1
|
Asif M, Maan AA, Nazir A, Khan MIM, Khan MKI. Effect of chickpea on the physicochemical, nutritional, antioxidant, and organoleptic characterization of corn extrudates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2059-2067. [PMID: 39503058 DOI: 10.1002/jsfa.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 01/14/2025]
Abstract
BACKGROUND Ready-to-eat snacks are very popular. However, they have a high glycemic index and lack proteins & micronutrients. This study prepared protein-enriched corn extrudates by adding chickpea grit supplements at varying concentrations (0-100 g kg-1). RESULTS The protein contents of 100 g kg-1 supplemented extrudates increased by 66.66% and dietary fiber contents increased by 48.02% in comparison with the control. Bulk density increased by 1.46 times. However, the expansion ratio, porosity, and water absorption index decreased significantly (P < 0.05). The health-promoting characteristics of the extrudates increased in comparison with the control sample, i.e., total phenolic content increasing by 17.84%, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) contents by 11.38%, and 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) content by 9.59%. Likewise, the potassium contents increased by 24.63% with the inclusion of 10% chickpea in corn extrudates. Sensory evaluation revealed that corn extrudates with up to 60 g kg-1 added chickpea achieved the highest acceptability among panelists. CONCLUSION The addition of chickpea produced corn extrudates with higher protein and mineral content, which could mitigate malnutrition. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Asif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abid Aslam Maan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Akmal Nazir
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Muhammad Imran Mehmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, People's Republic of China
| | - Muhammad Kashif Iqbal Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
2
|
Orozco-Angelino X, Espinosa-Ramírez J, Serna-Saldívar SO. Extrusion as a tool to enhance the nutritional and bioactive potential of cereal and legume by-products. Food Res Int 2023; 169:112889. [PMID: 37254337 DOI: 10.1016/j.foodres.2023.112889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Cereal and legume by-products obtained from primary food production industries pose an environmental and economic problem. Nevertheless, these residues can potentially yield value-added products due to their elevated content of dietary fiber, phytochemicals, vitamins, minerals, and residual levels of proteins, which makes them a suitable and heightened option for reutilization in human consumption. Several studies identify extrusion as an innovative technology to modify the technofunctionality and nutritional properties of cereal and legume by-products, resulting in the production of improved ingredients. This review focuses on studies that evaluate the effect of extrusion to improve the nutritional and bioactive potential of cereal and legume by-products. A revision of the extrusion process parameters that improve the profile and bioavailability of dietary fiber, proteins, and phenolic compounds, and minimize antinutritional factors associated to cereal and legume by-products was done. The composition of by-products and process parameters such as feed moisture, barrel temperature and screw speed influence the resulting effect of extrusion. Studies suggest that extruding composite feedstock containing cereal or legume by-products may limit the molecular modifications that trigger the nutritional improvements. Therefore, extrusion applied as a pretreatment represents an interesting and economic alternative to improve the profile and bioavailability of the nutrients found in cereal and legume by-products which might lead to the development of functional ingredients useful to produce foods aimed to prevent chronic diseases.
Collapse
Affiliation(s)
- Xiadani Orozco-Angelino
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501, 64849 Monterrey, NL, Mexico
| | - Johanan Espinosa-Ramírez
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501, 64849 Monterrey, NL, Mexico.
| | - Sergio O Serna-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501, 64849 Monterrey, NL, Mexico
| |
Collapse
|
3
|
Liu Y, Meng N, Sun Y, Wang L, Liu M, Qiao C, Tan B. Three thermal treated methods improve physicochemical and functional properties of wheat bran-germ and the bran-germ containing products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4317-4328. [PMID: 36762767 DOI: 10.1002/jsfa.12492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/29/2022] [Accepted: 02/10/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND To fully investigate the effect of different stabilization methods on WBG in the same environment, we studied the effect of microwaving, baking, and extrusion on the nutritional, physicochemical, and processability properties of WBG and whole wheat bran-germ noodle (WBGN). Principal component analysis was used to comprehensively evaluate the qualities of WBG and WBGN. Machine learning-based research was conducted to predict the quality of WBGN based on the features of WBG. RESULTS The results showed that three methods improved antioxidant ability, bound flavonoids, bound and total phenolics, and the processing properties in WBG (P < 0.05). Extruded-WBG showed a lower polyphenol oxidase activity, lipase activity (35.02 ± 2.02 U and 20.29 ± 0.47 mg g-1 ) and particle size (54.08 ± 0.38 μm), and higher water hold capacity (2.60 ± 0.68%) and bound phenolic levels. The enhanced quantity of bound polyphenols had a major role in the increased antioxidant potential of WBGN. Extruded-WBGN showed higher antioxidant ability for 2,2-diphenyl-1-picrylhydrazyl (171.28 ± 3.16 μmol Trolox eq kg-1 ). The extruded-WBGN had high concentrations of WBG aroma compounds, and low contents of bitterness and raw bran-germ flavor compounds. Next, the enzymatic activity, powder properties, color, and antioxidant capacity of WBG were further utilized to predict the polyphenolic, flavonoids, flavor compounds, and antioxidant capacities of WBGN, where the R2 value of the model exceeded 0.90. The best comprehensive quality modification method of the WBG and WBGN was extrusion, followed by baking and microwaving. CONCLUSION The present study shows that extrusion is a promising way to improve WBG into a nutritious and flavorful cereal food ingredient. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanxiang Liu
- College of Engineering, Northeast Agricultural University, Harbin, China
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Ning Meng
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yong Sun
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Liping Wang
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Ming Liu
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Congcong Qiao
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Bin Tan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
4
|
Effect of extrusion on phenolics from Jizi439 black wheat bran: The profile, structure, and bioactivities. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Bon‐Padilla BK, Reyes‐Moreno C, Milán‐Carrillo J, Camacho‐Reynoso R, Gómez‐Aldapa CA, Gómez‐Favela, Gutiérrez‐Dorado R. Tortillas Made from Nixtamalized Maize and Extruded Chickpea Flours: A Product with Improved
in vitro
Nutritional and Antihypertensive Properties. Cereal Chem 2022. [DOI: 10.1002/cche.10577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- BK Bon‐Padilla
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas‐Universidad Autónoma de Sinaloa (FCQB‐UAS), Ciudad Universitaria, A.P. 1354CP80000Culiacán, SinaloaMéxico
| | - C Reyes‐Moreno
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas‐Universidad Autónoma de Sinaloa (FCQB‐UAS), Ciudad Universitaria, A.P. 1354CP80000Culiacán, SinaloaMéxico
- Programa de Posgrado en Ciencia y Tecnología de Alimentos, FCQB‐UAS, Ciudad Universitaria, A.P. 1354CP80000Culiacán, SinaloaMéxico
| | - J Milán‐Carrillo
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas‐Universidad Autónoma de Sinaloa (FCQB‐UAS), Ciudad Universitaria, A.P. 1354CP80000Culiacán, SinaloaMéxico
- Programa de Posgrado en Ciencia y Tecnología de Alimentos, FCQB‐UAS, Ciudad Universitaria, A.P. 1354CP80000Culiacán, SinaloaMéxico
| | - R Camacho‐Reynoso
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC). Universidad Autónoma de Querétaro. Apartado Postal 184, Cerro de las Campanas s/n, Col. Las Campanas76010Querétaro, QuerétaroMéxico
| | - CA Gómez‐Aldapa
- Area Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, PachucaHidalgoMéxico
| | - Gómez‐Favela
- Ingenieria Agroindustrial, Universidad Politécnica del Mar y la Sierra (UPMyS), Carretera a Potrerillos del Norote Km 3CP82700La Cruz, Elota, SinaloaMéxico
| | - R Gutiérrez‐Dorado
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas‐Universidad Autónoma de Sinaloa (FCQB‐UAS), Ciudad Universitaria, A.P. 1354CP80000Culiacán, SinaloaMéxico
- Programa de Posgrado en Ciencia y Tecnología de Alimentos, FCQB‐UAS, Ciudad Universitaria, A.P. 1354CP80000Culiacán, SinaloaMéxico
| |
Collapse
|
6
|
Bangar SP, Sandhu KS, Rusu A, Trif M, Purewal SS. Evaluating the Effects of Wheat Cultivar and Extrusion Processing on Nutritional, Health-Promoting, and Antioxidant Properties of Flour. Front Nutr 2022; 9:872589. [PMID: 35782925 PMCID: PMC9245593 DOI: 10.3389/fnut.2022.872589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Wheat has been considered one of the most important staple foods for thousands of years. It is one of the largest suppliers of calories in the daily diet, which is added to many different products. Wheat is also a good source of health-benefiting antioxidants. This study aims toinvestigate the changes in the antioxidant properties, such as total phenol content, 2,2-diphenyl-1-picrylhydrazyl (DPPH), metal chelating activity, 2,2′-azino-bis (3-ethylbenz-thiazoline-6-sulfonic acid) diammonium salt (ABTS+) scavenging activity, and color intensity, during the extrusion processing of six different wheat cultivars. The extrusion factors evaluated were 15% feed moisture and two extrusion temperatures (150 and 180°C). Extrusion processing increased antioxidant activity (DPPH, metal chelating activity, and ABTS+ scavenging activity), whereas total flavonoids content and total phenolic content were decreased. The L* values of wheat flours increased significantly (p < 0.05) after extrusion at 150 and 180°C, 15% mc. Furthermore, redness was decreased from control wheat cultivars (range: 0.17–0.21) to extrusion at 150°C (range: 0.14–0.17) and 180°C (range: 0.1–0.14). The study suggests that extruded wheat could improve the antioxidant potential in food products.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, United States
- *Correspondence: Sneh Punia Bangar
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Alexandru Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Alexandru Rusu
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Sukhvinder Singh Purewal
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| |
Collapse
|
7
|
Feasibility of Extruded Brewer’s Spent Grain as a Food Ingredient for a Healthy, Safe, and Sustainable Human Diet. Foods 2022; 11:foods11101403. [PMID: 35626975 PMCID: PMC9140782 DOI: 10.3390/foods11101403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to determine the effect of the extrusion process on the nutritional and bioactive profiles of brewer’s spent grain (BSG), contributing to nutrition security by applying a circular economy concept. Response surface methodology was used to optimize the effect extrusion parameters (moisture content, screw speed, and barrel temperature ) had on BSG’s soluble dietary fiber, free glucose, and overall antioxidant capacity. Proximate composition analyses, amino acid profile, extractable polyphenolic content, and antioxidant capacity of BSG and brewer’s spent grain extruded under optimal conditions (BSGE) were carried out. Food safety was analyzed by their microbiological quality, gluten, and acrylamide content. Optimal extrusion conditions were 15.8% of moisture content, 164.3 revolutions per min and 122.5 °C. BSGE presented 61% more soluble dietary fiber than BSG, lower digestible starch, 0.546% of free glucose, and protein quality parameters mostly like those reported for egg, soy, and milk. Despite this, BSG’s overall antioxidant capacity was not improved after thermomechanical processing; BSGE had significantly higher extractable polyphenolic content in its alkali extracts, which were determined qualitatively by high-performance liquid chromatography quadrupole time-of-flight assay in its hydro-alcoholic acid extracts. Furthermore, although it is not gluten free, BSGE is a safe food ingredient with acceptable microbiological quality and no acrylamide.
Collapse
|
8
|
Chakraborty M, Budhwar S, Kumar S. Potential of milling byproducts for the formulation of health drink and detox tea-substitute. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [PMCID: PMC9084259 DOI: 10.1007/s11694-022-01417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Manali Chakraborty
- Department of Nutrition Biology, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123029 India
| | - Savita Budhwar
- Department of Nutrition Biology, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123029 India
| | - Suneel Kumar
- Department of Physics and Astrophysics, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123029 India
| |
Collapse
|
9
|
Tian W, Zheng Y, Wang W, Wang D, Tilley M, Zhang G, He Z, Li Y. A comprehensive review of wheat phytochemicals: From farm to fork and beyond. Compr Rev Food Sci Food Saf 2022; 21:2274-2308. [PMID: 35438252 DOI: 10.1111/1541-4337.12960] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
The health benefits of whole wheat consumption can be partially attributed to wheat's phytochemicals, including phenolic acids, flavonoids, alkylresorcinols, carotenoids, phytosterols, tocopherols, and tocotrienols. It is of increasing interest to produce whole wheat products that are rich in bioactive phytochemicals. This review provides the fundamentals of the chemistry, extraction, and occurrence of wheat phytochemicals and includes critical discussion of several long-lasting issues: (1) the commonly used nomenclature on distribution of wheat phenolic acids, namely, soluble-free, soluble-conjugated, and insoluble-bound phenolic acids; (2) different extraction protocols for wheat phytochemicals; and (3) the chemistry and application of in vitro antioxidant assays. This review further discusses recent advances on the effects of genotypes, environments, field management, and processing techniques including ultrafine grinding, germination, fermentation, enzymatic treatments, thermal treatments, and food processing. These results need to be interpreted with care due to varied sample preparation protocols and limitations of in vitro assays. The bioaccessibility, bioavailability, metabolism, and potential health benefits of wheat phytochemicals are also reviewed. This comprehensive and critical review will benefit scientific researchers in the field of bioactive compounds of cereal grains and also those in the cereal food industry to produce high-quality functional foods.
Collapse
Affiliation(s)
- Wenfei Tian
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA.,International Maize and Wheat Improvement Centre (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, Kansas, USA
| | - Donghai Wang
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, Kansas, USA
| | - Michael Tilley
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, Kansas, USA
| | - Guorong Zhang
- Agricultural Research Center-Hays, Kansas State University, Hays, Kansas, USA
| | - Zhonghu He
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,International Maize and Wheat Improvement Centre (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
10
|
Punia Bangar S, Singh Sandhu K, Trif M, Rusu A, Pop ID, Kumar M. Enrichment in Different Health Components of Barley Flour Using Twin-Screw Extrusion Technology to Support Nutritionally Balanced Diets. Front Nutr 2022; 8:823148. [PMID: 35187025 PMCID: PMC8848100 DOI: 10.3389/fnut.2021.823148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 01/26/2023] Open
Abstract
Due to its good dietary role, barley has attracted a growing amount of interest for the manufacture of functional foods in recent years. In barley, a number of bioactive components, including as phenolic compounds, have been discovered, and barley extrudates could be used to formulate various processed foods, including ready-to-eat cereals, baby, and pet foods and support nutritionally balanced diets. This study was conducted to investigate the effect of extrusion processing on resistant starch (RS), glycemic index (GI), and antioxidant compounds of barley flour. The L* and ΔE values of barley flours decreased significantly (p < 0.05) after extrusion is done at 150 and 180°C. The a* and b* values, however, increased after extrusion. Extrusion increased antioxidant activity (AOA), metal chelating activity (MCA), and ABTS+ scavenging activity, whereas total phenolic content (TPC) and total flavonoids content (TFC) decreased. Barley extrudates at 150 and 180°C showed decreased TPC by 16.4–34.2% and 23.4–38.1%. Moreover, improved RS and reduced GI values were recorded for barley extrudates as compared to barley non-extrudates. Therefore, extrusion of barley could be an alternative to produce pregelatinized barley flour with improved RS low GI values and improved antioxidant potential.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, United States
- *Correspondence: Sneh Punia Bangar
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Rusu
- Department of Food Science, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Alexandru Rusu
| | - Ioana Delia Pop
- Department of Exact Sciences, Horticulture Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR – Central Institute for Research on Cotton Technology, Mumbai, India
| |
Collapse
|
11
|
Wu F, Tian F, Jin Z, Liu J, Jin W, Chen X, Wang Z, Jia X, Liu B, Liu L, Shen W. Antioxidant capacities of heat‐treated wheat germ and extruded compounded bran. Cereal Chem 2022. [DOI: 10.1002/cche.10520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fan Wu
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan China
| | - Fulin Tian
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan China
| | - Zhou Jin
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan China
| | - Jing Liu
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan China
| | - Weiping Jin
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University) Ministry of Education Wuhan China
| | - Xuan Chen
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University) Ministry of Education Wuhan China
| | - Zhan Wang
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University) Ministry of Education Wuhan China
| | - Xiwu Jia
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University) Ministry of Education Wuhan China
| | - Benguo Liu
- School of Food Science Henan Institute of Science and Technology Henan China
| | - Lingyi Liu
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University) Ministry of Education Wuhan China
| | - Wangyang Shen
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University) Ministry of Education Wuhan China
| |
Collapse
|
12
|
Kasote D, Tiozon RN, Sartagoda KJD, Itagi H, Roy P, Kohli A, Regina A, Sreenivasulu N. Food Processing Technologies to Develop Functional Foods With Enriched Bioactive Phenolic Compounds in Cereals. FRONTIERS IN PLANT SCIENCE 2021; 12:771276. [PMID: 34917106 PMCID: PMC8670417 DOI: 10.3389/fpls.2021.771276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2021] [Indexed: 05/13/2023]
Abstract
Cereal grains and products provide calories globally. The health benefits of cereals attributed to their diverse phenolic constituents have not been systematically explored. Post-harvest processing, such as drying, storing, and milling cereals, can alter the phenolic concentration and influence the antioxidant activity. Furthermore, cooking has been shown to degrade thermo-labile compounds. This review covers several methods for retaining and enhancing the phenolic content of cereals to develop functional foods. These include using bioprocesses such as germination, enzymatic, and fermentation treatments designed to enhance the phenolics in cereals. In addition, physical processes like extrusion, nixtamalization, and parboiling are discussed to improve the bioavailability of phenolics. Recent technologies utilizing ultrasound, micro- or nano-capsule polymers, and infrared utilizing processes are also evaluated for their effectiveness in improving the phenolics content and bio-accessibility. We also present contemporary products made from pigmented cereals that contain phenolics.
Collapse
Affiliation(s)
- Deepak Kasote
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Rhowell N. Tiozon
- International Rice Research Institute, Los Baños, Philippines
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Hameeda Itagi
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Priyabrata Roy
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Ajay Kohli
- International Rice Research Institute, Los Baños, Philippines
| | - Ahmed Regina
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Nese Sreenivasulu
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
- International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
13
|
Šárka E, Sluková M, Henke S. Changes in Phenolics during Cooking Extrusion: A Review. Foods 2021; 10:foods10092100. [PMID: 34574210 PMCID: PMC8469840 DOI: 10.3390/foods10092100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, significant attention is paid to the retention of phenolics in extrudates and their health effects. Due to the large number of recent articles devoted to total phenolic content (TPC) of input mixtures and extrudates, the technological changes are only presented for basic raw materials and the originating extrudates, and only the composites identified has having the highest amounts of TPC are referred to. The paper is also devoted to the changes in individual phenolics during extrusion (phenolic acids, flavonoids, flavonols, proanthocyanidins, flavanones, flavones, isoflavons, and 3-deoxyanthocyanidins). These changes are related to the choice or raw materials, the configuration of the extruder, and the setting the technological parameters. The results found in this study, presented in the form of tables, also indicate whether a single-screw or twin-screw extruder was used for the experiments. To design an extrusion process, other physico-chemical changes in the input material must also be taken into account, such as gelatinization of starch; denaturation of protein and formation of starch, lipids, and protein complexes; formation of soluble dietary fiber; destruction of antinutritional factors and contaminating microorganisms; and lipid oxidation reduction. The chemical changes also include starch depolymerization, the Maillard reaction, and decomposition of vitamins.
Collapse
|
14
|
Multi-response surface optimisation of extrusion cooking to increase soluble dietary fibre and polyphenols in lupin seed coat. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Optimization of Extrusion and Ultrasound-Assisted Extraction of Phenolic Compounds from Jizi439 Black Wheat Bran. Processes (Basel) 2020. [DOI: 10.3390/pr8091153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Jizi439, a newly developed black wheat breeding line, was reported to effectively regulate blood glucose, which may potentially be associated with its intrinsic high level of phenolic compounds (PCs). To maximize the PCs yield and thereby enhance their antioxidant activity, orthogonal experiments were designed in sequence for extrusion of Jizi439 black wheat bran (BWB) powder and followed by the extraction of PCs assisted with ultrasound technique. White wheat bran was used as a control. The optimum condition for extrusion was 110 °C, 25% feed water content, 140 rpm screw speed; meanwhile, 50 °C, 40 min, 35 kHz ultrasonic frequency, 300 W ultrasonic power for ultrasound-assisted extraction (UAE). Total phenolic content (TPC) as determined by Folin–Ciocalteu method was 2856.3 ± 57.7 μg gallic acid equivalents (GAE) per gram of dry weight (DW) of phenolic extract; meanwhile, antioxidant activity (AA) in terms of DPPH radical scavenging ratio was 85.5% ± 1.1% under optimized conditions, which were both significantly higher than the control. Phenolic acids except for gallic acid, as well as flavonoids, including luteolin and apigenin were increased by extrusion and ultrasound, as suggested by HPLC results. In conclusion, our study would provide a valuable reference for processing Jizi439 BWB before making or commercially utilize it into health-related food products.
Collapse
|
16
|
Skendi A, Zinoviadou KG, Papageorgiou M, Rocha JM. Advances on the Valorisation and Functionalization of By-Products and Wastes from Cereal-Based Processing Industry. Foods 2020; 9:E1243. [PMID: 32899587 PMCID: PMC7554810 DOI: 10.3390/foods9091243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022] Open
Abstract
Cereals have been one of the major food resources for human diets and animal feed for thousands of years, and a large quantity of by-products is generated throughout the entire processing food chain, from farm to fork. These by-products mostly consist of the germ and outer layers (bran) derived from dry and wet milling of the grains, of the brewers' spent grain generated in the brewing industry, or comprise other types obtained from the breadmaking and starch production industries. Cereal processing by-products are an excellent low-cost source of various compounds such as dietary fibres, proteins, carbohydrates and sugars, minerals and antioxidants (such as polyphenols and vitamins), among others. Often, they are downgraded and end up as waste or, in the best case, are used as animal feed or fertilizers. With the increase in world population coupled with the growing awareness about environmental sustainability and healthy life-styles and well-being, the interest of the industry and the global market to provide novel, sustainable and innovative solutions for the management of cereal-based by-products is also growing rapidly. In that respect, these promising materials can be valorised by applying various biotechnological techniques, thus leading to numerous economic and environmental advantages as well as important opportunities towards new product development (NPD) in the food and feed industry and other types such as chemical, packaging, nutraceutical (dietary supplements and food additives), cosmetic and pharmaceutical industries. This review aims at giving a scientific overview of the potential and the latest advances on the valorisation of cereal-based by-products and wastes. We intended it to be a reference document for scientists, technicians and all those chasing new research topics and opportunities to explore cereal-based by-products through a circular economy approach.
Collapse
Affiliation(s)
- Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece;
| | - Kyriaki G. Zinoviadou
- Department of Food Science and Technology, Perrotis College, American Farm School, GR-57001 Thessaloniki, Greece;
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece;
| | - João M. Rocha
- REQUIMTE—Chemistry and Technology Network, Green Chemistry Laboratory (LAQV), Department of Chemistry and Biochemistry, Faculty of Sciences—University of Porto (FCUP), Rua do Campo Alegre, s/n., P-4169-007 Porto, Portugal; or
| |
Collapse
|
17
|
Ortiz-Cruz RA, Ramírez-Wong B, Ledesma-Osuna AI, Torres-Chávez PI, Sánchez-Machado DI, Montaño-Leyva B, López-Cervantes J, Gutiérrez-Dorado R. Effect of Extrusion Processing Conditions on the Phenolic Compound Content and Antioxidant Capacity of Sorghum (Sorghum bicolor (L.) Moench) Bran. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:252-257. [PMID: 32212005 DOI: 10.1007/s11130-020-00810-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sorghum is a cereal with little use in human diet; however, this grain can provide several nutrients and, additionally, has a high content of phenolic compounds concentrated in bran, which could be beneficial to human health due to its high antioxidant capacity. However, these bioactive compounds are bound within the cell wall matrix; it is necessary to release these compounds to take advantage of their antioxidant properties. The extrusion process increases the accessibility of bound phenolic compounds, breaking their bonds from the bran matrix. The aim of this study was to determine the optimal extrusion conditions for maximizing the phenolic compound content and antioxidant capacity of sorghum bran extrudate. The extrusion process factors evaluated were feed moisture (FM) from 25 to 35% and the fourth extrusion zone temperature (T) in the range of 140-180 °C. Analysis of variance and response surface analysis were used in the evaluation. The prediction coefficient, (FM)2, (T)2 and their interaction (FM)(T) significantly affected the free total phenolic compounds. The antioxidant capacity of the free total phenolic compounds was significantly affected by (FM)2 and (T)2. The optimal extrusion conditions were FM = 30% and T = 160 °C, which provided free total phenolic compounds with a value of 7428.95 μg GAE/g (predicted value: 7810.90 μg GAE/g) and antioxidant capacity with a value of 14.12 μmol TE/g (predicted value: 14.85 μmol TE/g). Results confirmed that extrusion process optimization was useful to increase the content of phenolic compounds and improved the antioxidant capacity of sorghum bran.
Collapse
Affiliation(s)
- Raquel Alejandra Ortiz-Cruz
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, C.P. 83000, Col. Centro, Hermosillo, Sonora, Mexico
| | - Benjamín Ramírez-Wong
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, C.P. 83000, Col. Centro, Hermosillo, Sonora, Mexico.
| | - Ana Irene Ledesma-Osuna
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, C.P. 83000, Col. Centro, Hermosillo, Sonora, Mexico
| | - Patricia Isabel Torres-Chávez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, C.P. 83000, Col. Centro, Hermosillo, Sonora, Mexico
| | - Dalia Isabel Sánchez-Machado
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de febrero 818 sur, C.P. 85000, Cd, Obregón, Sonora, Mexico
| | - Beatriz Montaño-Leyva
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, C.P. 83000, Col. Centro, Hermosillo, Sonora, Mexico
| | - Jaime López-Cervantes
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de febrero 818 sur, C.P. 85000, Cd, Obregón, Sonora, Mexico
| | - Roberto Gutiérrez-Dorado
- Programa Regional del Noroeste para el Doctorado en Biotecnología, Universidad Autónoma de Sinaloa, Av. de las Américas y Boulevard Universitarios s/n, 80010, Culiacán, Sinaloa, Mexico
| |
Collapse
|
18
|
|
19
|
Villasante J, Pérez-Carrillo E, Heredia-Olea E, Metón I, Almajano MP. In Vitro Antioxidant Activity Optimization of Nut Shell ( Carya illinoinensis) by Extrusion Using Response Surface Methods. Biomolecules 2019; 9:E883. [PMID: 31888291 PMCID: PMC6995571 DOI: 10.3390/biom9120883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022] Open
Abstract
The pecan (Carya illinoinensis) nut shell is an important byproduct of the food processing industry that has not been previously explored as an antioxidant compound. This work aims to study the effect of the extrusion temperature and screw speed on the moisture content, water and oil absorption index, water solubility index, color, phenolic compounds, condensed tannin compounds, and antioxidant activity of pecan nut shell extrudates. Extrusion variables were adjusted using a response surface methodology. Extrusion, performed at 70 °C and 150 rpm, almost doubled the concentration of polyphenols in the non-extruded shell and significantly increased radical scavenging activity. Compounds in extrudates, performed at 70 °C and 150 rpm, were quantified by high-performance liquid chromatography (HPLC) with a diode-array detector (DAD) and identified by liquid chromatography coupled with time-of-flight mass spectrometry (LC-MSD-TOF). Extrusion significantly increased most phenolic acid compounds, including gallic acid, ellagic acid pentose, ellagic acid, dimethyl ellagic acid rhamnoside, and dimethyl ellagic acid. The soluble fiber in extrudates was more than three-fold higher than in the control. Therefore, extrusion at 70 °C and 150 rpm increased the concentration of phenolic compounds, antioxidant activity, and total dietary and soluble fiber. Our findings support the notion that extruded pecan nut shell can be used in clean-label products and improve their nutraceutical value.
Collapse
Affiliation(s)
- Juliana Villasante
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain;
| | - Esther Pérez-Carrillo
- Centro de Biotecnologia FEMSA, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; (E.P.-C.); (E.H.-O.)
| | - Erick Heredia-Olea
- Centro de Biotecnologia FEMSA, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; (E.P.-C.); (E.H.-O.)
| | - Isidoro Metón
- Biochemistry and Molecular Biology Section, Biochemistry and Physiology Department, Universitat de Barcelona, Joan XXII 27-31, 08028 Barcelona, Spain;
| | - María Pilar Almajano
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain;
| |
Collapse
|
20
|
Johansson E, Lange S, Oshalim M, Lönnroth I. Anti-Inflammatory Substances in Wheat Malt Inducing Antisecretory Factor. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:489-494. [PMID: 31435787 PMCID: PMC6900268 DOI: 10.1007/s11130-019-00767-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Extensively malted cereals counteract enterotoxic diarrhea and inflammatory bowel diseases. This effect depends on a protein called antisecretory factor (AF), which is secreted into the blood as a larger complex known as the compleasome. In this study, we identified anti-inflammatory substances in malt and assayed their capacity to induce AF. Guaiacol and quercetin inhibited inflammation in a mouse footpad model, while catechin, sinapic acid, ferulic acid, and quercetin inhibited nitric oxide formation in RAW 264.7 cells. The proteasome activity in these cells was inhibited by vanillic acid and quercetin but not by the other tested phenols. As the transient receptor potential vanilloid 1 (TRPV1) might be involved in AF induction, the TRPV1 antagonist capsazepine was tested and shown to inhibit inflammation in mouse paw and nitric oxide formation. Catechin, ferulic acid, and sinapic acid induced AF in rat blood, and these substances were all increased in malt compared to control wheat. These phenols might therefore be of particular importance for the beneficial effect of malted cereals on inflammatory diseases. Our results further suggest that TRPV1 might play a role in the anti-inflammatory activity of phenols via the induction of AF.
Collapse
Affiliation(s)
- E Johansson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, P.O.B 420, S-40530, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, P.O.B 7193, S-40234, Gothenburg, Sweden
| | - S Lange
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, P.O.B 420, S-40530, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, P.O.B 7193, S-40234, Gothenburg, Sweden
| | - M Oshalim
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, P.O.B 7193, S-40234, Gothenburg, Sweden
| | - I Lönnroth
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, P.O.B 420, S-40530, Gothenburg, Sweden.
| |
Collapse
|