, Liu S. Integrated transcriptome and metabolome analyses reveal the adaptation of Antarctic moss Pohlia nutans to drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:924162. [PMID: 36035699 PMCID: PMC9403716 DOI: 10.3389/fpls.2022.924162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Most regions of the Antarctic continent are experiencing increased dryness due to global climate change. Mosses and lichens are the dominant vegetation of the ice-free areas of Antarctica. However, the molecular mechanisms of these Antarctic plants adapting to drought stress are less documented. Here, transcriptome and metabolome analyses were employed to reveal the responses of an Antarctic moss (Pohlia nutans subsp. LIU) to drought stress. We found that drought stress made the gametophytes turn yellow and curled, and enhanced the contents of malondialdehyde and proline, and the activities of antioxidant enzymes. Totally, 2,451 differentially expressed genes (DEGs) were uncovered under drought treatment. The representative DEGs are mainly involved in ROS-scavenging and detoxification, flavonoid metabolism pathway, plant hormone signaling pathway, lipids metabolism pathway, transcription factors and signal-related genes. Meanwhile, a total of 354 differentially changed metabolites (DCMs) were detected in the metabolome analysis. Flavonoids and lipids were the most abundant metabolites and they accounted for 41.53% of the significantly changed metabolites. In addition, integrated transcriptome and metabolome analyses revealed co-expression patterns of flavonoid and long-chain fatty acid biosynthesis genes and their metabolites. Finally, qPCR analysis demonstrated that the expression levels of stress-related genes were significantly increased. These genes included those involved in ABA signaling pathway (NCED3, PP2C, PYL, and SnAK2), jasmonate signaling pathway (AOC, AOS, JAZ, and OPR), flavonoid pathway (CHS, F3',5'H, F3H, FLS, FNS, and UFGT), antioxidant and detoxifying functions (POD, GSH-Px, Prx and DTX), and transcription factors (ERF and DREB). In summary, we speculated that P. nutans were highly dependent on ABA and jasmonate signaling pathways, ROS scavenging, flavonoids and fatty acid metabolism in response to drought stress. These findings present an important knowledge for assessing the impact of coastal climate change on Antarctic basal plants.
Collapse
Affiliation(s)
- Shuo Fang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Tingting Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, China
| | - Chenlin Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Bailin Cong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| |
Collapse
|
11
|
Xanthophyll cycles in the juniper haircap moss (Polytrichum juniperinum) and Antarctic hair grass (Deschampsia antarctica) on Livingston Island (South Shetland Islands, Maritime Antarctica). Polar Biol 2022. [DOI: 10.1007/s00300-022-03068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractThe summer climate in Maritime Antarctica is characterised by high humidity and cloudiness with slightly above zero temperatures. Under such conditions, photosynthetic activity is temperature-limited and plant communities are formed by a few species. These conditions could prevent the operation of the photoprotective xanthophyll (VAZ) cycle as low irradiance reduces the excess of energy and low temperatures limit enzyme activity. The VAZ cycle regulates the dissipation of the excess of absorbed light as heat, which is the main mechanism of photoprotection in plants. To test whether this mechanism operates dynamically in Antarctic plant communities, we characterised pigment dynamics under natural field conditions in two representative species: the moss Polytrichum juniperinum and the grass Deschampsia antarctica. Pigment analyses revealed that the total VAZ pool was in the upper range of the values reported for most plant species, suggesting that they are exposed to a high degree of environmental stress. Despite cloudiness, there was a strong conversion of violaxanthin (V) to zeaxanthin (Z) during daytime. Conversely, the dark-induced enzymatic epoxidation back to V was not limited by nocturnal temperatures. In contrast with plants from other cold ecosystems, we did not find any evidence of overnight retention of Z or sustained reductions in photochemical efficiency. These results are of interest for modelling, remote sensing and upscaling of the responses of Antarctic vegetation to environmental challenges.
Collapse
|
12
|
Fernandez-Pozo N, Haas FB, Gould SB, Rensing SA. An overview of bioinformatics, genomics, and transcriptomics resources for bryophytes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4291-4305. [PMID: 35148385 DOI: 10.1093/jxb/erac052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Bryophytes are useful models for the study of plant evolution, development, plant-fungal symbiosis, stress responses, and gametogenesis. Additionally, their dominant haploid gametophytic phase makes them great models for functional genomics research, allowing straightforward genome editing and gene knockout via CRISPR or homologous recombination. Until 2016, however, the only bryophyte genome sequence published was that of Physcomitrium patens. Throughout recent years, several other bryophyte genomes and transcriptome datasets became available, enabling better comparative genomics in evolutionary studies. The increase in the number of bryophyte genome and transcriptome resources available has yielded a plethora of annotations, databases, and bioinformatics tools to access the new data, which covers the large diversity of this clade and whose biology comprises features such as association with arbuscular mycorrhiza fungi, sex chromosomes, low gene redundancy, or loss of RNA editing genes for organellar transcripts. Here we provide a guide to resources available for bryophytes with regards to genome and transcriptome databases and bioinformatics tools.
Collapse
Affiliation(s)
- Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Subtropical and Mediterranean Fruit Crops, Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-CSIC-UMA), Málaga, Spain
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Sven B Gould
- Evolutionary Cell Biology, Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
13
|
Perera-Castro AV, González-Rodríguez ÁM, Fernández-Marín B. When time is not of the essence: constraints to the carbon balance of bryophytes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4562-4575. [PMID: 35298628 DOI: 10.1093/jxb/erac104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The data available so far indicate that the photosynthetic and relative growth rates of bryophytes are 10% of those reported for tracheophytes. By examining the existing literature and reanalysing data published in over 100 studies, this review examines the ecophysiological, biochemical, and structural reasons behind this phenomenon. The limiting Rubisco content and surface for gas exchange are the internal factors that can explain the low photosynthetic and growth rates of bryophytes. The role of the thicker cell walls of bryophytes in limiting CO2 diffusion is unclear, due to the current uncertainties regarding their porosity and permeability to CO2. From this review, it is also evident that, despite bryophytes having low photosynthetic rates, their positive carbon balance is tightly related to their capacity to deal with extreme conditions. Contributing factors include their capacity to deal with large daily temperature oscillations, and their capacity to delay the cessation of photosynthesis under water deficit (or to tolerate desiccation in extreme situations). Although further studies on bryophytes are needed before more solid conclusions can be drawn, it seems that their success relies on their remarkable tolerance to a highly variable environment, possibly at the expense of their maximum photosynthetic rate.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, 38200 La Laguna, Canary Islands, Spain
| | - Águeda M González-Rodríguez
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, 38200 La Laguna, Canary Islands, Spain
| | - Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, 38200 La Laguna, Canary Islands, Spain
| |
Collapse
|
14
|
Perera-Castro AV, Waterman MJ, Robinson SA, Flexas J. Limitations to photosynthesis in bryophytes: certainties and uncertainties regarding methodology. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4592-4604. [PMID: 35524766 DOI: 10.1093/jxb/erac189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Bryophytes are the group of land plants with the lowest photosynthetic rates, which was considered to be a consequence of their higher anatomical CO2 diffusional limitation compared with tracheophytes. However, the most recent studies assessing limitations due to biochemistry and mesophyll conductance in bryophytes reveal discrepancies based on the methodology used. In this study, we compared data calculated from two different methodologies for estimating mesophyll conductance: variable J and the curve-fitting method. Although correlated, mesophyll conductance estimated by the curve-fitting method was on average 4-fold higher than the conductance obtained by the variable J method; a large enough difference to account for the scale of differences previously shown between the biochemical and diffusional limitations to photosynthesis. Biochemical limitations were predominant when the curve-fitting method was used. We also demonstrated that variations in bryophyte relative water content during measurements can also introduce errors in the estimation of mesophyll conductance, especially for samples which are overly desiccated. Furthermore, total chlorophyll concentration and soluble proteins were significantly lower in bryophytes than in tracheophytes, and the percentage of proteins quantified as Rubisco was also significantly lower in bryophytes (<6.3% in all studied species) than in angiosperms (>16% in all non-stressed cases). Photosynthetic rates normalized by Rubisco were not significantly different between bryophytes and angiosperms. Our data suggest that the biochemical limitation to photosynthesis in bryophytes is more relevant than so far assumed.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Universitat de les Illes Balears, Department of Biology, INAGEA, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
- Universidad de La Laguna, Department of Botany, Ecology and Plant Physiology, Av. Astrofísico Francisco Sánchez, S/N, 38200 La Laguna, Canary Islands, Spain
| | - Melinda J Waterman
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, Australia
| | - Sharon A Robinson
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, Australia
| | - Jaume Flexas
- Universitat de les Illes Balears, Department of Biology, INAGEA, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
15
|
Morales-Sánchez JÁM, Mark K, Souza JPS, Niinemets Ü. Desiccation-rehydration measurements in bryophytes: current status and future insights. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4338-4361. [PMID: 35536655 DOI: 10.1093/jxb/erac172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Desiccation-rehydration experiments have been employed over the years to evaluate desiccation tolerance of bryophytes (Bryophyta, Marchantiophyta, and Anthocerotophyta). Researchers have applied a spectrum of protocols to induce desiccation and subsequent rehydration, and a wide variety of techniques have been used to study desiccation-dependent changes in bryophyte molecular, cellular, physiological, and structural traits, resulting in a multifaceted assortment of information that is challenging to synthesize. We analysed 337 desiccation-rehydration studies, providing information for 351 species, to identify the most frequent methods used, analyse the advances in desiccation studies over the years, and characterize the taxonomic representation of the species assessed. We observed certain similarities across methodologies, but the degree of convergence among the experimental protocols was surprisingly low. Out of 52 bryophyte orders, 40% have not been studied, and data are lacking for multiple remote or difficult to access locations. We conclude that for quantitative interspecific comparisons of desiccation tolerance, rigorous standardization of experimental protocols and measurement techniques, and simultaneous use of an array of experimental techniques are required for a mechanistic insight into the different traits modified in response to desiccation. New studies should also aim to fill gaps in taxonomic, ecological, and spatial coverage of bryophytes.
Collapse
Affiliation(s)
- José Ángel M Morales-Sánchez
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - Kristiina Mark
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - João Paulo S Souza
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
16
|
Oliveira MF, Maciel-Silva AS. Biological soil crusts and how they might colonize other worlds: insights from these Brazilian ecosystem engineers. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4362-4379. [PMID: 35522077 DOI: 10.1093/jxb/erac162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
When bryophytes, lichens, eukaryotic algae, cyanobacteria, bacteria, and fungi live interacting intimately with the most superficial particles of the soil, they form a complex community of organisms called the biological soil crust (BSC or biocrust). These biocrusts occur predominantly in drylands, where they provide important ecological services such as soil aggregation, moisture retention, and nitrogen fixation. Unfortunately, many BSC communities remain poorly explored, especially in the tropics. This review summarizes studies about BSCs in Brazil, a tropical megadiverse country, and shows the importance of ecological, physiological, and taxonomic knowledge of biocrusts. We also compare Brazilian BSC communities with others around the world, describe why BSCs can be considered ecosystem engineers, and propose their use in the colonization of other worlds.
Collapse
Affiliation(s)
- Mateus Fernandes Oliveira
- Universidade Federal de Minas Gerais, Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Adaíses Simone Maciel-Silva
- Universidade Federal de Minas Gerais, Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
17
|
Lin W, Yu Z, Luo Y, He W, Yan G, Peng C. Photoprotection Differences between Dominant Tree Species at Mid- and Late-Successional Stages in Subtropical Forests in Different Seasonal Environments. Int J Mol Sci 2022; 23:ijms23105417. [PMID: 35628227 PMCID: PMC9140998 DOI: 10.3390/ijms23105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Plants growing in subtropical regions are often affected by high temperature and high light in summer and low temperature and high light in winter. However, few studies have compared the photoprotection mechanism of tree species at different successional stages in these two environments, although such studies would be helpful in understanding the succession of forest communities in subtropical forests. In order to explore the strategies used by dominant species at different successional stages to cope with these two environmental conditions, we selected two dominant species in the mid-successional stage, Schima superba and Castanopsis chinensis, and two dominant species in the late-successional stage, Machilus chinensis and Cryptocarya chinensis. The cell membrane permeability, chlorophyll fluorescence, chlorophyll content, and a few light-protective substances of these dominant species were measured in summer and winter. The results show that in summer, the young leaves of dominant species in the mid-successional stage showed higher anthocyanin content and superoxide dismutase (SOD) activity, while those in the late-successional stage showed higher flavonoid and total phenolic content, total antioxidant activity, non-photochemical quenching (NPQ), and carotenoid/chlorophyll (Car/Chl) ratio. In winter, young leaves of dominant species in the mid-successional stage were superior to those in the late-successional stage only in terms of catalase (CAT) activity and NPQ, while the anthocyanin, flavonoids, and total phenol content, total antioxidant capacity, and Car/Chl ratio were significantly lower compared to the late-successional stage. Our results show that the dominant species in different successional stages adapted to environmental changes in different seasons through the alterations in their photoprotection strategies. In summer, the dominant species in the mid-successional stage mainly achieved photoprotection through light shielding and reactive-oxygen-species scavenging by SOD, while the antioxidant capacity of trees in the late-successional stage mainly came from an increased antioxidative compounds and heat dissipation. In winter, the dominant species in the mid-successional stage maintained their photoprotective ability mainly through the scavenging of reactive oxygen species by CAT and the heat dissipation provided by NPQ, while those in the late-successional stage were mainly protected by a combination of processes, including light shielding, heat dissipation, and antioxidant effects provided by enzymatic and non-enzymatic antioxidant systems. In conclusion, our study partially explains the mechanism of community succession in subtropical forests.
Collapse
|
18
|
Perera‐Castro AV, Flexas J. Desiccation tolerance in bryophytes relates to elasticity but is independent of cell wall thickness and photosynthesis. PHYSIOLOGIA PLANTARUM 2022; 174:e13661. [PMID: 35249226 PMCID: PMC9314017 DOI: 10.1111/ppl.13661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Mosses have been found outliers of the trade-off between photosynthesis and bulk elastic modulus described for vascular plants. Hence, potential trade-offs among physical features of cell walls and desiccation tolerance, water relations, and photosynthesis were assessed in bryophytes and other poikilohydric species. Long-term desiccation tolerance was quantified after variable periods of desiccation/rehydration cycles. Water relations were analyzed by pressure-volume curves. Mesophyll conductance was estimated using both CO2 curve-fitting and anatomical methods. Cell wall elasticity was the parameter that better correlated with the desiccation tolerance index for desiccation tolerant species and was antagonistic to higher absolute values of osmotic potential. Although high values of cell wall effective porosity were estimated compared with the values assumed for vascular plants, the desiccation tolerance index negatively correlated with the porosity in desiccation tolerant bryophytes. Neither cell wall thickness nor photosynthetic capacity were correlated with the desiccation tolerance index of the studied species. The existence of a potential evolutionary trade-off between cell wall thickness and desiccation tolerance is rejected. The photosynthetic capacity reported for bryophytes is independent of elasticity and desiccation tolerance. Furthermore, the role of cell wall thickness in limiting CO2 conductance would be overestimated under a scenario of high cell wall porosity for most bryophytes.
Collapse
Affiliation(s)
- Alicia V. Perera‐Castro
- Department of BiologyUniversitat de les Illes Balears, INAGEAPalma de MallorcaSpain
- Department of Botany, Ecology and Plant PhysiologyUniversidad de La Laguna, Av. Astrofísico Francisco SánchezLa LagunaSpain
| | - Jaume Flexas
- Department of BiologyUniversitat de les Illes Balears, INAGEAPalma de MallorcaSpain
- King Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
19
|
Hüner NPA, Smith DR, Cvetkovska M, Zhang X, Ivanov AG, Szyszka-Mroz B, Kalra I, Morgan-Kiss R. Photosynthetic adaptation to polar life: Energy balance, photoprotection and genetic redundancy. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153557. [PMID: 34922115 DOI: 10.1016/j.jplph.2021.153557] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 06/14/2023]
Abstract
The persistent low temperature that characterize polar habitats combined with the requirement for light for all photoautotrophs creates a conundrum. The absorption of too much light at low temperature can cause an energy imbalance that decreases photosynthetic performance that has a negative impact on growth and can affect long-term survival. The goal of this review is to survey the mechanism(s) by which polar photoautotrophs maintain cellular energy balance, that is, photostasis to overcome the potential for cellular energy imbalance in their low temperature environments. Photopsychrophiles are photosynthetic organisms that are obligately adapted to low temperature (0⁰- 15 °C) but usually die at higher temperatures (≥20 °C). In contrast, photopsychrotolerant species can usually tolerate and survive a broad range of temperatures (5⁰- 40 °C). First, we summarize the basic concepts of excess excitation energy, energy balance, photoprotection and photostasis and their importance to survival in polar habitats. Second, we compare the photoprotective mechanisms that underlie photostasis and survival in aquatic cyanobacteria and green algae as well as terrestrial Antarctic and Arctic plants. We show that polar photopsychrophilic and photopsychrotolerant organisms attain energy balance at low temperature either through a regulated reduction in the efficiency of light absorption or through enhanced capacity to consume photosynthetic electrons by the induction of O2 as an alternative electron acceptor. Finally, we compare the published genomes of three photopsychrophilic and one photopsychrotolerant alga with five mesophilic green algae including the model green alga, Chlamydomonas reinhardtii. We relate our genomic analyses to photoprotective mechanisms that contribute to the potential attainment of photostasis. Finally, we discuss how the observed genomic redundancy in photopsychrophilic genomes may confer energy balance, photoprotection and resilience to their harsh polar environment. Primary production in aquatic, Antarctic and Arctic environments is dependent on diverse algal and cyanobacterial communities. Although mosses and lichens dominate the Antarctic terrestrial landscape, only two extant angiosperms exist in the Antarctic. The identification of a single 'molecular key' to unravel adaptation of photopsychrophily and photopsychrotolerance remains elusive. Since these photoautotrophs represent excellent biomarkers to assess the impact of global warming on polar ecosystems, increased study of these polar photoautotrophs remains essential.
Collapse
Affiliation(s)
- Norman P A Hüner
- Dept. of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada.
| | - David R Smith
- Dept. of Biology, University of Western Ontario, London, N6A 5B7, Canada.
| | | | - Xi Zhang
- Dept. of Biology, University of Western Ontario, London, N6A 5B7, Canada.
| | - Alexander G Ivanov
- Dept. of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada; Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria.
| | - Beth Szyszka-Mroz
- Dept. of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada.
| | - Isha Kalra
- Dept. of Microbiology, Miami University of Ohio, Oxford, OH, 45056, USA.
| | | |
Collapse
|
20
|
Roig-Oliver M, Douthe C, Bota J, Flexas J. Cell wall thickness and composition are related to photosynthesis in Antarctic mosses. PHYSIOLOGIA PLANTARUM 2021; 173:1914-1925. [PMID: 34432898 DOI: 10.1111/ppl.13533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Cell wall thickness (Tcw ) has been proposed as an important anatomical trait that could determine photosynthesis through land plants' phylogeny, bryophytes being the plant group presenting the thickest walls and the lowest photosynthetic rates. Also, it has recently been suggested that cell wall composition may have the potential to influence both thickness and mesophyll conductance (gm ), representing a novel trait that could ultimately affect photosynthesis. However, only a few studies in spermatophytes have demonstrated this issue. In order to explore the role of cell wall composition in determining both Tcw and gm in mosses, we tested six species grown under field conditions in Antarctica. We performed gas exchange and chlorophyll fluorescence measurements, an anatomical characterization, and a quantitative analysis of cell wall main composition (i.e., cellulose, hemicelluloses and pectins) in these six species. We found the photosynthetic rates to vary between the species, and they also presented differences in anatomical characteristics and in cell wall composition. Whilst gm correlated negatively with Tcw and pectins content, a positive relationship between Tcw and pectins emerged, suggesting that pectins could contribute to determine cell wall porosity. Although our results do not allow us to provide conclusive statements, we suggest for the first time that cell wall composition-with pectins playing a key role-could strongly influence Tcw and gm in Antarctic mosses, ultimately defining photosynthesis.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
| | - Cyril Douthe
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
| | - Josefina Bota
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
| | - Jaume Flexas
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
- King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Szabó M, Zavafer A. Photoinhibition, photo-ecophysiology, and biophysics, a special issue in honor of Wah Soon Chow. PHOTOSYNTHESIS RESEARCH 2021; 149:1-3. [PMID: 34338942 DOI: 10.1007/s11120-021-00865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Milán Szabó
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
- Climate Change Cluster, University of Technology Sydney, Ultimo, 2007, Australia.
| | - Alonso Zavafer
- Research School of Biology, Australian National University, Canberra, 2600, Australia.
| |
Collapse
|
22
|
Song X, Fang W, Chi X, Shao X, Wang Q. Geographic Pattern of Bryophyte Species Richness in China: The Influence of Environment and Evolutionary History. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.680318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
How contemporary environment interacts with macroevolutionary processes to generate the geographic pattern of bryophyte species is still unresolved. China is very rich in bryophytes, with more than 3,000 bryophytes covering 70% of the families in the world. In this study, we assessed the effects of the contemporary environment (average temperature of the coldest season TCQ, precipitation of the warmest season PWQ, and elevational range) and the recent diversification rates (estimated as mean species number per genus, MSG) on the geographical pattern of species richness for bryophytes and two groups (i.e., liverworts and mosses) in China. We compiled the provincial level distribution of bryophyte species and estimated the geographic pattern of the recent diversification rate by MSG for species in China. Univariate, multivariate regressions and path model analyses were used to assess the relationships between species richness, MSG, and their potential environmental drivers. Species richness of all bryophytes and liverworts significantly increased with the increase of MSG, either in regressions or path analyses, indicating that provinces with high bryophyte richness were mainly inhabited by species (especially liverworts) from lineages with particularly high MSG. In contrast, the species richness of mosses was insignificantly decreased with MSG in univariate regression or insignificantly increased with MSG in path analysis. Both species richness and MSG of all bryophytes and liverworts increased with the increase in energy and water availability. In contrast, for mosses, the species richness significantly increased with the increase of energy and water availability, while MSG decreased with the increase of energy and water availability. The MSG of liverworts increase with the increase of elevational range but the MSG of mosses decrease with the increase of elevational range. Our study suggests that the humid tropical and subtropical mountains in China are not only diversity hotspots for bryophytes, but also cradles for high recent diversification of liverworts, and refuges for mosses to hold many monotypic and oligotypic genera.
Collapse
|